

International Journal of Multidisciplinary Research and Growth Evaluation.

A Predictive Model for Torque and Drag Analysis in Complex Well Trajectories Using Well Plan Simulation

Joshua Emeka Ozor 1*, Oludayo Sofoluwe 2, Dazok Donald Jambol 3

- ¹ First Hydrocarbon, Nigeria
- ² Total Energies, Nigeria
- ³ Shell Petroleum Development Company of Nigeria Ltd, Nigeria
- * Corresponding Author: Joshua Emeka Ozor

Article Info

ISSN (online): 2582-7138

Volume: 03 Issue: 02

March-April 2022 Received: 12-03-2022 Accepted: 15-04-2022 Page No: 818-824

Abstract

Torque and drag analysis is critical for ensuring the safety and efficiency of drilling operations, particularly in complex well trajectories where mechanical challenges are amplified. This paper presents a comprehensive predictive model integrated within the WellPlan simulation platform, designed to simulate torque accurately and drag forces encountered during directional drilling. The model architecture incorporates detailed well geometry, drilling parameters, and mechanical properties, enabling precise calculation of frictional forces and mechanical loads along the drill string. Advanced computational algorithms provide segmented, iterative force analysis that reflects realworld conditions, aiding engineers in identifying high-risk zones and optimizing operational parameters. Practical implementation strategies emphasize data integration, workflow alignment, and considerations for model reliability amidst inherent uncertainties. The predictive approach facilitates enhanced risk mitigation, operational efficiency, and cost savings. Future research directions propose incorporation of real-time data and machine learning techniques to refine model accuracy and responsiveness further, positioning this tool as a vital asset in intelligent drilling management.

DOI: https://doi.org/10.54660/.IJMRGE.2022.3.2.804-824

Keywords: Torque and Drag, WellPlan Simulation, Directional Drilling, Predictive Modeling, Drilling Optimization, Frictional Force Analysis

1. Introduction

1.1 Background and Motivation

Torque and drag forces are critical factors that influence the success and efficiency of drilling operations, particularly in complex well trajectories such as extended reach, horizontal, or multilateral wells [1-3]. These forces arise from friction and mechanical interaction between the drill string and wellbore, causing operational challenges like stuck pipe incidents, increased wear, and inefficient drilling progress. Managing torque and drag effectively is essential to maintain drill string integrity, minimize non-productive time, and optimize drilling performance [4, 5].

Complex trajectories intensify these challenges due to sharp doglegs, longer wellbores, and varying contact forces along the drill string [6, 7]. In such wells, inaccurate prediction of torque and drag can lead to costly operational setbacks and safety risks. Therefore, advanced analytical and simulation tools that accurately forecast these forces are vital to guide well planning and real-time adjustments, enhancing both safety and economics [8, 9].

WellPlan simulation software is widely used in the industry to model well trajectories and drilling parameters [10]. Integrating a predictive model of torque and drag within such platforms provides an opportunity to improve pre-drill planning accuracy and operational decision-making, which motivates the research presented in this paper.

1.2 Problem Statement

Current predictive methods for torque and drag analysis often rely on simplified assumptions and static models that fail to capture the complexities encountered in modern well trajectories. These limitations can result in inaccurate estimations, leading to suboptimal drilling designs and unexpected operational issues. Moreover, many models lack seamless integration with widely used well planning software, which reduces their practical applicability [1, 11].

The inability to dynamically account for variations in friction coefficients, drill string behavior, and wellbore interactions throughout the drilling process constrains the effectiveness of conventional approaches. Additionally, the fragmentation of data and lack of cohesive simulation frameworks complicate efforts to optimize drilling parameters and mitigate risks associated with torque and drag [12].

This gap underscores the need for an enhanced predictive model that combines robust mechanical analysis with integration into existing planning platforms like WellPlan. Such a model would enable more reliable simulations, supporting better-informed drilling strategies and improved operational outcomes.

1.3 Objectives and Contributions

This paper aims to develop a predictive model for torque and drag analysis that is integrated within the WellPlan simulation environment, enabling detailed evaluation of complex well trajectories. The model seeks to improve accuracy in estimating torque and drag forces by incorporating comprehensive mechanical principles and relevant drilling parameters.

Key contributions include the formulation of a computational framework that accounts for variable frictional forces, wellbore geometry, and drill string mechanics within a single predictive tool. The integration into WellPlan facilitates ease of use and practical applicability for drilling engineers during the planning phase. By enhancing the predictive capability for torque and drag, the model contributes to reducing drilling risks, minimizing equipment failures, and optimizing drilling performance. The framework also lays the foundation for future enhancements incorporating real-time data and adaptive optimization.

