International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary
Research and Growth Evaluation.

CICS Liberty for Developers and Architects: Unlocking Java Microservices on z/OS

Chandra Mouli Yalamanchili
Independent Researcher, United State

* Corresponding Author: Chandra Mouli Yalamanchili

Article Info Abstract _ _ _ .
This paper explores running Java microservices on IBM z/OS using the embedded

CICS Liberty runtime. By leveraging the tight integration between CICS Transaction

ISSN (online): 2582-7138 Server and Liberty—a lightweight, modular Java EE application server—enterprises
Volume: 05 can modernize incrementally without discarding proven COBOL and PL/I assets.
Issue: 04 The paper walks through Liberty’s JVM architecture within CICS, outlines step-by-
July-August 2024 step implementation of a hybrid Java-COBOL application, and evaluates deployment
. strategies, monitoring tools, and operational best practices. It also highlights key
Received: 06-04-2024 features, real-world challenges, and design considerations for maintaining high
Accepted: 07-05-2024 performance and reliability. The goal is to equip mainframe development and
Page No: 1401-1409 opeltgéionls teams with the technical depth to adopt and scale Java workloads on z/OS
confidently.

DOI: https://doi.org/10.54660/.1JMRGE.2024.5.4.1401-1409

Keywords: CICS, Liberty Profile, z/OS, Java EE, Microservices, Mainframe Modernization, JVM, JCICS, RESTful Services,
DevOps

1. Introduction

In the constantly evolving landscape of enterprise IT, businesses face the dual challenge of maintaining their legacy systems'
stability while embracing modern software paradigms. Mainframes, particularly those running IBM z/OS, have long been the
backbone of mission-critical applications, especially in banking, insurance, and government sectors. Their reliability, scalability,
and unmatched throughput make them indispensable. However, as the demand for agile development, microservices
architectures, and cloud-native practices grows, organizations seek ways to extend the value of their mainframe investments
without a full-scale re-platforming effort [21,

IBM’s response to this need is CICS Liberty—a highly optimized, integrated version of the Liberty Java runtime, designed to
operate within the CICS Transaction Server on z/OS M. By embedding a Java EE-compatible server inside CICS regions, IBM
has enabled a unique hybrid architecture that allows Java-based microservices to execute directly alongside COBOL, PL/I, or
assembler programs. This approach eliminates the latency and complexity of inter-platform communication while preserving
the traditional strengths of the mainframe environment [,

Unlike traditional Java application servers that operate in siloed distributed environments, Liberty within CICS runs in-process,
meaning that the Java Virtual Machine (JVM) executes as a subtask under the control of CICS. This tight integration allows
direct participation in CICS features like transaction control, security via RACF, and access to mainframe datasets and
middleware like VSAM, DB2, or MQ ™. It opens new doors for organizations looking to gradually modernize their systems by
enabling the coexistence of legacy and modern codebases in a single ecosystem.

This paper examines how enterprises can leverage this unique capability to build and run Java microservices within CICS on
z/0S. We explore the architecture of Liberty under CICS, highlight the features and benefits of this setup, walk through a step-
by-step implementation of a sample application, and discuss various deployment, monitoring, and troubleshooting options.
Operational considerations and known challenges are also discussed in depth. By bridging the gap between legacy reliability
and modern agility, CICS Liberty offers a pragmatic modernization path that aligns with the realities of enterprise-scale
computing. This architecture may be the best of both worlds for organizations seeking to innovate without disruption.

1401 |Page

https://doi.org/10.54660/.IJMRGE.2024.5.4.1401-1409

International Journal of Multidisciplinary Research and Growth Evaluation

2. Architecture of How CICS Supports Liberty JVM

The integration of the Liberty runtime into IBM CICS
Transaction Server is a blend of mainframe-native control
with Java runtime flexibility. CICS does not merely invoke a
Java Virtual Machine—it tightly orchestrates it through
structured lifecycle management, resource control, and
integration with the z/OS execution environment [31, At the

www.allmultidisciplinaryjournal.com

heart of this integration lies the concept of a Language
Environment enclave, the CICS JVMSERVER resource, and
controlled threading policies to ensure Liberty behaves like a
well-governed citizen within the CICS region [X:5 61,

Below picture illustrates the high-level architecture of
Liberty JVM within CICS region.

