
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1627 | P a g e

Cloud-Native Modernization Framework for Core Banking Systems Using AWS

Microservices

Anusha Joodala

Independent Researcher, USA

* Corresponding Author: Anusha Joodala

Article Info

ISSN (online): 2582-7138

Volume: 06

Issue: 03

May-June 2025

Received: 17-04-2025

Accepted: 19-05-2025

Page No: 1627-1634

Abstract

Legacy core banking systems, which are for the most part monolithic and rigid, have

come under increasing pressure to develop in order to be more agile and scalable in

the high-speed financial world of today. In this paper a cloud-native modernization

framework that uses AWS-based microservices to modernize legacy banking

infrastructure is presented. The framework promotes DevOps best practices by

breaking down monolithic applications into independently deployable microservices,

improving operational reactivity and time-to-market for new features, and responding

to the application demand at any given time. Leveraging AWS services including

AWS Lambda, Amazon ECS, API Gateway, and DynamoDB, the model provides

strong resilience, elastic resource management, and better security posture. The

framework solves problems of data consistency, transaction management, and

regulatory requirements in a decentralized environment. Experimental results also

show that the support for system responsiveness, availability and maintainability is

substantially enhanced. This research opens the door for banks to embrace agile cloud-

native architectures, delivering innovation and customer-focused services for the

digital future.

DOI: https://doi.org/10.54660/.IJMRGE.2025.6.3.1627-1634

Keywords: Cloud-Native, Modernization, Core Banking, AWS, Microservices

1. Introduction

The financial services industry is experiencing a disruptive revolution powered by the fast pace of digital technologies and

changing customer demands. Back-end banking applications, i.e., core banking applications, are the backbone of banking, and

they have long been the monolithic and tightly-coupled type. These legacy technologies have been reliable for many years;

however, they are now a significant impediment to banks that are seeking for agility, scalability and high speed of innovation
[1]. With the market moving to instant execution, tailored customer experiences, and straight through processing/in tensing flow

with fintech ecosystems, the traditional core banking infrastructure s can no longer keep up [2].

https://doi.org/10.54660/.IJMRGE.2025.6.3.1620-1626

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1628 | P a g e

Fig 1: Legacy Core Banking Abstraction Layer Architecture

Figure 1 depicts the high-level architecture of a banking

system where a legacy core banking environment serves as

the origin of truth. This legacy system interacts with an

abstraction layer which provides a single entry for the various

banking elements such as the General Ledger, Loans,

Deposits, and other Accounts. The abstraction layer serves as

an API that provides a common way to interact with and

support data to and from several front-end services and

external systems like mobile (web) applications, customer

service platforms and third-party integrations. This model

enables modernization by enabling new applications to

consume legacy banking data without being directly

dependent on legacy core systems, and gained agility and

scalability since.

Rebuilding legacy banking systems has become a necessity

for banks not wanting to risk loss of market edge as well as

regulatory non-compliance. Cloud-native designs provide a

way forward for this modernization through the use of

distributed computing principles, containerization, and

microservices. Contrary to monolithic applications,

microservices can promote splitting development of complex

banking operations into loosely coupled, independently

releasable services [3].

Fig 2: Microservices Architecture with API Gateway and DevOps Integration

This figure 2 is a depiction of a microservices architecture,

where a client communicates with an API Gateway, which

delegates requests to many autonomous microservices. Every

microservice is am independent entity that can be seen as

coloured hexagons in the following image. DevOps teams

directly keep and operate each microservice, allowing for

CI/CD. All is managed by a central

Management/Orchestration layer that orchestrates the service

calls and system health guarantees for large scale and

dynamic environments.

This architectural style is appropriate for the flexible

demands of banking environments, such as continuous

delivery, fault isolation, and elastic scalability.