2. Theoretical Foundations

2.1 Fundamentals of Torque and Drag in Drilling

Torque and drag are mechanical forces that arise from the interaction between the drill string and the wellbore during drilling operations ^[13, 14]. Torque refers to the rotational force required to turn the drill string, while drag is the axial resistance opposing the downward movement of the drill string ^[15]. These forces are primarily influenced by friction, which depends on the contact area between the drill pipe and wellbore or casing, and the normal forces exerted along the string ^[16, 17].

Key parameters affecting torque and drag include friction coefficients—both static and dynamic—wellbore inclination, tool joint conditions, and the properties of drilling fluids, which can lubricate or exacerbate friction [18-20]. The magnitude of these forces directly impacts the drill string's mechanical integrity, increasing the risk of twisting off or sticking if not properly managed. Accurate prediction and control of torque and drag are thus essential for safe and efficient drilling [1,21].

Understanding the fundamentals of these forces enables

engineers to develop models that simulate their behavior under varying downhole conditions, providing a basis for predictive analysis and operational planning.

2.2 Complex Well Trajectory Mechanics

Complex well trajectories, such as highly deviated, horizontal, and extended reach wells, introduce significant challenges for torque and drag management [22, 23]. The geometry of the wellbore—including doglegs (sharp changes in wellbore angle), build and drop sections, and lateral runs—affects the contact forces between the drill string and wellbore wall. These geometric features increase frictional resistance and create localized stress points along the drill string [24, 25].

Directional drilling further complicates torque and drag behavior by causing uneven loading and bending moments on the drill pipe. As the wellbore deviates, gravity causes the drill string to rest unevenly against the borehole, creating stick-slip effects and varying friction along its length. This uneven contact can result in significant increases in both torque required to rotate the string and drag opposing its axial movement [26, 27].

A thorough understanding of these mechanical interactions is crucial for modeling torque and drag in complex trajectories. Accounting for wellbore geometry and directional effects allows predictive tools to estimate realistic forces and guide drilling decisions that minimize operational risks [28, 29].

2.3 Principles of Predictive Modeling in Drilling

Predictive modeling of torque and drag involves creating mathematical representations of the forces acting on the drill string to forecast drilling challenges before they occur. These models can be broadly categorized into static and dynamic approaches. Static models estimate torque and drag based on fixed parameters such as well geometry and friction coefficients, providing quick assessments during well planning. However, they may lack accuracy in reflecting real-time operational changes [30-32].

Dynamic models, on the other hand, incorporate time-dependent factors like drill string movement, stick-slip oscillations, and changing frictional conditions. These models provide more detailed and realistic simulations but require more complex computations and data inputs. Both modeling types rely on principles of mechanical engineering, friction theory, and fluid mechanics [33, 34].

Integrating predictive models within simulation platforms like WellPlan enhances their usability by combining geometric visualization with torque and drag calculations. This integration supports engineers in evaluating multiple scenarios and optimizing drilling parameters, ultimately improving drilling efficiency and safety [35, 36].

3. Predictive Model Development3.1 Model Architecture and Inputs

The predictive model's architecture is designed to integrate seamlessly within the WellPlan simulation environment, providing a robust framework for torque and drag analysis in complex well trajectories [37]. At its core, the model requires detailed input parameters that define the drilling environment and mechanical conditions. These inputs include well geometry data such as inclination, azimuth, dogleg severity, and measured depth intervals, which establish the spatial framework of the wellbore [38, 39].

In addition to geometric inputs, drilling parameters such as

weight on bit, rotary speed, mud properties, and casing or liner specifications are essential to capture operational conditions that influence torque and drag [40]. Mechanical properties of the drill string components, including pipe diameter, stiffness, and tool joint dimensions, are incorporated to characterize how the drill string interacts with the wellbore. Material friction coefficients—both static and dynamic—are specified to quantify contact resistance [41, 42]. Together, these inputs enable the model to simulate real-world conditions accurately. The architecture supports modular input management, allowing updates to drilling parameters as the well progresses, ensuring that simulations remain relevant and responsive to operational changes [43, 44].

3.2 Computational Approach and Algorithms

The computational core of the model employs a combination of established mechanical engineering principles and frictional force calculations to simulate torque and drag throughout the drill string [45, 46]. At the foundation is the calculation of normal forces acting between the drill string and wellbore, which are dependent on wellbore geometry and gravity effects. These forces influence frictional resistance, modeled through nonlinear friction laws accounting for both static and dynamic friction coefficients [47, 48].