2/0S LPAR

CICS Region

Liberty JVM

___ HTTPS _|
@ RESTHul API

Web Client

Enterprise wab
()

Link 2 Lihcmj] }CCS

COBOL/Assembler
Program

3

L

3270 Terminal

JOBGIPA >
(Type 2 DB drivar} Cics Da2
cannact
JDBC/IPA |
[Type 4 OB driver} | Etamal DB2
JCICS 3 oos
»
(Integrated moda) SAMTDGY)

Fig 1: Depicting Liberty JVM hosted in CICS [,

2.1 The Language Environment (LE) Enclave and JVM

Startup

When a Liberty JVM server is defined and started in a CICS

region, CICS creates a Language Environment (LE) enclave

to host it. An LE enclave is a standardized z/OS runtime

structure that allows mixed-language support (e.g., COBOL,

PL/1, Java) under a single transactional umbrella M1, Within

this enclave, the JVM is launched using the Java Virtual

Machine Interface (JVMCI), meaning that the JVM runs

natively within the address space of the CICS region rather

than as an external process. [

The enclave provides critical control boundaries:

e Shared memory management

e Language-specific exception handling

e Common runtime services (heap, stack, signal handling)
(11

e Participation in CICS transaction flows (start, commit,
rollback) & ®I,

This tightly coupled model ensures that even though Java
code runs under Liberty, it still follows the same execution
model as traditional CICS programs. [

2.2 CICS Dispatcher and Thread Management

Liberty is a multi-threaded runtime, but unlike traditional

Liberty servers that manage their threads freely, CICS

imposes strict thread caps and dispatching rules through the

JVMSERVER definition. M

Key points:

e CICS allocates a fixed number of TCBs (Task Control
Blocks) per Liberty JVM, defined in the
THREADLIMIT attribute of the JVMSERVER. ™

e These threads are MVS TCBs managed by the CICS
dispatcher.

e CICS enforces a one-task-per-request model, meaning
Liberty threads servicing HTTP or internal Java requests
must operate within this defined limit, maintaining
predictable resource usage ™.

Example definition

DEFINE JVMSERVER(MYJVM) GROUP(MYGRP)
THREADLIMIT(20)

WORKLOAD(ON)

Here, the Liberty server cannot use more than 20 concurrent
threads, and all thread dispatching honors CICS region-wide
concurrency rules. If additional requests arrive, they are
queued until a thread becomes available.

This thread-handling strategy is a deliberate design choice to
protect overall region performance and to ensure that Java
microservices do not exhaust CPU, memory, or 1/O resources
required by other CICS programs [,

2.3 JVM Lifecycle Control

The lifecycle of the Liberty JVM server is tightly bound to

CICS operations. Key elements include:

e Startup: Performed via CEMT SET
JVMSERVER(MYJVM) START. CICS loads the JVM
into an LE enclave and initializes Liberty using the
configured server.xml B,

e Shutdown: A STOP command triggers graceful
termination of the JVM and all active Java threads. CICS
ensures no orphan tasks are left behind &I,

¢ Restart: Liberty JVMs can be restarted independently of
the CICS region. These commands are useful during
application updates or server configuration changes ©I.

This lifecycle control is managed under the authority of the

1402 |Page

International Journal of Multidisciplinary Research and Growth Evaluation

CICS master TCB, ensuring predictable integration into
overall CICS behavior B,

2.4 Region Isolation and Address Space Behavior

Each Liberty JVM operates in the same address space as the
CICS region that hosts it, but is isolated by the JVM's internal
classloader and memory structures [l Multiple
JVMSERVERSs can be defined per CICS region, each with its
own thread pool and heap space, but they share z/OS-level
region constraints (e.g., 2 GB below-the-bar storage unless
using AMODE (64)).

Thread usage, CPU time, and memory allocation are all
accounted for using z/OS and CICS system statistics. Tools
like RMF, SMF type 110 records, and Liberty MBeans allow
administrators to monitor these resources in real time [,

2.5 Underlying Java Runtime: Semeru J9 VM and AOT

Compilation

The JVM embedded within CICS Liberty is based on IBM’s

Semeru (formerly J9) runtime for z/OS, a performance-

optimized JVM that supports both JIT (Just-In-Time) and

AOT (Ahead-of-Time) compilation. ™ This hybrid execution

model provides significant startup and throughput advantages

for long-running transactional services on z/OS.

Key characteristics of the J9 VM in this context include:

e Faststartup via AOT (Ahead-Of-Time) caching: Java
classes can be pre-compiled into platform-optimized
machine code using the AOT compiler or generated
during first execution and persisted for reuse 1.

e Low-pause garbage collectors: Options such as gencon
and balanced collectors help reduce pause times critical
for transaction predictability [,

e z/Architecture optimizations: Semeru for z/OS takes
advantage of hardware-level instructions, SIMD
registers, and zIIP offloading when applicable 4],

This VM model is especially important in CICS
environments where startup latency and resource utilization
must be tightly controlled. Liberty leverages these
capabilities to provide responsive behavior and efficient
resource consumption under CICS control 51,

2.6 Transaction Participation and JCICS Invocation
While the JVM runs inside a Liberty enclave, Java programs
can fully participate in CICS transactions using the JCICS
API. This includes invoking COBOL programs, issuing
COMMAREA-based requests, accessing temporary storage
queues, or starting new tasks. These interactions are wrapped
inside the CICS Unit of Work (UOW) and contribute to
CICS-managed commit/rollback flows 51,