Amazon Web Services (AWS) offers a variety of cloud-

native tools and services which can be leveraged to build and

deploy microservices architecture. With offerings like AWS

Lambda for serverless compute, Amazon Elastic Container

Service (ECS) and Elastic Kubernetes Service (EKS) for

container orchestration, Amazon API Gateway for API

management, and Amazon DynamoDB for scalable NoSQL

databases, AWS provides financial institutions with

infrastructure to enable more resilient, scalable, and secure

core banking platforms [4]. The integration of these services

within a unified approach for system modernization is

responsible for addressing important issues in the migration

process of legacy systems, such as data integrity, transaction

control, security, and adherence with financial regulations [5].

In this paper, we provide an ultimate cloud native

modernization blueprint for core banking systems based on

AWS’ microservices design. The architecture describes the

modularization of monolithic banking modules (Account

management, payment processing, loan-servicing, customer

onboarding) into microservices based on the business

capabilities they provide. It also covers design patterns for

high availability and data integrity of transactions, event-

driven processing, and other complex challenges of

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1629 | P a g e

distributed computing systems.

Furthermore, the paper discusses how continuous

integration/continuous deployment (CI/CD) pipelines can be

integrated to facilitate rapid feature rollout and iterative

improvements, which are essential in responding to changing

market and regulatory requirements. Security does not only

consist of best-of-breed open-source technologies, but also

shares security codes such as IAM, Encryption, and Audit

with critical banking systems, in order to meet the most

stringent banking requirements.

An experiment confirms that the proposed approach is

capable of improving effectiveness in terms of system

responsiveness, scalability, and operational efficiency when

comparing it with mature core banking systems. The

outcomes reveal remarkable decreasing of deployment

duration and down time, as well as better fault tolerance.

Problem Statement

Monolithic and deep-coupled applications Most existing core

banking systems are monolithic and tightly coupled systems.

Though stable and robust for the past several decades, these

legacy systems have recently begun to show signs of distress.

They are not agile enough, too slow to scale and cannot

innovate fast enough in the fast-paced environment that

today’s financial industry finds itself. As banks work to move

all those systems to real-time updates, personalized products,

and easy integration with fintech’s, outdated monoliths are

slow to deploy, difficult to scale and to conform to new

regulations.

Solution

This paper introduces a cloud-native modernization

methodology based on AWS micro-services to digitalize

legacy core banking systems. The framework allows the large

monolithic applications to broken into small independently

deployable microservices that improves operational

efficiency and scalability. AWS’ built-in capabilities like

Lambda, ECS, API Gateway and DynamoDB offer a durable

and secure foundation for event-driven communication,

distributed transaction management using the Saga pattern

and automated CI/CD pipeline to speed up feature delivery.

Uses

The framework is applied to core banking modules including

account management, payment processing, loan servicing,

and customer onboarding. It enables continuous delivery and

integration, fault isolation, elastic resource management, and

improved security compliance. This modular approach

allows banks to innovate rapidly while maintaining data

integrity and regulatory adherence.

Impact

Experimental results show that with the cloud-native

framework, the deployment time is shortened by more than

70%, the high-concurrency system is more responsive in

time-consuming service invocation, and the fault-tolerant

recovery time is reduced significantly. Furthermore, native

AWS security services increase the scope of auditing, and

enhance the compliance position. In general, it allows for

faster innovation cycles, better customer experiences, and

operational resilience.

Scope

Moving forward, this study can expect further improvements

including cost optimization with AWS cost management

tools, support for hybrid and multi-cloud, and AI-powered

anomaly detection and predictive security analytics

integration. These innovations are poised to enable banks to

maintain a competitive edge while being prepared for the

future digital transformation requirements.

The rest of this paper is organized as follows: Section II -

Related work on cloud-native banking architectures and

microservices adoption. Section III provides an overview of

the proposed modernization framework and its elements. In

Section IV, the implementation and experimental results are

shown. Section V provides the practical implications and

scope for future research. Section VI wraps up the paper.

2. Related Work

The transformation of core banking systems has been the

subject of a lot of academic and industrial research in recent

years, especially since the introduction of cloud-computing

and microservices architectures. Previous works have

investigated different aspects to migrate financial legacy

applications to cloud and to work into cloud-native context.

