
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1620 | P a g e

Navigating Software Complexity: Guidelines for Choosing Scalable Architecture Styles

Sachin Shridhar Padhye

Katy, Texas, U.S

* Corresponding Author: Sachin Shridhar Padhye

Article Info

ISSN (online): 2582-7138

Volume: 06

Issue: 03

May-June 2025

Received: 15-04-2025

Accepted: 16-05-2025

Page No: 1620-1626

Abstract

Architecture is broadly defined as a science of designing and building structure. It is

process of planning, designing, and constructing the structure. In software field

structure is the software application. In simple term, Software is computer programs

and data that tells computer to perform series of actions using underlying hardware. In

real world, there are multiple computer programs executed in chronological order. In

real world, software applications which are solving any business requirement is very

complex where multiple software applications, commonly called as building blocks

are integrated with each other. Software architecture is encompassing the high-level

organizations of its components, how they interact and principles guiding their design.

This paper present guidelines on architecture where data integrity is extremely

important. Correct and adequate data should be presented and maintained in

application.

DOI: https://doi.org/10.54660/.IJMRGE.2025.6.3.1620-1626

Keywords: Software Architecture, Microservices, Data, Webhook, gRPC, Kafka, Messaging System

1. Introduction

As per IEEE-1471, software architecture defined as fundamental concepts or properties of a system in its environment embodied

in its elements, relationships, and in the principles of its design and evolution. Architecture style gives generic framework which

standardize the software architecture. Architecture style defines organization of the components and communication between

them in particular way. It serves as a high-level blueprint for the system, influencing its overall design and behavior. Software

application is developed implementing various architecture style and architecture pattern. E.g. Typical Web application uses

Layered architecture style, implementing MVC pattern, where it has separate frontend service, data bases and back-end services

where business logic is written which controls flow of the data from front end to database and vice versa with processing as per

the business requirement. But there could be one monolithic backend service or multiple microservices. Also, within the

microservices communication can be handled by peer-to-peer communication or publish-subscribe pattern. In this paper we are

going to discuss architecture style to overcome the limitation of the architecture style.

In first part, we discuss how to approach for microservice architecture style. Each architecture has it’s characteristics which may

be suitable at stage of the business. When any business is start up that time development team is very small and number of user

of the applications are small, also there is uncertainty on success of the business. If organization goes implementing the micro

services, it may be impractical to implement microservice architecture with limited resources and budget. Alternative approach

is to start with monolithic architecture style and move slowly towards micro service architecture. It also recommends best

practices for communication.

In second part, paper discuss about architecture pattern which try to solve “Timeout Antipattern”. Short time out may fail

legitimate requests prematurely and long timeouts can result into poor user experience and delay error responses. This issue

occurs when Synchronous request implemented through event driven architecture style or Asynchronous manner.

https://doi.org/10.54660/.IJMRGE.2025.6.3.1620-1626

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1621 | P a g e

Part-I

Typical software application has three main component a)

User Interface b) Backend Services c) Databases. Software

Architecture Style standardizes how these components are

organized and connected to produce reliable, scalable

software application. There is other components of the

software architecture e.g API Gateway, load balancers etc but

for this paper we consider above three components. As shown

in below figure there are two main software architectures

style. A) Monolithic Architecture B) Microservice

Architecture.

Fig 1: Monolithic Architecture

Fig 2: Microservice Architecture

Software application can be defined as a process which

collects the data either from the user or other application,

applies the business rules on the data which changes the data

and then persist the data. Basic functionality of an application

is accessing the persisted data (read) or create new data or

updated existing data (write), which are known as read and

write operations respectively. The place where data is saved

in called database. Database can be categories in different

types, the way data is saved, E.g. In memory database,

relational database, NoSQL database. Base of the software

application is database connectivity; this drives the

performance of the application. For this paper we will

consider relational database. Each application needs

connection to the database to read and write data. Each

database allows maximum number of connections, also max

number of connections on single node is driven by hardware

resources (CPU,I/O, Memory). So this Max number of

connections directly dictate number of concurrent requests

application can serve. E.g. Oracle database can handle 1528

concurrent connections, SQL servers 32,767 and My SQL

has default 151 but it can be set through my_connections

settings. Hence max number of database requests can be

concurrently executed is number of maximum database

connections allowed by the database.

In monolithic architecture these connections are shared

among the multiple backend services so number of

concurrent requests can be executed is less than or equal to

available max connections. Additionally multiple backend

process can access same table and try to update same row in

different request which puts lock on table row, hence even

though free connections are available one of the requests

must wait until another request releases the lock. In complex

applications and use case some time it may cause dead lock.