The model applies iterative numerical algorithms that traverse the well path section by section, computing incremental torque and drag forces based on localized conditions [49, 50]. It integrates bending moments and axial loads, factoring in effects such as dogleg severity and directional changes that impact force distribution along the string. This segmented approach allows detailed resolution of force variations, essential for complex trajectories [51, 52].

Simulation techniques incorporate both forward and backward force propagation, where forces at the bottomhole assembly are calculated and then propagated toward the surface, and vice versa, to ensure force equilibrium. This bidirectional calculation refines accuracy and stability of the results. The algorithm is optimized for computational efficiency, enabling rapid evaluations within WellPlan's interactive environment [53, 54].

3.3 Model Output and Interpretation

The output of the predictive model consists of detailed torque and drag profiles plotted along the wellbore depth [55, 56]. These profiles illustrate the distribution of rotational torque and axial drag forces at discrete intervals, highlighting sections where forces peak and could potentially compromise drilling performance. The model provides numerical values as well as graphical representations, facilitating intuitive understanding of the mechanical loads encountered [57, 58]. Engineers can interpret these results to identify critical zones where the risk of stuck pipe or excessive tool wear is elevated. The torque profile helps assess whether the available surface torque is sufficient to rotate the drill string effectively, while the drag profile indicates the axial force required to advance the string, informing weight-on-bit management. This enables proactive planning for mitigating operational risks through adjustments in drilling parameters or tool selection

Additionally, the model's output supports scenario analysis, where different well geometries or drilling parameters can be tested to evaluate their impact on torque and drag. This flexibility aids decision-making in well design and operational strategy, ultimately enhancing drilling efficiency

and reducing non-productive time [61-63].

4. Implementation Strategy

4.1 Data Requirements and Integration

Successful application of the predictive model relies on accurate and comprehensive data inputs. Fundamental among these are detailed well plans that provide the three-dimensional trajectory, including measured depth, inclination, azimuth, and dogleg severity at regular intervals [64-66]. These geometric data form the backbone of torque and drag calculations by defining how the drill string interacts with the wellbore [67, 68].

Drilling operational parameters such as weight on bit, rotary speed, mud density, and rheological properties must be incorporated to capture real-time conditions influencing frictional forces and drill string behavior [69, 70]. Mechanical characteristics of drill string components—pipe diameter, stiffness, and tool joint specifications—are also critical to model realistic mechanical responses [71, 72].

Integration of geomechanical data, including formation strength and wellbore stability information, enriches the model's predictive capacity by enabling adjustments to friction coefficients and contact forces under varying downhole conditions [73, 74]. These data are typically sourced from well logs, surface measurements, and rig telemetry systems, and are managed through centralized databases or enterprise resource planning platforms for streamlined access [75-77]

4.2 Workflow Integration in Well Planning

The predictive model is designed to integrate smoothly into existing well planning and operational workflows, complementing the engineer's decision-making process ^[78, 79]. During the planning phase, the model can be employed to simulate multiple trajectory and parameter scenarios, helping to identify configurations that minimize torque and drag risks before drilling begins. This iterative evaluation supports informed adjustments to well path design and drilling parameters ^[80-82].

Within project teams, the model acts as a communication tool that bridges drilling engineering, directional drilling, and operations disciplines. [83, 84] By providing quantitative torque and drag forecasts alongside visual wellbore representations, the model facilitates collaborative discussions on risk management and mitigation strategies. It also supports training and knowledge transfer by illustrating the mechanical challenges inherent in complex wells [85].

Operationally, the model can be updated with real-time or near-real-time drilling data, allowing dynamic re-assessment of torque and drag forces. This capability enables proactive interventions to adjust drilling parameters and reduce non-productive time, integrating predictive analytics into day-to-day drilling management practices [86-88].

4.3 Limitations and Reliability Considerations

While the predictive model offers substantial improvements over traditional approaches, inherent uncertainties and assumptions must be recognized to ensure appropriate interpretation of results [89, 90]. The model relies on friction coefficients and mechanical properties that may vary in situ due to factors such as mud contamination, tool wear, or unexpected formation conditions, which can introduce discrepancies [91-93].

Assumptions such as uniform pipe stiffness and consistent

wellbore conditions may oversimplify reality, potentially affecting accuracy, especially in highly deviated or irregular trajectories. Additionally, the static nature of some inputs limits the model's responsiveness to rapid changes during drilling operations [94-96].