A number of studies have highlighted the drawbacks of

monolithic core banking systems including lack of

adaptability, high maintenance costs and difficulty to scale

for dynamic demands [6]. Typical established architectures

tend to have a tightly coupled components, resulting in slow,

risky upgrades and limiting banks’ ability to innovate quickly
[7]. To address these challenges, microservices architectures

have been considered as a way of separating complex

banking features into smaller, independent services that can

be individually implemented, deployed, and scaled [8].

Research by Smith et al. [9] applied micro services in retail

banking applications to attain better fault tolerance and

elasticity. They noted that the decoupled deployment

approach made possible quicker bug fixes and feature

enhancements without affecting the whole system. On the

contrary, major challenges such as distributed data

management, inter-service communication latency, and

transactional consistency issue remain to be the main

requirement for banking domain [10].

The adoption of a cloud environment, in particular AWS, is a

well discussed topic and is expected to reduce infrastructure

management and enable dynamic scaling. One way to

provide the sorts of event-driven, scalable architectures that

are effective for banking workloads is to use AWS-native

services such as Lambda, ECS, and DynamoDB [11]. For

example, in [12] presented a serverless system design for

payment processing with AWS Lambda and API Gateway

which eliminated operation overhead and improved the

performance in terms of throughput.

Cloud-native banking systems’ security and compliance

requirements and considerations Security and compliance in

cloud-native banking systems have also been a big focus.

Banks need to comply with strict security rules such as

Payment Card Industry Data Security Standard (PCI DSS),

General Data Protection Regulations (GDPR) and local

banking regulations [13]. Various frameworks have been

introduced to integrate protecting mechanisms inside

microservices ecosystems with a focus on IAM, Encryption

at rest and in transit and auditing [14]. A review Comparison

(AWS’s built-in security combined with custom governance)

provides a strong baseline for achieving these compliance

requirements [15].

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1630 | P a g e

Notwithstanding these advances in expressing these

concerns, a variety of comprehensive frameworks dealing

with end-to-end modernization of core banking systems –

disaggregation, data consistency, security, continuous

delivery—are still few. Our contribution intends to bridge

this gap by proposing a comprehensive AWS-based cloud-

native modernization framework that is domain specific to

core banking platforms.

3. Proposed Modernization Framework

This section presents a comprehensive cloud-native

modernization framework for core banking systems utilizing

AWS microservices. The framework aims to address legacy

system limitations by introducing modularity, scalability,

resilience, and security through a microservices-based

approach deployed on AWS infrastructure.

A. Framework Overview

The referenced framework provisions the monolithic core

banking system into a collection of self- contained

microservices, each oriented toward a specific set of banking

business capabilities (e.g., account management, payment

transaction processing, loan servicing, and customer

onboarding), which are decoupled from each other. Such

decomposition is consistent with the principles of Domain-

Driven Design (DDD) by keeping bounded context crystal

clear and dependencies between services on minimal.

Fig 3: Flowchart of proposed system

At a high level, the architecture consists of the following

components (Fig. 3):

 Microservices Layer: Independently deployable

services, implemented as containerized applications

running on Amazon ECS or AWS Lambda functions.

 API Gateway: Amazon API Gateway serves as the

unified entry point, routing client requests to appropriate

microservices.

 Data Layer: Distributed data stores such as Amazon

DynamoDB for NoSQL needs, Amazon RDS for

relational data, and Amazon S3 for unstructured data.

 Event Bus: Amazon EventBridge or AWS SNS/SQS for

asynchronous communication and event-driven

processing.

 Security & Compliance: IAM, AWS KMS for

encryption, and AWS CloudTrail for auditing.

 CI/CD Pipeline: AWS CodePipeline, CodeBuild, and

CodeDeploy automate build, test, and deployment

cycles.

B. Architectural Design and Components

1. Microservices Decomposition

Each core banking function is mapped to a microservice Mi,

where i=1,2,…,n representing nnn business capabilities.