From CICS's perspective, a Java request is just another
program invocation. However, from the Java developer's
perspective, it feels like working in a modern application
server with access to REST APIs, annotations, and
dependency injection—all inside the mainframe 1,

2.7 Summary

In this architecture, IBM CICS effectively acts as a
hypervisor-like controller for Java workloads running in
Liberty. Launching the JVM inside a managed enclave,
governing its threads, and integrating it with core CICS
transaction services enables secure, reliable execution of
modern Java microservices without compromising the

www.allmultidisciplinaryjournal.com

deterministic behavior expected of z/OS systems [*-5],

This model makes CICS Liberty an ideal choice for
organizations that want to modernize incrementally while
keeping their critical transaction infrastructure intact [,

3. Features and Benefits of Running Java Microservices
with Liberty in CICS

IBM CICS Liberty offers an advanced runtime architecture
for hosting Java microservices directly within the CICS
region on z/OS. This tight integration brings together the
modularity and portability of the Liberty Java EE runtime
with the transaction integrity, performance, and security of
CICS %1, Below, each core feature is paired with its multiple
real-world benefits and broader enterprise impact.

3.1 Java EE 7 and MicroProfile Support for Modern
Development

CICS Liberty supports the Java EE Web Profile and
MicroProfile APIs such as JAX-RS, CDI, JSON-B, JMS, and
JPA. These features enable developers to build lightweight,
standards-compliant RESTful services [*-3],

Benefits

e Supports modular, annotation-based development for
agility

e Enables deployment of modern microservices using
WAR files

e Allows portability between Liberty on z/OS and
distributed environments ©1,

Strategic Impact: Promotes faster time to market and talent
reusability by enabling developers to use familiar enterprise
Java standards.

3.2 JCICS API Access to Traditional CICS Assets

The JCICS API allows Java applications to invoke CICS
services such as COMMAREA programs, VSAM access,
TD/TS queues, and DB2 calls using standard CICS verbs in
Java [:51,

Benefits

e Enables incremental modernization without rewriting
COBOL

e Minimizes latency compared to cross-platform calls B

e Encourages reuse of core business logic already proven
in production

Strategic Impact: Bridges the old and the new, allowing Java
apps to run close to legacy systems, reducing risk and effort
during modernization.

3.3 Transaction Management and Data Integrity

Java programs hosted in Liberty can participate in CICS-
managed transactions and syncpoints, including distributed
two-phase commits across DB2 and MQ %9,

Benefits

e Ensures ACID compliance across hybrid application
flows

o Allows rollback across COBOL and Java layers in case
of failure

e Supports long-running or nested transactions safely [

1403|Page

International Journal of Multidisciplinary Research and Growth Evaluation

Strategic Impact: Maintains trust in business-critical
systems during modernization by preserving data integrity
across all application layers.

3.4 CICS Channels & Containers for Structured Data

Exchange

Channels and containers allow structured data—including

large payloads or multi-field data—to be exchanged between

Java and COBOL programs within a transaction context. 1!

Benefits

e Reduces the complexity of parsing flat data

e Supports more expressive and flexible inter-program
communication

e Eliminates reliance on fixed COMMAREA formats

Strategic Impact: Enables more scalable and maintainable
designs as complex business processes grow.

3.5 Thread Management and Asynchronous Execution
CICS Liberty enforces thread limits per JVM
(THREADLIMIT) and supports asynchronous programming
through Liberty thread pools and MVS SRBs [-3],

Benefits
e Avoids overloading the CICS region by capping Java
concurrency

e Supports non-blocking programming models for higher
throughput 5]
e Reduces CPU waste through efficient multithreading

Strategic Impact: Ensures mainframe stability while
delivering elastic, high-performance services within tightly
managed system boundaries.

3.6 Integrated Security with z/OS SAF (RACF)

CICS Liberty integrates with z/OS Security Authorization
Facility (SAF) and supports mapping Java EE roles to RACF
groups, enforcing unified security policies 51,

Benefits

e Enables centralized access control across all tiers

e Supports role-based access for REST and EJB services

e Ensures all activity is audit-compliant via SMF and
Liberty logs

Strategic Impact: Builds confidence in hybrid architectures
by maintaining enterprise-grade security for Java and
traditional workloads.

3.7 Observability and Monitoring Compatibility

Liberty servers expose runtime metrics via MBeans, REST
endpoints, and SMF records, making them accessible to
mainframe and distributed monitoring tools 3 %1,

Benefits

e Supports health diagnostics via Health Center and
OMEGAMON Bl

e Integrates with modern tools like AppDynamics,
Prometheus, and Dynatrace

e Provides unified logs and metrics for Java + CICS flows

Strategic Impact: Empowers ops teams with a single pane
view of system health across legacy and modern components.

www.allmultidisciplinaryjournal.com

3.8 DevOps and Pipeline-Driven Deployments

Java microservices can be built, tested, and deployed to CICS
Liberty using CI/CD tools such as UrbanCode Deploy,
GitHub Actions, or Ansible playbooks [?°],

Benefits

e Promotes version-controlled, repeatable deployments

e Integrates CICS workloads into enterprise DevOps
pipelines

e Reduces manual effort and human error

Strategic Impact: Aligns mainframe applications with agile
delivery cycles and cloud-native development models.