To enhance reliability, model outputs should be corroborated with field measurements, including torque and drag logs, and adjusted iteratively. Sensitivity analyses can identify parameters with the greatest influence on results, guiding data collection priorities ^[97, 98]. Furthermore, ongoing validation and refinement based on operational feedback are essential to maintaining model accuracy and building user confidence ^[99-101]

5. Conclusion

The WellPlan-integrated predictive model for torque and drag analysis provides a sophisticated tool tailored to address the challenges posed by complex well trajectories. By incorporating detailed well geometry, mechanical properties, and operational parameters, the model enables accurate simulation of mechanical forces acting on the drill string. This capability supports early identification of high-risk zones where torque and drag peaks could compromise drilling integrity.

The modular architecture allows iterative updates, adapting to evolving drilling conditions, and fostering proactive management. Engineers gain valuable insights into how drilling parameters influence mechanical loads, enabling optimization of tool selection, weight on bit, and rotational speeds. This leads to safer drilling operations, reduced risk of stuck pipe incidents, and improved overall drilling performance. The model's integration within an established simulation platform enhances accessibility and facilitates its practical adoption in well planning workflows.

The deployment of predictive torque and drag modeling represents a significant advance in drilling technology with direct impacts on efficiency, safety, and cost management. By enabling more precise anticipation of mechanical challenges, operators can reduce non-productive time, avoid costly equipment failures, and minimize downtime related to stuck pipe remediation. This translates into substantial cost savings and improved project timelines.

Moreover, the model fosters risk mitigation by providing early warnings of critical mechanical stress, allowing for timely operational adjustments. It also promotes crossfunctional collaboration, bridging drilling engineering, directional drilling, and operational teams through shared quantitative insights. These improvements collectively enhance asset integrity and operational reliability, reinforcing the competitiveness of drilling operations in challenging environments characterized by complex well trajectories.

Future advancements in predictive torque and drag modeling should focus on incorporating real-time data acquisition to enable dynamic, adaptive simulations that respond immediately to downhole conditions. Integration with machine learning algorithms can improve model accuracy by continuously learning from operational feedback and identifying subtle patterns influencing torque and drag behavior.

Extending the model to encompass additional drilling parameters such as vibration analysis, stick-slip prediction, and fatigue assessment would provide a more comprehensive drilling performance toolkit. Additionally, coupling the model with digital twin frameworks and advanced

visualization technologies can facilitate immersive decision support environments. These enhancements will position predictive torque and drag modeling at the forefront of intelligent drilling systems, driving continuous improvements in safety, efficiency, and cost-effectiveness.

6. References

- 1. Oyedere MO. Improved torque and drag modeling using traditional and machine learning methods. 2020.
- Maehs J, Renne S, Logan B, Diaz N. Proven methods and techniques to reduce torque and drag in the preplanning and drilling execution of oil and gas wells. In: SPE/IADC Drilling Conference and Exhibition. SPE; 2010:SPE-128329-MS.
- 3. Jebur AAM. Directional Drilling Tools Assessment and the Impact of Bottom Hole Assembly Configuration on the Well Trajectory and Operation Optimization [PhD thesis]. Politecnico di Torino; 2020.
- 4. Abughaban M. Extending the Reach of Drilling: Better Wellbore Trajectory and Torque & Drag Models [PhD thesis]. Colorado School of Mines; 2017.
- 5. Ma T, Chen P, Zhao J. Overview on vertical and directional drilling technologies for the exploration and exploitation of deep petroleum resources. Geomech Geophys Geo-Energy Geo-Resour. 2016;2:365-95.
- 6. Epelle EI, Gerogiorgis DI. A review of technological advances and open challenges for oil and gas drilling systems engineering. AIChE J. 2020;66(4):e16842.
- 7. Hamdan KFB, Harkouss R, Abou Chakra H. An overview of Extended Reach Drilling: Focus on design considerations and drag analysis. In: 2015 International Mediterranean Gas and Oil Conference (MedGO). IEEE; 2015:1-4.
- 8. Neamah HA, Alrazzaq AAA. Torque and drag forces problems in highly deviated oil well. Iraqi J Chem Pet Eng. 2018;19(3):19-31.
- 9. Rostagno I. Friction Reduction Optimization for Extended Reach and Horizontal Wells. 2019.
- Ugochukwu O, Verity S. Using robust torque and drag modelling software for efficient well planning and operations monitoring. Paradigm Sysdrill for OML 126 wells-A case study. In: SPE Nigeria Annual International Conference and Exhibition. SPE; 2014:SPE-172388-MS.
- 11. McCormick J, Liu G. Torque and drag modeling advanced techniques and troubleshooting. In: SPE Annual Technical Conference and Exhibition. SPE; 2012:SPE-156945-MS.
- Mirhaj S, Kaarstad E, Aadnoy B. Torque and drag modeling; soft-string versus stiff-string models.
 In: SPE/IADC Middle East Drilling Technology Conference and Exhibition. SPE; 2016:D033S012R003.
- 13. Elsayed MSI, El-Fakharany T, Khaled S. The effect of torque and drag on the drill string in vertical and directional wells by using drilling simulator. 2021.
- Liu Y, Ma T, Chen P, Yang C. Method and apparatus for monitoring of downhole dynamic drag and torque of drill-string in horizontal wells. J Pet Sci Eng. 2018;164:320-32.
- 15. Mitchell RF, Bjørset A, Grindhaug G. Drillstring analysis with a discrete torque/drag model. SPE Drill Compl. 2015;30(01):5-16.
- 16. Zhu X, Li K, An J. Calculation and analysis of dynamic drag and torque of horizontal well strings. Nat Gas Ind

