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Abstract 
The convergence of big data and biotechnology is 
transforming the landscape of healthcare, pharmaceutical 
research, and fungal biology. This review explores the 
emerging synergy across these domains, emphasizing 
predictive analytics, artificial intelligence (AI), and machine 
learning (ML) enabling real-time decision-making, 
accelerating drug discovery, and advancing ecological and 
mycological research. In healthcare, big data collected from 
electronic health records (EHRs), wearable devices, and 
population-level datasets support early disease detection, risk 
stratification, and personalized treatment plans. In 
pharmaceuticals, AI models including deep learning and 
generative framework streamline drug development by 
facilitating target identification, virtual screening, and 
predictive ADMET modeling. These innovations have 
significantly reduced development timelines and improved 
precision in therapeutic design. Parallel advancements in 
fungal biotechnology, driven by image-based classification 

and genomic analysis, are revealing fungi as critical sources 
of bioactive compounds, enzymes, and ecological indicators. 
Predictive models are now capable of identifying fungal 
species, mapping metabolic pathways, and forecasting 
ecological patterns, thus positioning fungi at the intersection 
of environmental monitoring and drug discovery. Despite 
these advances, challenges persist including data 
interoperability, algorithmic bias, regulatory barriers, and 
ethical concerns related to privacy, equity, and 
bioprospecting. This review also discusses the infrastructure 
needed to support cross-sector innovation, such as cloud 
computing, graph neural networks, FAIR data standards, and 
open science platforms. It outlines strategic priorities for 
building integrated, explainable, and accessible AI systems, 
particularly in underserved regions. By highlighting case 
studies, shared challenges, and future directions, the review 
underscores the importance of interdisciplinary collaboration 
in leveraging big data–biotech synergy. 
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1. Introduction 

In recent years, the intersection of big data and biotechnology has fundamentally transformed how we approach health, 

pharmaceuticals, and biological sciences. Encompassing vast, complex datasets including electronic health records, wearable 

sensor streams, genomic sequences, chemical libraries, and environmental observations big data presents both immense 

opportunities and profound analytical challenges (Adans-Dester et al., 2020; Abdullahi, 2011) [2, 1]. Meanwhile, biotechnological 

innovations in computational modeling, high-throughput screening, and molecular engineering have created powerful tools 

capable of extracting actionable insights from this data. When synergized, these fields advance personalized medicine, accelerate 

drug discovery, and extend into emerging areas such as fungal biotechnology, enabling breakthroughs from clinical diagnostics 

to ecological monitoring (Bulbul et al., 2018; Chaudhary & Khadabadi, 2012) [8, 9]. 

Big data in biology and medicine refers to datasets so large or complex that they exceed traditional processing methods driven 

by the “4 Vs”: volume, variety, velocity, and veracity. These data types include structured sources such as patient medical records 

and chemical screening results; semi-structured and unstructured sources such as imaging, time-series sensor logs, and genomics. 

Managing this breadth of data requires advanced analytics including machine learning (ML), deep learning (DL), natural 

language processing, and graph-based models (Ma et al., 2020; Manik et al., 2018) [16]. 

Biotechnology transforms these analytical techniques into actionable solutions. In healthcare, ML-powered diagnostics and 

wearable detection systems inform real-time clinical decisions. In pharma, predictive models and generative AI reshape the drug 

pipeline—from target identification to ADMET (absorption, distribution, metabolism, excretion, toxicity) prediction (Jonathan 

et al., 2020). In fungal research, image analytics, genomics, and metabolomic screening are revealing novel enzymes, bioactive 

compounds, and ecological indicators. Together, this synergy marks a shift from siloed methods to integrated, data-driven life 

sciences (Rosa et al., 2019; Rubina et al., 2017; Sitarek et al., 2020; Tobore et al., 2019) [21, 22, 23]. 
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In healthcare, big data is driving the era of Healthcare 4.0, 

characterized by digital integration of EHRs, medical 

imaging, wearable devices, and IoT systems (Miah et al., 

2019) [19]. Predictive models using these data streams 

facilitate early disease detection, hospital resource 

optimization, and personalized treatment planning: 

 Systems using ML and cloud computing have enabled 

predictive algorithms identifying cardiovascular events 

or acute care needs (arxiv.org). 

 Data from wearables and EHRs have demonstrated 

potential in risk forecasting even though widespread 

clinical integration remains nascent due to challenges in 

data governance, workflow compatibility, and 

reliability. 

 

Notably, the COVID-19 pandemic accelerated big data 

applications where real-time case modeling, supply chain 

forecasting, and AI-guided therapeutic exploration became 

critical in managing global health crises. 