3.9 High Availability and Sysplex-Aware Design

CICS regions and their embedded Liberty JVMs operate in a
z/OS Sysplex environment, allowing seamless workload
balancing and failover %3],

Benefits
e JVM failures are isolated and recoverable
e REST endpoints remain available through dynamic

routing

e Supports active-active configurations for critical
services

Strategic Impact: Enhances system resiliency and

availability, aligning Java services with mainframe-grade
fault tolerance.

4. Step-by-Step Guide to Implement a Sample

Application on Liberty JVM within CICS

This section illustrates the end-to-end process of developing

and deploying a Java microservice inside CICS Liberty that

communicates with a COBOL program to update a VSAM

record. The example emphasizes integration across Java and

COBOL using JCICS, highlighting key CICS configuration

artifacts such as IVMSERVER, server.xml, JVM profile, and

URIMAP [1.5],

Use Case: A REST endpoint /vsam/update receives a

customer ID and amount and triggers COBOL program

CBLUPDTE to update a corresponding VSAM record.

3.10Define the CICS JVM Server (JVMSERVER)

The Liberty JVM is launched by CICS using a JVMSERVER

definition. This creates an LE enclave within the CICS

address space and restricts thread execution via CICS

dispatching [,

DEFINE JVMSERVER(MYSERVER) GROUP(MYGRP)

HOME (/u/myuser/liberty)

JAVAHOME(/usr/lpp/java/J8.0_64)

THREADLIMIT(20)

PROFILE(MYSERVER)

¢ HOME and JAVAHOME specify the USS paths to the
Liberty runtime and the Java SDK.

e THREADLIMIT caps the number of concurrent Java
threads that can run under this Liberty server.

e PROFILE refers to the Liberty server name and must
match the directory name under usr/servers/.

This definition is essential for telling CICS how to manage
the embedded Liberty runtime 251,

1404 |Page

International Journal of Multidisciplinary Research and Growth Evaluation

4.1 JVM Profile Configuration

JVM options for Liberty runtime behavior, such as memory

allocation and remote debugging, are specified in the

jvm.options file MG

File: /u/myuser/liberty/usr/servers/MYSERVER/jvm.options

-Xmx512m

-Xms256m

-Dfile.encoding=UTF-8

-Dcom.ibm.tools.attach.enable=yes

agentlib:jdwp=transport=dt_socket,server=y,suspend=n,add

ress=8000

e -Xmx and -Xms define the maximum and initial heap
sizes.

e Debugging is enabled via JDWP, allowing developers to
connect a remote debugger on port 8000.

4.2 Liberty Server XML Configuration (server.xml)
This XML file configures the Liberty server to activate
required Java EE features, define HTTP ports, and load
applications. [

<server>

<featureManager>

<feature>jaxrs-2.1</feature>

<feature>cdi-2.0</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9080" />

<application location="vsam-rest.war" type="war"/>
</server>

e jaxrs-2.1 enables RESTful APl support.

e cdi-2.0 enables dependency injection.

e The WAR file is the Java application to be deployed.

4.3 Define URIMAP

A URIMAP maps incoming HTTP requests to a Liberty
JVMSERVER. If omitted, CICS uses the default TCLASS
DFHWLP .51,

DEFINE URIMAP(VSAMREST) GROUP(MYGRP)
USAGE(PIPELINE)

PATH(/vsam/*)

JVMSERVER(MYSERVER)

This explicitly routes traffic destined for /vsam/* to the
MYSERVER Liberty instance. It also facilitates the setup of
attributes such as security level or policy control.

4.4 Java RESTful Microservice Class

This is the main service class that handles HTTP POST
requests, constructs containers, and calls the COBOL
program using JCICS [,

@Path("/vsam™)

public class VsamService {

@POST

@Path("/update™)
@Consumes("application/x-www-form-urlencoded")
public Response update(@FormParam("custld") String
custld,

@FormParam(*amount") String amount) {

try {
Channel ch = CICSFactory.createChannel();

www.allmultidisciplinaryjournal.com

ch.createContainer("CUSTID").putString(custid);
ch.createContainer("AMOUNT").putString(amount);
Program prog = new Program();
prog.setName("CBLUPDTE");

prog.link(ch);

return Response.ok("VSAM record updated™).build();
} catch (Exception e) {

return Response.serverError()

.entity("Failure: " + e.getMessage())

build();

}

}

}

e Uses JCICS to build containers named CUSTID and
AMOUNT.

e Links to the COBOL program, which reads the
containers and updates VSAM [,

4.5 COBOL Program Example (CBLUPDTE)

This program receives containers from the Java side, reads a
VSAM file, updates a field, and rewrites the record. [
CBLUPDTE.