- B. 2019;6(2):183-90.
- 17. Fazaelizadeh M. Real Time Torque and Drag Analysis During Directional Drilling. 2013.
- 18. Isi LR, Ogu E, Egbumokei PI, Dienagha IN, Digitemie WN. Advanced application of reservoir simulation and DataFrac analysis to maximize fracturing efficiency and formation integrity. 2021.
- Onyeke FO, Odujobi O, Adikwu FE, Elete TY. Advancements in the integration and optimization of control systems: Overcoming challenges in DCS, SIS, and PLC deployments for refinery automation. Open Access Res J Multidiscip Stud. 2022;4(2):94-101.
- 20. Komi LS, Chianumba EC, Yeboah A, Forkuo DO, Mustapha AY. Advances in community-led digital health strategies for expanding access in rural and underserved populations. 2021.
- 21. Samuel R. Friction factors: What are they for torque, drag, vibration, bottom hole assembly and transient surge/swab analyses? J Pet Sci Eng. 2010;73(3-4):258-66.
- 22. Ezeanochie CC, Afolabi SO, Akinsooto O. Advancing automation frameworks for safety and compliance in offshore operations and manufacturing environments. 2022.
- 23. Akpe OEE, Mgbame AC, Abayomi AA, Adeyelu OO. AI-enabled dashboards for micro-enterprise profitability optimization: A pilot implementation study.
- 24. Kisina D, Akpe OEE, Owoade S, Ubanadu BC, Gbenle TP, Adanigbo OS. Advances in continuous integration and deployment workflows across multi-team development pipelines. Environments. 2022;12:13.
- 25. Forkuo AY, Chianumba EC, Mustapha AY, Osamika D, Komi LS. Advances in digital diagnostics and virtual care platforms for primary healthcare delivery in West Africa. Methodology. 2022;96(71):48.
- Chianumba EC, Forkuo AY, Mustapha AY, Osamika D, Komi LS. Advances in preventive care delivery through WhatsApp, SMS, and IVR messaging in high-need populations.
- 27. Adanigbo OS, Kisina D, Owoade S, Uzoka AC, Chibunna B. Advances in secure session management for high-volume web and mobile applications. 2022.
- 28. Oluoha OM, Odeshina A, Reis O, Okpeke F, Attipoe V, Orieno OH. Artificial intelligence integration in regulatory compliance: A strategic model for cybersecurity enhancement. 2022.
- 29. Udeh C, *et al.* Assessment of laboratory test request forms for completeness. Age. 2021;287:25.7.
- 30. Ilori O, Lawal CI, Friday SC, Isibor NJ, Chukwuma-Eke EC. Blockchain-based assurance systems: Opportunities and limitations in modern audit engagements. 2020.
- 31. Osho GO. Building scalable blockchain applications: A framework for leveraging Solidity and AWS Lambda in real-world asset tokenization.
- 32. Ojika FU, Owobu O, Abieba OA, Esan OJ, Daraojimba A, Ubamadu B. A conceptual framework for AI-driven digital transformation: Leveraging NLP and machine learning for enhanced data flow in retail operations. IRE J. 2021;4(9).
- 33. Omisola JO, Shiyanbola JO, Osho GO. A conceptual framework for AI-driven predictive optimization in industrial engineering: Leveraging machine learning for smart manufacturing decisions.
- 34. Abayomi AA, Uzoka AC, Ubanadu BC, Elizabeth C. A