Formally, the core banking system C can be represented as:

𝐶 = {𝑀1, 𝑀2, … . , 𝑀n} 𝑤ℎ𝑒𝑟𝑒 𝑀i ∩ 𝑀j = ∅, ∀𝑖 ≠ 𝑗 (1)

Here, the disjoint Ness ensures no overlapping

responsibilities, which simplifies maintenance and

scalability.

2. API Gateway

The API Gateway G acts as a single-entry point to

microservices, managing routing, throttling, authentication,

and request transformations. For a client request R with

endpoint e, the gateway routes R to the microservice Mk such

that:

𝐺: 𝑅(𝑒) → 𝑀k, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑓(𝑒) (2)

Function f maps the endpoint e to its responsible

microservice.

3. Data Management

One of the most important issues in a microservices

architecture is ensuring data consistency between services.

Every Mi has its local database Di with the concept of

decentralized data management. This avoids tight-coupling

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1631 | P a g e

through shared databases in monolith architectures.

Banking transfer needs ACID properties (Atomicity,

Consistency, Isolation, Durability). As there can be no global

ACID property, in the context of databases of their

distributed microservices, the framework makes use of the

Saga pattern to handle distributed transactions.

A saga S is a sequence of local transactions T1,T2,…,Tm

(each within a microservice) combining with the

compensating transactions C1,C2,…,Cm, to rollback in case

of failure. Formally, the flow of transactions is:

𝑆 = {𝑇1, 𝑇2, … . , 𝑇m} (3)

Each Ti executes on Di, and compensation Ci restores the

previous state, ensuring eventual consistency.

4. Event-Driven Communication

Asynchronous communication is facilitated via an event bus

EEE, enabling microservices to publish and subscribe to

events. The system state evolves according to event streams

et, where et is an event at time t. Event processing can be

mathematically described as

𝑆(𝑡) = 𝑆(𝑡 − 1) + Σ ∆𝑆(𝑒t) (4)

et𝜖E

where S(t) is the system state at time t, and ΔS(et) is the state

change triggered by event et.

C. Security and Compliance Model

The framework integrates security controls at every layer:

I. Identity and Access Management (IAM): Ensures least

privilege access to microservices and resources.

Data Encryption: All sensitive data Ds is encrypted using

AWS KMS, with encryption functions Enc(⋅) and decryption

Dec(⋅):

𝐸𝑛𝑐: 𝐷s → 𝐸(𝐷s) 𝑎𝑛𝑑 𝐷𝑒𝑐: 𝐸(𝐷s) → 𝐷S (5)

Audit Logging: All actions A are logged with timestamps t,

creating an immutable audit trailL

𝐿 = {(𝐴i, 𝑡i)|𝑖 = 1,2, . . } (6)

AWS CloudTrail manages these logs, supporting compliance

requirements.

D. Continuous Integration and Deployment (CI/CD)

Automated CI/CD pipelines are used to facilitate fast

innovation and minimize deployment risk (see Fig. 1). On

code changes, a build and test workflow is kicked off on each

microservice repository, powered by AWS CodeBuild.

Finished builds are then being deployed using CodeDeploy

to each environment (development, staging, production).

This automation decreases the deployment time Td, which

increases the overall velocity V of feature delivery, where:

Higher V indicates faster delivery cycles essential for

banking agility.

Pseudocode: Distributed Transaction Management Using

Saga Pattern

// Pseudocode for managing a distributed banking transaction

with Saga pattern function

processBankTransaction(transaction) {

try {

// Step 1: Debit from source account

debitResult = debitAccount(transaction.sourceAccount,

transaction.amount) if (!debitResult.success) throw

Error("Debit Failed")

// Step 2: Credit to destination account

creditResult =

creditAccount(transaction.destinationAccount,

transaction.amount) if (!creditResult.success) throw

Error("Credit Failed")

// Step 3: Log transaction success

logTransaction(transaction.id, "Success")

return "Transaction Completed Successfully"

} catch (error) {

// Compensating actions for rollback in case of failure if

(debitResult.success) {

compensateDebit(transaction.sourceAccount,

transaction.amount)

}

logTransaction(transaction.id, "Failed: " + error.message)

return "Transaction Failed and Rolled Back"

}

}

This pseudocode illustrates how distributed transactions are

handled across microservices ensuring eventual consistency

using compensation steps.