EXEC CICS GET CONTAINER('CUSTID')
INTO(CUST-ID)

FLENGTH(LEN-ID)

END-EXEC.

EXEC CICS GET CONTAINER(AMOUNT")
INTO(UPD-AMOUNT)

FLENGTH(LEN-AMT)

END-EXEC.

EXEC CICS READ FILE(CUSTOMER)
RIDFLD(CUST-ID)

INTO(CUST-REC)

END-EXEC.

COMPUTE CUST-REC-BAL = CUST-REC-BAL + UPD-
AMOUNT.

EXEC CICS REWRITE FILE('CUSTOMER')
FROM(CUST-REC)

END-EXEC.

This program expects containers named CUSTID and
AMOUNT, reads a VSAM record, updates a field, and
rewrites the record [,

4.6 Build and Deploy the Application

Compile and package the Java service using Maven with the
WAR plugin:

<plugin>

<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-war-plugin</artifactld>
<version>3.3.2</version>

</plugin>

WAR artifact for the application needs to be copied to the
Liberty dropins directory:

/u/myuser/liberty/usr/servers/MY SERVER/dropins/

Liberty automatically deploys applications that are dropped
in this folder 21,

4.7 Start the Liberty Server

The Liberty JVM server can be started using the CICS
command or the CICS Explorer [,

CEMT SET JVMSERVER(MYSERVER) START

JVM server status can be confirmed by using the following
command:

1405|Page

International Journal of Multidisciplinary Research and Growth Evaluation

CEMT INQUIRE JVMSERVER(MY SERVER)

4.8 Test the REST Endpoint

The newly deployed microservice can be tested using curl or
any other HTTP client;

curl -X POST http://<host>:9080/vsam/update -d
"custld=1001&amount=250"

As a result of this API call, the backend COBOL program
will update the VSAM record, and the service will return a
successful response.

5. Options for Deploying Applications to CICS Liberty
CICS Liberty supports a range of deployment methods to
accommodate both traditional operations and modern
DevOps practices. Depending on the tooling available,
applications can be deployed manually, through scripts, or
via automated CI/CD pipelines [251,

Below are the primary deployment options:

5.1 Manual File Transfer

The WAR files can be manually uploaded to the Liberty
dropins directory via FTP, NFS mount, or ISPF OMVS shell.
51

Path example

/u/myuser/liberty/usr/servers/MY SERVER/dropins/vsam-
rest.war

Once copied, the Liberty server automatically detects and
deploys the WAR without restarting.

Use Case: Best suited for simple, infrequent deployments in
development or test environments.

5.2 Deployment via CICS Explorer

CICS Explorer provides a GUI-based interface to interact

remotely with CICS regions and Liberty servers. [

e With the help of additional plugins like Z Explorer, CICS
Explorer supports browsing and managing deployed
applications, or configuring deployment parameters.

e Can also issue CEMT-like commands for
JVMSERVERS.

Use Case: Useful for developers and operations teams
needing visibility and control over remote deployments
without command-line access.

5.3 CI/CD Integration with FTP or SCP

CI/CD pipelines can automate deployment by using scripts
that transfer build artifacts directly to the Liberty server 12,
Example using scp:

scp target/vsam-rest.war
cicsusr@zoshost:/u/cicsusr/liberty/usr/servers/MYSERVER/
dropins/

These scripts can be incorporated into GitHub Actions,
Jenkins, or GitLab CI. 2151

Use Case: Ideal for continuous delivery of updated
microservices through DevOps workflows.

5.4 1BM UrbanCode Deploy Pipelines

IBM’s enterprise-grade DevOps tool, UrbanCode Deploy,

offers structured and scalable deployment automation for

Liberty workloads on z/OS 1Bl

e Uses agents installed on z/OS to push build artifacts into
USS Liberty directories.

e Supports workflow templates for version-controlled,

www.allmultidisciplinaryjournal.com

multi-stage deployments.
e It can be integrated with Jenkins or Git-based CI tools
for full end-to-end automation.

Use Case: Enterprise-scale CI/CD, especially when
managing multiple Liberty servers, enforcing approvals, or

orchestrating deployments across test, staging, and

production environments.

5.5 DFHPI Pipeline-Based Deployment (CICS
PIPELINE)

The DFHPI interface allows structured deployment of
Liberty apps via a pipeline, especially for SOAP or JAX-WS
services [, A PIPELINE resource can be defined and have a
URIMAP pointing to it.

DEFINE PIPELINE(PIPE1) GROUP(MYGRP)
DESCRIPTION('Java Service Deployment'’)
PIPETYPE(JAXWS)

JVMSERVER(MYSERVER)

Use Case: Legacy web service deployments or structured
pipeline deployments within tightly governed environments.