 

2. Big Data Applications in Healthcare 

The ongoing convergence of big data and healthcare is 

ushering in an era of dynamic, data-driven medicine, 

propelled by wearable sensors, predictive diagnostics, EHR 

analytics, and embedded AI interventions. Each of these 

domains leverages large-scale and multimodal data to 

enhance health outcomes, optimize workflows, and support 

clinical decision-making (Miah et al., 2019; Andrew et al., 

2020; Arpaia et al., 2013) [19, 7]. 

 

2.1 Real-Time Health Monitoring with Wearables 

Wearable devices—ranging from smartwatches and ECG 

patches to biometric patches can continuously capture 

physiological signals such as heart rate, heart rate variability, 

body temperature, and accelerometry. These data streams 

feed into machine learning (ML) models designed to detect 

early signs of cardiovascular disease (CVD) and other health 

threats (Andrew et al., 2020; Aerts, 2020; Allegra, 2019) [4, 3]. 

A comprehensive review of 55 studies found that ML models 

trained on wearable data could predict CVD outcomes with 

accuracy, yet none reached clinical deployment (TRL < 6); 

none included prospective phase 2/3 trials, and most lacked 

external validation (Aerts, 2020) [3]. Another systematic 

analysis focused on IoT-based cardiovascular monitoring 

reviewed 164 papers, demonstrating that ensemble models 

like Random Forest and deep architectures achieved over 

90% accuracy in detecting hypertension, arrhythmia, and 

heart failure. Moreover, CNN–LSTM and hybrid neural 

network architectures have been successfully deployed on 

microcontroller units (e.g., Cortex-M4) to perform ECG 

classification with F1 scores above 0.78 (Dongmei et al., 

2020). 

Despite high performance, major gaps persist inconsistent 

sampling rates, sensor heterogeneity, annotation variability, 

and hardware constraints hinder translational efforts. FDA-

cleared devices remain rare in CVD monitoring, and 

challenges like multi-sensor data fusion, battery life, and 

privacy regulations continue to slow progress. 

 

2.2 Predictive Diagnostics for Chronic Disease 

Beyond wearables, big data drives predictive diagnostics for 

chronic conditions like diabetes, hypertension, and heart 

disease through personalized risk modeling. Longitudinal 

electronic health records (EHRs) combined with ML enable 

early disease detection and risk stratification (Dongmei et al., 

2020). A scoping review of ML applied to longitudinal EHRs 

found wide application across chronic disease domains, with 

models demonstrating utility in early detection, prevention, 

and risk modeling; however, detailed evaluations of clinical 

utility were often absent. Another study showcased deep 

representation learning on over 1.6 million patient EHRs, 

using autoencoders and embeddings to derive latent features 

that successfully stratified disease subtypes in type 2 diabetes 

and neurological conditions (Lee et al., 2020; Meyer et al., 

2020) [14, 18]. 

In personalized medicine, predictive analytics bridges patient 

phenotypes with genotypes. For instance, AI-enhanced EHR 

Platforms have been used to match phenotypic and genomic 

data leading to faster recognition of genetic conditions in 

infants. Federated learning across institutions improves 

model generalizability and protects patient privacy in rare-

disease prediction (Lee et al., 2020) [14]. Nonetheless, EHR 

data remains messy: fragmented, heterogeneous, and biased, 

often requiring major preprocessing before use in predictive 

models. Structured and unstructured data (Manik, 2020). 

 

2.3 EMR/EHR Analytics & Personalized Medicine 

Large-scale deep-learning models that ingest raw EHR in 

Fast Healthcare Interoperability Resources (FHIR) format 

have predicted mortality (AUC ~0.93–0.94), readmission 

(AUC ~0.75–0.86), and diagnoses (AUC ~0.90) across 

multiple health systems, outperforming traditional risk 

scores. Multimodal fusion of medical imaging and EHR 

data—using CNNs integrated with structured clinical 

informationhas also demonstrated superior disease diagnosis 

compared to uni-modal models.  

These platforms pave the way for real-time clinical decision 

support, matching patient profiles to actionable insights. Yet 

rigorous prospective trials are rare, and standardized case 

studies or performance benchmarks in live clinical contexts 

remain scarce (Ma et al., 2020). 

Big data and biotechnology are actively reshaping healthcare 

through real-time monitoring, precision diagnostics, and 

evidence-based decision-making. Wearables and EHR 

analytics offer predictive diagnostics demonstrated with high 

accuracy, but translating these models into clinical tools 

requires solving issues around data quality, regulatory 

validation, and equitable access. As edge-AI, federated 

learning, and multimodal integration mature, healthcare 

systems are approaching a tipping point where predictive 

analytics will become a normative part of routine care 

delivery (Ma et al., 2020; Meyer et al., 2020) [18]. 