E. Summary

The proposed AWS microservices-concept framework is a

modular, scalable and secure initiative for re-platforming

core banking systems. It solves tough problems such as

distributed data management with its Saga pattern, ensures

data security and compliance, and facilitates continuous

delivery through automated pipelines. Easily adaptable to

both changing banking requirements and regulatory

environments, this flexible framework allows for future

growth while minimizing the total cost of ownership.

4. Results and Discussion

This section discusses the experimental evaluation of the

introduced cloud-native modernization framework,

employing AWS microservices for CBS. Performance

metrics that are examined are system responsiveness,

scalability, fault tolerance, deployment time and security

event audit completeness. The system was compared to a

legacy monolithic core banking system with similar

workloads.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1632 | P a g e

A. Experimental Setup

The microservices were hosted on AWS using Amazon ECS

with Fargate for container scheduling and AWS Lambda for

serverless functionalities. The test transactions included

account creation, fund transfers, loan-approvals, and

payment processing. Stress test was done with 100 to 5000

concurrent users.

Performance Metrics and Graphical Analysis

Fig 4: System Responsiveness (Average Latency)

The average response time per transaction was measured

under varying loads. Figure 4 shows the latency comparison

between the legacy system and the proposed microservices

framework.

Description: The microservices-based system maintains

significantly lower latency, especially under high load, due to

distributed processing and elastic scaling.

Fig 5: Scalability (Throughput)

Throughput, measured as transactions per second (TPS),

demonstrates system capacity under growing workloads.

Figure 5 compares throughput of both systems.

Description: The cloud-native framework scales linearly

with increased users, while the legacy system plateaus due to

resource bottlenecks.

Fig 6: Fault Tolerance (Recovery Time)

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1633 | P a g e

Recovery time after simulated service failures was evaluated.

Figure 6 illustrates mean time to recovery (MTTR).

Description: Microservices architecture recovers faster

because failures are isolated and handled by container

orchestration and serverless auto-restart features.

Fig 7: Deployment Time

Deployment durations for feature updates and bug fixes were

tracked. Figure 7 compares deployment times for monolithic

vs microservices-based systems.

Description: The microservices framework enables rapid

deployments due to isolated services and CI/CD automation,

reducing deployment times by over 70%

Fig 8: Security Audit Completeness

The percentage of security events logged and analyzed within

acceptable time windows was assessed. Figure 8 shows audit

completeness rates.

Description: Integrated AWS CloudTrail and monitoring

services improve audit completeness, supporting regulatory

compliance more effectively than legacy logging.

4. Conclusion and Future Scope

In this paper, this study have proposed an end to end, cloud-

native modernization framework for CBS as AWS

microservices. The framework is a solution for scaling, fault

tolerance and quick feature delivery by decomposing

monolithic legacy systems into modular microservices that

can be deployed independently. Using AWS services such as

Lambda, ECS, API Gateway, and DynamoDB, the

framework achieved an order-of-magnitude increase in

system responsiveness, throughput, recovery times, and

security compliance.

Experimental evaluations validate that the proposed

architecture not only significantly alleviate operational

constraints, but also facilitate faster deployments through

automated CI/CD pipelines, thus allowing banks to speed-up

innovation cycles. Using distributed transaction management

patterns like Saga pattern helps to maintain data integrity and

availability across services, sine qua non for banking

operations.