5.6 Restarting the CICS Liberty JVM Server

In case of deployment, including updated configuration files
(e.g., server.xml, jvm.options) or encountering application
issues, JVMSERVER needs to be restarted to reinitialize the
Liberty runtime. (5]

Below, CEMT commands can be used to stop and start the
Liberty server:

CEMT SET JVMSERVER(MYSERVER) STOP

CEMT SET JVMSERVER(MYSERVER) START

Restart can also be triggered remotely using automation
scripts through CICSPlex SM (CPSM) APIs, CICS
Management Client Interface (CMCI), or via TCP/IP services
that expose remote operations interfaces. MB!I These
alternatives support integration with enterprise orchestration
platforms or system schedulers.

Note: Restarting the JVMSERVER will terminate all active
Java threads and reload the runtime and deployed
applications.

Use Case: Required when applying Liberty configuration
changes, recovering from faults, or deploying new
applications outside dropins.

These options allow organizations to start simple and scale
up to full DevOps automation, depending on maturity and
tooling readiness [> 91,

6. Troubleshooting Applications in CICS Liberty
Troubleshooting Java microservices within CICS Liberty
involves a combination of Liberty-native tools and CICS
system-level diagnostics. The integration allows for
monitoring traditional mainframe operations and modern
Java debugging techniques 31,

Below are key methods and best practices for diagnosing
issues:

5.7 Liberty Trace and Logging

Liberty supports highly granular component-based logging
and tracing. Trace specifications can be defined in server.xml
to capture detailed runtime behavior 1.

<logging traceSpecification="*=info:com.ibm.ws.*=all" />
o *=info enables general logging across all components.

e com.ibm.ws.*=all enables full tracing for all WebSphere

1406 |Page

International Journal of Multidisciplinary Research and Growth Evaluation

Liberty components.

Best Practice: Use targeted packages to limit trace output
volume in production.

5.8 JVM Dumps, FFDCs, and Server Logs

When an application throws an unhandled exception or

crashes, Liberty generates diagnostic artifacts in its logs

directory (e.g., /logs or

lulcicsusr/liberty/usr/servers/MY SERVER/logs/) MBI

e SystemOut.log / SystemErr.log: Standard output and
error streams.

e First Failure Data Capture (FFDC): Automatic dumps on
exception.

e javacore.txt, heapdump.hprof: Created during serious
JVM failures or via manual triggers (kill -3 or jdump).

IBM Diagnostic Tools for Java - Dump Analyzer can help

analyze heap or thread dumps [,

5.9 Remote Debugging with IDWP

Developers can enable remote debugging by editing

jvm.options “I:

agentlib:jdwp=transport=dt_socket,server=y,suspend=n,add

ress=8000

e Allows IDEs like Eclipse or IntelliJ to attach to the JVM.

e Useful during development or in controlled test
environments.

Debug mode should not be enabled in production without
secure tunneling or access restrictions.

5.10 CICS Message Logs and System Utilities

Standard CICS tools still apply to Liberty environments [HE1:

e SDSF (System Display and Search Facility): Review
MSGUSR, MSGJOB, and SYSPRINT for CICS errors.

e CEMT /CEDA: Inspect and manage JVMSERVER and
URIMAP resources.

e SMF Type 110 Records: Capture performance,
exception, and workload data related to Liberty JVM
tasks [,

5.11Application Health Monitoring via MBeans

Liberty supports JMX-based monitoring via MBeans 3 %:

e Tools like Liberty Admin Center, JConsole, or
VisualVVM can be used to observe:

e Thread pool usage

e Garbage collection stats

e REST endpoint response times

Tools like Dynatrace or AppDynamics can ingest these
metrics (these tools would require z/OS-specific agents) 1,

6. Monitoring and Alerting Tools for CICS Liberty
Monitoring CICS Liberty requires a multi-layered approach
that spans traditional mainframe observability and Java
application performance monitoring. Combining system-
level tools like SMF and OMEGAMON with Liberty-native
and third-party solutions allows operations teams to monitor
health, capture performance data, and set up proactive
alerting 351,

www.allmultidisciplinaryjournal.com

6.1 IBM Health Center / Monitoring and Diagnostic
Tools for Java

IBM Health Center (part of the Eclipse OpenJ9 diagnostics

suite) provides detailed runtime analysis of FIBI:

e Garbage collection patterns

e Heap and memory usage

e Thread activity and deadlock detection

It integrates directly with Liberty’s MBeans and can be

connected remotely for live monitoring or historical analysis.

Use Case: JVM tuning, memory leak detection, and thread

management in Liberty on z/OS.

6.2 CICS Tools: OMEGAMON and SMF Records

e OMEGAMON for CICS: Offers real-time and historical
monitoring of CICS transactions, JVM usage, and
Liberty server performance from a mainframe-native
dashboard [,

e SMF Type 110 Records: Provide transaction-level
metrics, including Java workload CPU usage, 1/0 wait
times, and response durations [*- 5

Use Case: System-wide visibility into COBOL and Java
workloads within the same CICS region.