- conceptual framework for enhancing business data insights with automated data transformation in cloud systems.
- 35. Komi LS, Chianumba EC, Yeboah A, Forkuo DO, Mustapha AY. A conceptual framework for telehealth integration in conflict zones and post-disaster public health responses. 2021.
- 36. Mayienga BA, *et al*. A conceptual model for global risk management, compliance, and financial governance in multinational corporations.
- 37. Okuh CO, Nwulu EO, Ogu E, Egbumokei PI, Dienagha IN, Digitemie WN. Designing a reliability engineering framework to minimize downtime and enhance output in energy production.
- 38. Okuh CO, Nwulu EO, Ogu E, Ifechukwude P, Egbumokei IND, Digitemie WN. Creating a sustainability-focused digital transformation model for improved environmental and operational outcomes in energy operations.
- 39. Ilori O, Lawal CI, Friday SC, Isibor NJ, Chukwuma-Eke EC. Cybersecurity auditing in the digital age: A review of methodologies and regulatory implications. J Front Multidiscip Res. 2022;3(1):174-87.
- 40. Oluoha OM, Odeshina A, Reis O, Okpeke F, Attipoe V, Orieno OH. Designing advanced digital solutions for privileged access management and continuous compliance monitoring.
- 41. Ogbuefi E, Mgbame AC, Akpe OEE, Abayomi AA, Adeyelu OO. Data democratization: Making advanced analytics accessible for micro and small enterprises. 2022.
- 42. Abisoye A, Akerele JI, Odio PE, Collins A, Babatunde GO, Mustapha SD. A data-driven approach to strengthening cybersecurity policies in government agencies: Best practices and case studies. Int J Cybersecur Policy Stud. (pending publication).
- 43. Onifade AY, Ogeawuchi JC, Abayomi AA. Data-driven engagement framework: Optimizing client relationships and retention in the aviation sector.
- 44. Osho GO. Decentralized autonomous organizations (DAOs): A conceptual model for community-owned banking and financial governance.
- 45. Oluoha OM, Odeshina A, Reis O, Okpeke F, Attipoe V, Orieno OH. A unified framework for risk-based access control and identity management in compliance-critical environments. 2022.
- 46. Onalaja AE, Otokiti BO. Women's leadership in marketing and media: Overcoming barriers and creating lasting industry impact. J Adv Educ Sci. 2022;2(1):38-51.
- 47. Fagbore OO, Ogeawuchi JC, Ilori O, Isibor NJ, Odetunde A, Adekunle BI. Developing a conceptual framework for financial data validation in private equity fund operations. 2020.
- 48. Bolarinwa D, Egemba M, Ogundipe M. Developing a predictive analytics model for cost-effective healthcare delivery: A conceptual framework for enhancing patient outcomes and reducing operational costs.
- 49. Tasleem N, Gangadharan S. Navigating stakeholder dynamics in large-scale transformations. J Adv Multidiscip Res. 2022;1(2):48-56.
- 50. Nwabekee US, Okpeke F, Onalaja AE. Technology in operations: A systematic review of its role in enhancing efficiency and customer satisfaction.