Microservice architecture solves this problem, each service

connects to its own database, hence number of requests can

be executed concurrently equal to number of concurrent

connections database can handle. Also intra process

communication is handle through SAGA pattern like

orchestration or choreography, hence not a possibility of

database row lock.

Microservice has a bigger landscape, it comes with its own

challenges. Sometime larger concurrent connections

available are not even required during initial life of an

applications. As studies shows a typical user clicks 7-8 clicks

per seconds, and each clicks generates API call. During initial

life of an application there are 50 concurrent users then it will

generate 350-400 requests per seconds, which means every

request is made in approximately every 2.87 milliseconds.

For ~400 concurrent requests, 400 concurrent database

connections are required, so with Oracle database ~73% of

connections will be unused. Also, during initial life of a

software product, i.e. in startup environment, development

team size is small. Hence it is recommended to start with

monolithic architecture development and migrate to micro

service architecture during later life cycle.

While designing monolithic application, if it is kept in mind

that it could be split in multiple micro services then it will be

less effort during redesigning or restructuring the application.

The principle we are proposing is to design monolithic

application consist multiple modules. Module refers to

business services, each module will have its own database

schema, and each module will communicate with each other

through messaging queue. Technically, multiple modules are

built, packaged together and deployed as a single package.

But down the line when it needs to be decomposed in

microservices then only packaging changes. Database is

independent of the application, it will be as simple as copying

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1622 | P a g e

entire schema to new database instances. Below diagram

shows modular monolithic architecture.

Fig 3: Modularize Monolithic

In ideal microservice word, one table per database is expected

but it is very difficult to implement in complex software

application. Hence some guidelines recommended to design

the database.

Data consists of multiple attributes; Data is changed when

one or more attributes of the data is updated. Based on how

frequently data is changed in the lifecycle of an application it

can be broadly categories in two types a) Inconstant Data b)

Stable Data.

Inconstant Data changes frequently by user action. Each

Inconstant data is updated based on business rules and set of

stable data. Example of the inconstant data is Orders created

in e-commerce website; shipments created for custom

clearance.

Stable Data doesn’t change very frequently. Inconstant data

changed into stable data over lifecycle of the application.

Stable data served as a master data for an application.

Example of the stable data is Products and Sku available on

website for purchase.

There are few properties of the Inconstant Data and stable

Date.

 Inconstant Data eventually becomes stable data over life

cycle of an application. e.g. When customer places an

order on e-commerce platform, order can be modified

after submitting it up to certain time frame defined by the

business process. Customer can cancel the order or order

new product until order is shipped. Once it is shipped and

received by the customer it cannot be updated.

 Inconstant Data can be created from the stable data. E.g.

Order is created from the product data. It is

recommended to copy the stable data in inconstant data

to make sure new version of the stable data won’t impact

inconstant data.

 When stable is changed, new version of the stable data is

created instead of modifying the properties of the stable

data.

 Stable data changes very rarely hence they are mostly

read only. This makes them good candidate for the

caching.

First step is to decide how this data is classified, if they are

under different classification then they can be in separate

schema. E.g. Order is transactional data modified by the

customers more frequently hence it classified as Inconstant

data vs products purchased by the customers are very rarely

changes hence it can be classified as a stable data.so both

Order and Product will be in their own schema. Below table

classifies most common data objects in e-commerce domain.

Inconstant Data Stable Data

Order Product

Items Sku

Inventory Price

Shipping Group Promotions

Payment Coupons

 User

Secondly, next questions need to be asked is that if two data

elements in same classification are related, if answer is yes

then it can be in same schema and realized as a table structure.

If they are not, then it can be in separate schema. e.g.

Inventory and order are not actually related, inventory is

maintained against the product and as orders are placed

inventory is decremented so it can be kept in separate schema.

Same thing is for Product and User, hence product and user

can be in the separate schema.

Lastly, to check business specific functional requirement to

decide. E.g. for some organizations pricing of product

changes very frequently like 2-3 times in day, few

organizations run very frequent promotions, hence better to

separate out in the separate schema. Based on this different

schema can be created as follow.

Order

Schema

Inventory

Schema

Product

Schema

Price

Schema

User

Schema

Order

Items

Shipping

Group

Payment

Inventory Product

Sku

Price

Promotion

Coupon

User

Common Library

Tools and framework put a structure around the application

code which makes application consistent, reduces the

duplicate work. Micro service architecture is based on the

principle of the duplication as each service is independent and

managed by separate team but if there are basic framework

or pattern is available then building new service just few

minutes work. Also, code is structured in specific pattern, so

it becomes maintainable. E.g. 100+ services each with

different style of code vs 100+ services with similar pattern,

it allows the shuffling of the developer among the team as per

the requirement and bandwidth. Such tools and frameworks

can be maintained as separate library.