6.3 Third-Party Tools: Dynatrace, AppDynamics

Modern APM tools offer z/OS integration options [5;

e Dynatrace and AppDynamics: Offer mainframe agents
(via CICS Transaction Gateway or z/OS Connect) that
trace transactions across distributed and z/OS systems.

Note: These tools often require additional licensing and setup
effort for full z/OS support.

Use Case: Enterprise-wide visibility and correlation of
Liberty transaction metrics with upstream systems.

6.4 Alerting Strategies and Integration

Alerts can be defined based on [* %I

e JVM heap thresholds or GC activity via JMX listeners

e CICS task wait thresholds or transaction hangs (via
OMEGAMON)

e Application errors or timeouts detected in SMF logs

Alerts can be routed to:

e 7/OS Console

e Enterprise incident tools like ServiceNow or PagerDuty
e Email/SMS integrations using monitoring system hooks

Use Case: Proactively detecting resource exhaustion,
performance degradation, or application faults.

Together, these tools provide a comprehensive observability
layer tailored for the hybrid nature of Liberty inside CICS,
supporting both traditional mainframe operations and modern
AlOps initiatives 351,

7. Considerations for Applications Running on CICS
Liberty

When designing and deploying Java microservices on Liberty
within CICS, developers and architects must account for both
Java-specific behaviors and CICS system constraints. Below
are key considerations to ensure performance, reliability, and
maintainability %4 51,

1407 |Page

International Journal of Multidisciplinary Research and Growth Evaluation

7.1 Memory Footprint and Heap Tuning

e Set appropriate heap limits using -Xmx and -Xms
options in the JVM profile (5],

e Tune garbage collection (e.g., enabling low-pause
collectors) to minimize transaction latency .

e Monitor memory use with IBM Health Center or
MBeans to detect leaks or overuse [9,

Impact: Prevents JVM-induced paging or region-wide
memory contention.

7.2 Thread Pooling and Concurrency
e THREADLIMIT governs Liberty's concurrency on
the JVMSERVER 91,
e Design asynchronous tasks carefully to avoid long-
held threads 1.
e Limit thread usage in backend API calls, especially
DB2 or MQ interactions [*-5],

Impact: Ensures Java tasks do not starve traditional CICS
workloads of CPU or dispatch resources.

7.3 Security Configuration

e SAF (e.g., RACF) must be aligned with Liberty’s Java
EE role mappings 51,

e JAAS login modules may be used for custom
authentication, though SAF-based mappings are more
common B,

e SSL configuration and keystore management must
adhere to enterprise security policies .

Impact: Maintains compliance and access control

consistency across Java and native programs.

7.4 Data Access Strategy

e JCICS API must be used to access TSQs, TDQs, VSAM,
and CICS programs. (1]

e Must be cautious while using JDBC or JPA—ensure
DB2 configurations support Java access and monitor
connections. B

e Must avoid holding JDBC connections across long-
running transactions I,

Impact: Preserves transaction consistency and resource
availability.

7.5 Startup Time and Availability

e Liberty JVM startup is slower than traditional CICS
transactions [* 51,

e Factor in JVM warm-up during CICS region IPL or
application restart [,

e Health checks and readiness probes must be used when
integrating with distributed gateways I,

Impact: Avoids SLA violations and unexpected latency
during failover or maintenance.

7.6 Application Logging and Diagnostics

e Ensure Liberty logs are stored in accessible USS
directories. !

e Implement structured logging using monitoring tools for
easier parsing and indexing. [

e Plan for log rotation and retention, especially in high-

www.allmultidisciplinaryjournal.com
volume environments I,

Impact: Improves issue resolution time and supports
compliance audits.

7.7 Deployment Discipline and Environment Segregation

e Use separate Liberty server instances or CICS regions
for dev, test, and prod %

e Version-control server.xml and WAR files are used to
track the deployment history [%1

e Avoid manual intervention in production environments;
use automated scripts or DevOps tools [2-5],

Impact: Promotes predictable deployment behavior and
reduces operational risk.

Taking these considerations into account during the design
and deployment lifecycle ensures that the Liberty
applications coexist harmoniously with CICS and meet
enterprise performance and security standards.

8. Challenges with CICS Liberty

While running Java applications within CICS, Liberty offers
compelling modernization benefits and introduces technical,
operational, and cultural challenges that organizations must
navigate carefully. This section highlights some of the most
common issues encountered during adoption and
implementation 51,

8.1 Steep Learning Curve

Running Java in CICS demands a unique blend of skills—

Java EE, Liberty server configuration, and mainframe

runtime knowledge %51,

e Developers must understand both the JCICS APIs and
the z/OS execution model ™,

e Operations staff accustomed to COBOL must adapt to
JVM behavior, garbage collection, and thread pooling ™

Mitigation: Cross-train development and support teams early;
consider pairing distributed and mainframe developers
during onboarding.