 

3. Biotech-Driven Innovations in Pharmaceuticals 

The fusion of biotechnology and big data is revolutionizing 

pharmaceutical R&D. Cutting-edge AI models especially 

generative architectures, predictive ADMET systems, and 

genomics platforms are creating powerful, data-intensive 

pipelines that challenge traditional development paradigms. 

These approaches are transforming how drugs are 

discovered, optimized, and brought to clinical readiness 

(Allegra, 2019) [4]. 

 

3.1 AI in Drug Discovery and Development 

Generative AI models such as Variational Autoencoders 

(VAEs), Generative Adversarial Networks (GANs), graph 

neural networks (GNNs), and transformers have emerged as 

powerful tools for molecule generation, virtual screening, and 
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lead optimization. Recent surveys highlight the growing 

influence of generative AI in de novo drug design, showing 

how deep learning navigates vast chemical spaces to propose 

structurally novel candidates against specific targets (Aerts, 

2020; Allegra, 2019) [4, 3]. Reviewers note that active learning 

approaches combined with deep docking can identify 80–

90% of hits by screening only a fraction of compound 

libraries, drastically reducing computational cost (Sitarek et 

al., 2020; Tobore et al., 2019) [22, 23]. 

AlphaFold 2’s 2020 success in accurately predicting protein 

structures is another watershed moment. By offering high-

fidelity protein folding predictions, it enables better-informed 

target identification and binding-site modeling bolstering AI-

driven drug design on structural data. While the potential is 

vast, authors caution that algorithm explainability, training 

data biases, and lack of standardized benchmarks remain 

obstacles to widespread adoption (Sitarek et al., 2020) [22]. 

 

3.2 Big Data Platforms in Genomics and 

Pharmacogenomics 

The integration of genomic and pharmacogenomic datasets 

into drug discovery platforms enables more precise, 

individualized therapy design. Large biobank–EHR-linked 

cohorts allow multi-omic data to inform drug mechanisms 

and patient stratification. AI-based pharmacogenomics 

systems can analyze patient genotypes in real time, 

optimizing dose or drug choice a benefit highlighted in 

rheumatologic precision medicine studies (Lee et al., 2020; 

Meyer et al., 2020) [14, 18]. 

PharmGKB a curated pharmacogenomic knowledgebase, 

supports this integration by linking genomic variants to drug 

responses, facilitating clinical implementation through CPIC 

guidelines worldwide. As AI-powered platforms and 

federated learning models emerge, these systems can analyze 

multi-institutional data while preserving privacy. Despite 

progress, the diversity and accessibility of large-scale 

genomic datasets vary, hindering equitable model training 

and validation across populations (Abdullahi, 2011; Manik, 

2020) [1]. 

 

3.3 Predictive Models for ADMET and Target Validation 

Predicting drug safety and efficacy early remains critical. 

AI-driven ADMET platforms using multi-task deep learning 

have demonstrated notable advances sometimes 

outperforming classical QSAR approaches. Tools like 

ADMET-AI provide rapid toxicity and metabolism 

predictions on demand, improving lead selection workflows 

(Abdullahi, 2011) [1]. Knowledge-graph and AI methods also 

enhance target validation, leveraging literature mining and 

biomedical network data to suggest novel targets and 

repurposed drugs. However, transparency in these systems is 

essential explainable models that reveal toxicity-associated 

molecular substructures or ADMET explanations are critical 

to ensure trust. 

 

3.4 Strategic Models for Reducing Development 

Timelines 

AI-powered startups have begun delivering lead compounds 

in unprecedentedly short timeframes. Insilico Medicine used 

its PandaOmics and Chemistry42 AI platforms to propose 

drug leads in under 50 days integrating generative chemistry, 

target scoring, and ADMET modeling. Similarly, XtalPi and 

Pfizer employed quantum-informed AI to accelerate the 

identification of Paxlovid components (Abdullahi, 2011) [1]. 

Wired and other sources report that companies like GSK and 

Exscientia have AI-designed preclinical candidates 

progressing toward trials. However, sustained success 

depends not merely on AI speed but on robust validation 

pipelines, including prospective assays, safety evaluations, 

and regulatory alignment. 