Object Relation Mapping (ORM) Tools

Object Relation Mapping tools is the abstraction layer sits on

top of the relational database. It converts relational data in

Objects so that it can be easily accessed in service layer. It

handles SQL statement creation and execution. Software

developer just focus on writing business logic and code to

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1623 | P a g e

write getting SQL connection, creating SQL statements,

mapping data from the DTO to SQL statements, executing

statements, mapping query result back to DTO is handled by

the OR tool. ORM tools provide basic API for Create, Read,

Delete, Update (CRUD).

There are few missing elements of ORM

1) Dynamically creating Search criteria for listing API. One

of the common requirements of the application is to

search and filter the items based on user provided inputs.

OR tools API generally requires defining method in

interface to find results on search criteria. If there are 10

filters on item, then it is impractical to write so many

methods. OR tools provide a way to construct the query

using Criteria Builders or query language. E.g. Hibernate

provides Hibernate Query Language (HQL). Library can

be written to convert System for Cross-Domain Identity

Management (SCIM) filter for selecting item in dynamic

query.

2) Using ORM Tool API, one update statement is executed

per item which may update multiple columns. But there

could be requirement of updating 50-100 rows of a table

base on some condition. E.g. There is a requirement of

consolidation of shipment, there 50 shipments with

multiple line items, these line items need to be

consolidated in new shipment, also it can be removed

from consolidated shipment and when it is removed it

needs to go back to original shipment. Hence, we need

to update 200 lines items with new shipment id and

maintain reference to old shipment id. There are two

ways of doing this one is to execute 50 SQL update

statement vs execute 1 SQL statement with CASE-

WHEN option. Executing 50 SQL is not a viable solution

because it’s time complexity of O(n), meaning as

number of rows increases it will increase number of

statements to be executed, whereas on other hand second

solution will always execute 1 SQL statement. Hence

there is a need to provide a library which will construct

complex SQL statements.

Microservice Communication

Important aspect of the microservice architecture is intra

service communication. There are two main type of the

communications 1) Point to Point communication 2)

Multipoint communication.

Point to Point communication

In this type of communication service sends message or

requests directly to another service. This type of

communication is typically used to pull the data from the

other service, or some action needs be performed before

performing other action i.e. Synchronous communication.

E.g. When customer places an order, it needs to submit order

service needs to check if inventory is available to accept an

order. gRPC is popular communication protocol used for

point-to-point communication.

gRPC is a high-performance, open-source, universal Remote

Procedure Call (RPC) framework developed by Google.

gRPC uses HTTP/2 and data transmission is done in byte

stream, offering a lightweight and efficient communication

mechanism. gRPC protocol works on Server / Client

communication model. Server owns the service, and it

publish contract which is used by the client. There are two

ways by which this can be adopted. One way is creating proto

library per microservice which will be added by the caller

microservice. Another way is to create one library for all

service, and it is included by every other microservice. As

shown below, there five micro services and five proto libs. If

service-2 wants to communicate with service 1 then it will

include service-proto-lib-1. Also, if service-5 wants to call

service-1 and service -2 then it will include service-proto-lib-

1 and service-proto-lib-2.

Fig 4: Proto lib per Microservice v/s One Proto lib for all service

There are several advantages of maintaining proto

library per microservice.

1. Each proto lib is own by corresponding micro service, so

ownership of the library is clearly defined. In case of the

other approach where one library approach library owns

by multiple teams.

2. In one library approach, as application grows size of the

lib increases which increases build and deployment time

of all the service, which is not a case in multi library

approach.

3. Redundant information is included in each microservices

in case of the one library approach. E.g. Microservice-1

doesn’t need to communicate with microservice-5 but it

will sill include microservice-5 proto and client details.

4. One library is strong coupled solution where entire

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1624 | P a g e

application service definition and descriptions are

available to all the services.

Multipoint communication

In this type of communication one service publishes the

message and other services are subscribed to read the

message. Generally, there is a messaging system which may

have topics or queue or both. Difference between topic and

queue is that topic can have multiple subscribers whereas

queue has only one subscriber. Subscribers will receive

message and process it. E.g. After order is confirmed

successfully, Order service publishes message. Email service

subscribe it to send email order confirmation email, oms-

integration service subscribes it to trigger order

transformation process. Kafka, rabbit MQ is popular

messaging queues used for multipoint communication.

There can be two approaches available. In first approach each

service will have two topics, in-topic and out-topic where

each service is message producer which produces message on

out-topic, also each service is consumer of in-topic. Then

there will be centralized service which will consume out-

topic from each service and then use config map to forward

message to destination in-topic from each service. This

approach is based on Choreography Saga design pattern.