- 51. Odetunde A, Adekunle BI, Ogeawuchi JC. Developing integrated internal control and audit systems for insurance and banking sector compliance assurance. 2021.
- 52. Mgbame AC, Akpe OEE, Abayomi AA, Ogbuefi E, Adeyelu OO. Developing low-cost dashboards for business process optimization in SMEs. 2022.
- 53. Adeleke AK, Igunma TO, Nwokediegwu ZS. Developing nanoindentation and non-contact optical metrology techniques for precise material characterization in manufacturing. 2022.
- Onoja JP, Hamza O, Collins A, Chibunna UB, Eweja A, Daraojimba AI. Digital transformation and data governance: Strategies for regulatory compliance and secure AI-driven business operations. J Front Multidiscip Res. 2021;2(1):43-55.
- 55. Odetunde A, Adekunle BI, Ogeawuchi JC. A systems approach to managing financial compliance and external auditor relationships in growing enterprises. 2021.
- 56. Omisola JO, Shiyanbola JO, Osho GO. A systems-based framework for ISO 9000 compliance: Applying statistical quality control and continuous improvement tools in US manufacturing.
- 57. Alonge EO, Eyo-Udo NL, Chibunna B, Ubanadu AID, Balogun ED, Ogunsola KO. Digital transformation in retail banking to enhance customer experience and profitability. 2021.
- 58. Attipoe V, Oyeyipo I, Ayodeji DC, Isibor NJ, Apiyo B. Economic impacts of employee well-being programs: A review.
- 59. Abumchukwu ER, Uche OB, Ijeoma OM, Ukeje IO, Nwachukwu HI, Suzana OR. Effectiveness of interpersonal communication in mitigating female genital mutilation in Nwanu Ndibor Inyimagu community in Izzi LGA of Ebonyi State. Rev Afr Educ Stud (RAES). p.136.
- 60. Odedeyi PB, Abou-El-Hossein K, Oyekunle F, Adeleke AK. Effects of machining parameters on tool wear progression in end milling of AISI 316. Prog Can Mech Eng. 2020;3.
- 61. Akinsooto O. Electrical Energy Savings Calculation in Single Phase Harmonic Distorted Systems [PhD thesis]. University of Johannesburg; 2013.
- 62. Abayomi AA, Mgbame AC, Akpe OEE, Ogbuefi E, Adeyelu OO. Empowering local economies: A scalable model for SME data integration and performance tracking.
- 63. Ilori O, Lawal CI, Friday SC, Isibor NJ, Chukwuma-Eke EC. Enhancing auditor judgment and skepticism through behavioral insights: A systematic review. 2021.
- 64. Omisola JO, Etukudoh EA, Okenwa OK, Olugbemi GIT, Ogu E. Geomechanical modeling for safe and efficient horizontal well placement analysis of stress distribution and rock mechanics to optimize well placement and minimize drilling risks in geosteering operations.
- 65. Omisola JO, Etukudoh EA, Okenwa OK, Tokunbo GI. Geosteering real-time geosteering optimization using deep learning algorithms integration of deep reinforcement learning in real-time well trajectory adjustment to maximize reservoir contact and productivity.
- 66. Sharma A, Adekunle BI, Ogeawuchi JC, Abayomi AA, Onifade O. Governance challenges in cross-border fintech operations: Policy, compliance, and cyber risk

- management in the digital age. 2021.
- 67. Alonge EO, Eyo-Udo NL, Ubanadu BC, Daraojimba AI, Balogun ED, Ogunsola KO. Enhancing data security with machine learning: A study on fraud detection algorithms. J Data Secur Fraud Prev. 2021;7(2):105-18.
- 68. Akintobi O, Bamkefa B, Adejuwon A, Obayemi O, Ologan B. Evaluation of the anti-microbial activities of the extracts of the leaf and stem bark of Alstonia congensis on some human pathogenic bacteria. Adv Biosci Bioeng. 2019;7(1).
- 69. Ahmadu J, *et al.* The impact of technology policies on education and workforce development in Nigeria.
- Chima P, Ahmadu J, Folorunsho OG. Implementation of digital integrated personnel and payroll information system: Lesson from Kenya, Ghana and Nigeria. Gov Manag Rev. 2021;4(2).
- 71. Omisola JO, Chima PE, Okenwa OK, Tokunbo GI. Green financing and investment trends in sustainable LNG projects a comprehensive review.
- 72. Abisoye A, Udeh CA, Okonkwo CA. The impact of Alpowered learning tools on STEM education outcomes: A policy perspective. Int J Multidiscip Res Growth Eval. 2022;3(1):121-7.
- 73. Okuh CO, Nwulu EO, Ogu E, Ifechukwude P, Egbumokei IND, Digitemie WN. An integrated lean six sigma model for cost optimization in multinational energy operations.
- 74. Adesemoye OE, Chukwuma-Eke EC, Lawal CI, Isibor NJ, Akintobi AO, Ezeh FS. Integrating digital currencies into traditional banking to streamline transactions and compliance.
- 75. Chima P, Ahmadu J. Implementation of resettlement policy strategies and community members' felt-need in the federal capital territory, Abuja, Nigeria. Acad J Econ Stud. 2019;5(1):63-73.
- Omisola JO, Etukudoh EA, Okenwa OK, Tokunbo GI. Innovating project delivery and piping design for sustainability in the oil and gas industry: A conceptual framework. Perception. 2020;24:28-35.
- 77. Onyeke FO, Odujobi O, Adikwu FE, Elete TY. Innovative approaches to enhancing functional safety in Distributed Control Systems (DCS) and Safety Instrumented Systems (SIS) for oil and gas applications. Open Access Res J Multidiscip Stud. 2022;3(1):106-12.
- 78. Akpe OEE, Kisina D, Owoade S, Uzoka AC, Ubanadu BC, Daraojimba AI. Systematic review of application modernization strategies using modular and service-oriented design principles. 2022.
- 79. Mustapha AY, Chianumba EC, Forkuo AY, Osamika D, Komi LS. Systematic review of mobile health (mHealth) applications for infectious disease surveillance in developing countries. Methodology. 2018;66.
- 80. Alonge EO, Eyo-Udo NL, Ubanadu BC, Daraojimba AI, Balogun ED, Olusola K. Innovative business development framework for capturing and sustaining growth in emerging and niche markets. World. 2579:0544.
- 81. Osho GO, Omisola JO, Shiyanbola JO. An integrated AI-Power BI model for real-time supply chain visibility and forecasting: A data-intelligence approach to operational excellence.
- 82. Alonge EO, Eyo-Udo NL, Ubanadu BC, Daraojimba AI, Balogun ED, Ogunsola KO. Integrated framework for