8.2 Limited IDE and Debugging Integration

While tools like Eclipse and IntelliJ can be configured for

remote debugging, seamless integration with z/OS Liberty

environments is not always straightforward [I,

e Setting up JDWP for remote attach requires careful JVM
tuning and secure network access 1.

e USS-based deployment is often handled manually or via
scripts, outside the IDE B,

Mitigation: Use IBM Z Open Editor for more integrated
experiences, and consider scripting WAR deployments to
bridge the gap.

8.3 Resource Contention and Region Stability

CICS Liberty JVM servers share CPU, memory, and dispatch

resources using traditional CICS programs [91,

e Poorly tuned Java applications can monopolize TCBs or
trigger excessive garbage collection pauses ™I,

e JVM behavior may jeopardize region health without
proper thread limits or heap sizing [41,

conservative thread limits

Mitigation: Apply

1408 |Page

International Journal of Multidisciplinary Research and Growth Evaluation

(THREADLIMIT) and monitor memory usage. Use separate
regions or JVMSERVERs for isolation where appropriate.

8.4 Monitoring and Observability Complexity

Most distributed monitoring tools were not built with z/OS

environments in mind 51,

e Liberty provides MBeans and metrics, but integrating
them with enterprise APM tools (e.g., Dynatrace,
AppDynamics) often requires a custom setup EI,

e CICS system metrics (e.g., SMF, OMEGAMON) and
Liberty application metrics reside in separate ecosystems
1,5]

Mitigation: Use hybrid dashboards combining z/OS and
Liberty data sources.

8.5 Cost and Licensing Considerations
Although Liberty is lightweight and
enterprise-grade tooling and integrations
additional expenses [,

e Observability agents, CI/CD orchestrators, or third-party
connectors for mainframe Java may be licensed
separately 231,

e Additional zIIP usage should also be considered in
capacity planning [,

cost-effective,
may carry

Mitigation: The total cost of ownership (TCO), including
staff training and support tooling, must be factored into when
planning Liberty rollouts.

9. Conclusion

Using CICS Liberty represents a strategic stage for
enterprises looking to evolve their mainframe applications
without disrupting what already works. By embedding a Java
EE-compliant runtime directly into CICS, organizations can
deploy microservices that interact natively with COBOL,
access transactional resources, and participate in secure,
monitored, and resilient workloads—all from within a single
CICS region 41,

This paper has detailed the architectural design, deployment,
and integration strategies, operational considerations, and
known challenges that come with this approach. While
hurdles exist—such as JVM tuning, IDE integration, and
monitoring complexity—the benefits of proximity,
consistency, and performance make Liberty in CICS a
compelling modernization strategy [* 51,

Future research should delve deeper into CI/CD automation
tailored for z/OS, long-term performance metrics under
production loads, and standardized AlOps for hybrid Java-
mainframe applications. As organizations deepen their
adoption of hybrid cloud and container-based deployments,
future enhancements to CICS Liberty may focus on tighter
integration with OpenShift, Kubernetes-based orchestration
of mainframe-hosted microservices, and improved tooling
for DevSecOps pipelines. Innovations from IBM, such as
z/0OS Connect, are already enabling more seamless
interoperability between mainframe and distributed
environments. Additionally, we expect further improvements
in observability (e.g., OpenTelemetry support), resource
auto-scaling within CICS regions, broader language support
via GraalVM, and more. Investing in these future-facing
capabilities will allow enterprises to sustain long-term
modernization while continuing to leverage the unparalleled

www.allmultidisciplinaryjournal.com

stability and performance of the IBM Z platform. 21051

10. References

1.

IBM Corporation. CICS Transaction Server for z/OS
V5.6 documentation [Internet]. IBM Documentation.
Available from: https://www.ibm.com/docs/en/cics-
ts/5.6

IBM Corporation. CICS and DevOps: what you need to
know. IBM Redbooks. 2016 Jan. Report No.: SG24-
8339-00. Available from:
https://www.redbooks.ibm.com/abstracts/sg248339.htm
I

IBM Support. Monitoring and diagnostic tools for Java
— Health Center [Internet]. IBM Documentation.
Available from: https://www.ibm.com/docs/en/mon-
diag-tools?topic=monitoring-diagnostic-tools-health-
center

IBM. Semeru Runtime Certified Edition for z/OS — VM
reference [Internet]. IBM Documentation. Available
from: https://www.ibm.com/docs/en/semeru-runtime-
ce-z/11?topic=j9-vm-reference

IBM Corporation. Liberty in IBM CICS: deploying and
managing Java EE applications. IBM Redbooks. 2018
Jan. Report No.: SG24-8418-00. Available from:
https://www.redbooks.ibm.com/abstracts/sg248418.htm
I

IBM Corporation. IBM CICS and Liberty: what you
need to know. IBM Redbooks. 2016 Jan. Report No.:
SG24-8335-00. Available from:
https://www.redbooks.ibm.com/abstracts/sg248335.htm
I

1409|Page