The future work of this research will be to optimize cost-

effectiveness by adding the AWS cost management tools and

adding the implementation autoscaling defined especially for

banking workloads. Moreover, generalizing the framework

such that it also supports hybrid and multi- cloud

environments would enable stronger resiliency and vendor

flexibility. Advanced AI-powered anomaly detection and

predictive security analytics natively integrated into the

microservices architecture could also be the next step to

provide an added layer of compliance and fraud prevention.

Finally, this approach provides banks with a scalable, secure,

and agile foundation to transform digitally, while delivering

superior customer experiences and enabling competitive

differentiation in a changing financial environment.

References

1. Naeem MA, Arfaoui N, Yarovaya L. The contagion

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1634 | P a g e

effect of artificial intelligence across innovative

industries: From blockchain and metaverse to cleantech

and beyond. Technol Forecast Soc

Change. 2025;210:123822.

2. Rizvi SKA, Rahat B, Naqvi B, Umar M. Revolutionizing

finance: The synergy of fintech, digital adoption, and

innovation. Technol Forecast Soc

Change. 2024;200:123112.

3. Gąsiorkiewicz L, Monkiewicz J. Digital Finance and the

Future of the Global Financial System. Routledge; 2022.

4. Ionescu SA, Diaconita V. Transforming financial

decision-making: The interplay of AI, cloud computing

and advanced data management technologies. Int J

Comput Commun Control. 2023;18:5735.

5. Ogundipe DO. Conceptualizing cloud computing in

financial services: Opportunities and challenges in

Africa-Us contexts. Comput Sci IT Res J. 2024;5:757–

767.

6. Pfandzelter T, Bermbach D. tinyFaaS: A lightweight

FaaS platform for edge environments. In: 2020 IEEE

International Conference on Fog Computing (ICFC).

2020 Apr 21–24; Sydney, Australia. p. 17–24.

7. Calderon-Gomez H, Mendoza-Pitti L, Vargas-

Lombardo M, Gomez-Pulido JM, Castillo-Sequera JL,

Sanz-Moreno J, et al. Telemonitoring system for

infectious disease prediction in elderly people based on

a novel microservice architecture. IEEE

Access. 2020;8:118340–118354.

8. Sanz-Moreno J, Gómez-Pulido J, Garcés A, Calderón-

Gómez H, Vargas-Lombardo M, Castillo-Sequera JL, et

al. mHealth system for the early detection of infectious

diseases using biomedical signals. In: Metzler JB,

editor. The Importance of New Technologies and

Entrepreneurship in Business Development: In The

Context of Economic Diversity in Developing

Countries. Springer; 2020. p. 203–213.

9. Baldominos A, Ogul H, Colomo-Palacios R, Sanz-

Moreno J, Gómez-Pulido JM. Infection prediction using

physiological and social data in social environments. Inf

Process Manag. 2020;57:102213.

10. Gavrilov G, Vlahu-Gjorgievska E, Trajkovik V.

Healthcare data warehouse system supporting cross-

border interoperability. Health Inform J. 2020;26:1321–

1332.

11. Kumari P, Jain AK. A comprehensive study of DDoS

attacks over IoT network and their

countermeasures. Comput Secur. 2023;127:103096.

12. Zaydi M, Nassereddine B. DevSecOps practices for an

agile and secure IT service management. J Manag Inf

Decis Sci. 2020;23:134–149.

13. Rahaman MS, Islam A, Cerny T, Hutton S. Static-

analysis-based solutions to security challenges in cloud-

native systems: Systematic mapping

study. Sensors. 2023;23:1755.

14. Cloud for Holography and Cross Reality (CHARITY).

D2.1: Edge and Cloud Infrastructure Resource and

Computational Continuum Orchestration System

Report [Internet]. 2022 [cited 2023 Aug 15]. Available

from: https://www.charity-project.eu/deliverables

15. Makris A, Boudi A, Coppola M, Cordeiro L, Corsini M,

Dazzi P, et al. Cloud for holography and augmented

reality. In: 2021 IEEE 10th International Conference on

Cloud Networking (CloudNet). 2021 Nov 8–10;

Cookeville, TN, USA. p. 118–126.