- enhancing sales enablement through advanced CRM and analytics solutions.
- 83. Sharma A, Adekunle BI, Ogeawuchi JC, Abayomi AA, Onifade O. IoT-enabled predictive maintenance for mechanical systems: Innovations in real-time monitoring and operational excellence. 2019.
- 84. Kanu MO, Egbumokei PI, Ogu E, Digitemie WN, Dienagha IN. Low-carbon transition models for greenfield gas projects: A roadmap for emerging energy markets. 2022.
- 85. Nwulu EO, Elete TY, Erhueh OV, Akano OA, Aderamo AT. Integrative project and asset management strategies to maximize gas production: A review of best practices. World J Adv Sci Technol. 2022;2(2):18-33.
- 86. Adeleke AK, Igunma TO, Nwokediegwu ZS. Modeling advanced numerical control systems to enhance precision in next-generation coordinate measuring machine. Int J Multidiscip Res Growth Eval. 2021;2(1):638-49.
- 87. Nwabekee US, Okpeke F, Onalaja AE. Modeling AI-enhanced customer experience: The role of chatbots and virtual assistants in contemporary marketing.
- 88. Ayodeji DC, Oyeyipo I, Nwaozomudoh MO, Isibor NJ, Obianuju EABAM, Onwuzulike C. Modeling the future of finance: Digital transformation, fintech innovations, market adaptation, and strategic growth.
- 89. Ubamadu BC, Bihani D, Daraojimba AI, Osho GO, Omisola JO, Etukudoh EA. Optimizing smart contract development: A practical model for gasless transactions via facial recognition in blockchain. 2022.
- 90. Isi LR, Ogu E, Egbumokei PI, Dienagha IN, Digitemie WN. Pioneering eco-friendly fluid systems and waste minimization strategies in fracturing and stimulation operations. 2021.
- 91. Ogbuefi E, Mgbame AC, Akpe OEE, Abayomi AA, Adeyelu OO. Operationalizing SME growth through real-time data visualization and analytics.
- 92. Fagbore OO, Ogeawuchi JC, Ilori O, Isibor NJ, Odetunde A, Adekunle BI. Optimizing client onboarding efficiency using document automation and data-driven risk profiling models. 2022.
- 93. Kanu MO, Dienagha IN, Digitemie WN, Ogu E, Egbumokei PI. Optimizing oil production through agile project execution frameworks in complex energy sector challenges. 2022.
- 94. Fagbore OO, Ogeawuchi JC, Ilori O, Isibor NJ, Odetunde A, Adekunle BI. Predictive analytics for portfolio risk using historical fund data and ETL-driven processing models. 2022.
- 95. Omisola JO, Shiyanbola JO, Osho GO. A predictive quality assurance model using lean six sigma: Integrating FMEA, SPC, and root cause analysis for zero-defect production systems.
- 96. Isibor NJ, Attipoe V, Oyeyipo I, Ayodeji DC, Apiyo B. Proposing innovative human resource policies for enhancing workplace diversity and inclusion.
- 97. Dienagha IN, Onyeke FO, Digitemie WN, Adekunle M. Strategic reviews of greenfield gas projects in Africa: Lessons learned for expanding regional energy infrastructure and security. 2021.
- 98. Mgbame AC, Akpe OEE, Abayomi AA, Ogbuefi E, Adeyelu OO. Sustainable process improvements through AI-assisted BI systems in service industries.
- 99. Ilori O, Lawal CI, Friday SC, Isibor NJ, Chukwuma-Eke

- EC. The role of data visualization and forensic technology in enhancing audit effectiveness: A research synthesis. J Front Multidiscip Res. 2022;3(1):188-200.
- 100. Onalaja AE, Otokiti BO. The role of strategic brand positioning in driving business growth and competitive advantage.
- 101.Onifade AY, Ogeawuchi JC, Abayomi AA. Scaling AIdriven sales analytics for predicting consumer behavior and enhancing data-driven business decisions.