In second approach, each microservice will be listening to

dedicated Kafka ‘service-topic’. If one service needs to

communicate to other services, then it must pragmatically

produce message to corresponding topic. This is tight

coupling approach which follows Orchestration saga pattern

of the microservice. Implementing new business requirement

needs code changes in multiple services.

Fig 5: Multipoint communication ‘Choreography Saga’ pattern.

Fig 6: Multipoint communication ‘Orchestration Saga’ pattern

Part-2

At very high level any data driven web application has four

type of requests which are Create, Read, Update and Delete

requests. Read and Delete requests are very simple and

efficient as they work on unique key. Create and update

requests can be complicated as it may requires some

calculation and derive some additional data. E.g. In e-

commerce when customer increase quantity of an item then

application must check, is there any applicable promotions or

discounts qualified then apply the promotions and recalculate

the order price. Setting a request time out is common solution

which is anti-pattern because if time out is small then

legitimate request fails prematurely, in event driven

architecture style it may continue processing and updates data

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1625 | P a g e

behind the scene but caller may get API failure, on other hand

if time out is at higher side then API will be long running

Either ways long or short timeouts brings bad user experience

because user must wait on the UI for longer time and failure.

The best design principle is segregate user entered data vs

calculated / derived data.

To give better user experience, Idea is to make API call

asynchronous, using the web socket connection browser will

get response back once response is created and processed

successfully. Below figure shows the life cycle of the Async

response processing.

As shown in Fig 7, below are the steps which will be executed

in the lifecycle of the request.

1. Once customer is logged in user will have unique

customer id assigned, then web browser will open

WebSocket with backend service. Backend service will

save WebSocket session in cache. Cache stores

WebSocket session against customer id.

2. Web browser will send individual request to individual

micro service along with customer id. Microservice will

create token for the request and send it back to web

browser.

3. Once microservice is done processing the request it will

produce the response and send it to other micro service

to log it and WebSocket service with token and client id.

4. WebSocket service will receive the response message

and fetch the WebSocket session based on the client id

and sends the response back to web browser and send

message to request / response management service to

mark it delivered or clear.

5. Once Web browser receives the response it can delete

token and update UI models.

Fig 7: Asynchronous Request

Conclusion

The paper describes Microservice architecture style. First it

explains, In startup environment when there is limitation in

recourses to invest in Microservice architecture, one can start

with Monolithic architecture then slowly migrate to

microservice architecture. Base layer of any architecture is

database, keeping future migration in mind based on the

classification of the data separate database schema should be

created in single database.

Next guideline is to create common library for basic

framework which can be used across multiple backend

services which brings uniformity across multiple backend

services.

Also, paper discuss about various communication types

between various microservices. It describes advantages and

disadvantages of the various communication types and

recommends architecture style for communication. Finally, it

describes architecture style for web application using

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1626 | P a g e

websocket which drives high throughput because of

Asynchronous implementation of API.

References

1. Li S, Zhang H, Jia Z, Zhang Z, Zhang C, Li J.

Understanding and addressing quality attributes of

microservices architecture: A Systematic literature

review. Inf Softw Technol. 2021 Mar;131:106449.

2. De Lauretis L. From Monolithic Architecture to

Microservices Architecture. In: 2019 IEEE International

Symposium on Software Reliability Engineering

Workshops (ISSREW). 2019 Oct 27-30.

3. Ghofrani J, Lübke D. Challenges of Microservices

Architecture: A Survey on the State of the

Practice. ZEUS. 2018;1-8.

4. Surianarayanan C, Ganapathy G, Pethuru R. Essentials

of Microservices Architecture: Paradigms, Applications,

and Techniques. Taylor & Francis; 2019.

5. Ren Z, Xu X, Wan J, Zhang W, Zhao J. Migrating web

applications from monolithic structure to microservices

architecture. In: *Proceedings of the 10th Asia-Pacific

Symposium on Internetware.* 2018.

6. Quick Start [Internet]. gRPC; 2024 Nov 25 [cited YYYY

MMM DD]. Available

from: https://grpc.io/docs/languages/java/quickstart

7. Core Concepts, Architecture and Lifecycle [Internet].

gRPC; 2024 Nov 12 [cited YYYY MMM DD].

Available from: https://grpc.io/docs/what-is-grpc/core-

concepts

8. Overview [Internet]. Protocol Buffers Documentation;

[cited YYYY MMM DD]. Available

from: https://protobuf.dev/overview

9. Apache Kafka®: Basic Concepts, Architecture, and

Examples [Internet]. Confluent; [cited YYYY MMM

DD]. Available

from: https://developer.confluent.io/courses/apache-

kafka/events

10. Intro to Apache Kafka®: Tutorials, Explainer Videos

and More [Internet]. Confluent; [cited YYYY MMM

DD]. Available

from: https://developer.confluent.io/what-is-apache-

kafka