 

3.5 Integrated Pipelines & End-to-End Systems 

The most impactful trend is the emergence of end-to-end AI 

drug pipelines that unify generative chemistry, structure 

prediction, synthesis planning, ADMET filtering, and clinical 

simulation. Platforms like AMPL (ATOM consortium) 

exemplify these integrated workflows producing candidate 

sets optimized across multiple criteria with minimal human 

intervention. AlphaFold-enabled pipelines enhance this 

integration by combining structure-based screening with 

generative chemistry, enabling on-the-fly optimization of 

candidate binding. Realizing these platforms at scale requires 

standardized data ecosystems, modular toolkits, and 

compliance-ready explainability, presenting a clear path 

toward full AI-first drug R&D (Rosa et al., 2019; Sitarek et 

al., 2020; Tobore et al., 2019) [22, 23]. 

The synergy between biotechnology and big data is reshaping 

pharmaceutical R&D. AI-powered generative models, 

genomics-based platforms, ADMET prediction frameworks, 

and accelerated pipelines are collectively redefining drug 

discovery. Though challenges in data governance, 

interpretability, and regulation remain, emerging frameworks 

self-supervised learning, federated models, and hybrid 

mechanistic integrations provide a viable path forward. As 

startups and pharma giants deploy end-to-end AI systems, the 

future offers substantial promise: faster, cheaper, and more 

precise drug development driven by intelligent data 

ecosystems (Manik, 2020; Adans-Dester et al., 2020) [2]. 

 

4. Predictive Analytics and Big Data in Mycology 

Advancements in machine learning (ML), deep learning 

(DL), and big data analytics are rapidly transforming 

mycology from species identification and ecological 

forecasting to pharmaceutical discovery and disease 

modeling (Adans-Dester et al., 2020; Ma et al., 2020; Manik 

et al., 2018) [2, 16]. This section explores four interrelated 

domains where predictive tools are driving innovation: 

 

4.1 Fungi in Biopharma: Antibiotics, Enzymes, and 

Bioactive Molecules 

Fungi's evolutionary diversity gives rise to rich bioactive 

molecule repertoires ideal for pharmaceuticals and industrial 

enzymes in previous research (Lee et al., 2020; Meyer et al., 

2020) [14, 18].: 

 Secondary metabolism mining: Analysis shows many 

fungal SMs are more “drug-like” than bacterial 

counterparts under FDA metrics. This supports their 

continued exploration for antibiotics, 

immunomodulators, and anticancer agents. 

 AI-guided bioactivity screening: Predictive models 

trained on combined bacterial and fungal BGCs help 

prioritize high-value fungal metabolites especially 

urgent given antibiotic resistance. 

 Functional genomics & expression: Genomics-

informed ML reveals biosynthetic pathway activation 

patterns, enabling metabolic engineering to enhance 

production of target bioactive compounds potentially 

transforming industrial biotech research. 
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 Disease modeling platforms: Data-informed fungal 

models help identify virulent fungi and potent 

metabolites while also informing fungal pathogen–host 

interaction frameworks. 

 

4.2 Ecological Monitoring & Fungal Disease Modeling 

Big data supports fungal ecology from remote sensing to 

predictive disease alerts: 

 Hyperspectral remote sensing: Self-supervised deep 

DL combined with hyperspectral imagery identified 

Fusarium head blight in wheat, enabling early 

asymptomatic detection. 

 Mycetoma histopathology: The MyData database, 

featuring 864 labeled histopathological images in 

mycetoma cases, supports AI-based screening of tissue 

samples an important step toward automated diagnostics 

in endemic areas. 

 Ecosystem forecasting: Models using Landsat and 

satellite indices have forecasted fruiting patterns and 

health of macrofungi (e.g., Lactarius deliciosus), 

providing tools for forest management. 

 Fungal-fungal interaction networks: DL pipelines 

now classify fungal-fungal interactions enabling 

prediction of species competition, invasive risks, or 

synergistic community shifts. 

 

Predictive analytics and big data are expanding mycological 

research into realms once dominated by human expertise. 

From sub-24-hour species ID via time-lapse imaging to 

BGC-guided antibiotic discovery, fungal science is entering 

a new data-powered frontier. Integrating image, genomic, 

metabolic, and ecological data promises robust pipelines 

underpinning biodiversity monitoring, disease diagnostics, 

and biopharma discovery (Rosa et al., 2019; Rubina et al., 

2017; Das et al., 2016, 2017) [21, 10]. Continued development 

of multi-modal datasets, hybrid model transparency, and field 

validation frameworks will ensure predictive tools mature 

from proof-of-concept to impactful applications in both 

science and society. 

 

5. Data Integration, Infrastructure, and Tools 

Realizing the full potential of big data and biotech synergy 

requires robust infrastructure, seamless interoperability, and 

shared tools. This section explores key platforms, standards, 

and frameworks that support cross-domain data integration 

(cloud, Hadoop, GNNs), address format and metadata 

challenges, and embrace FAIR and open-science principles 

(Rosa et al., 2019). 

 

5.1 Platforms, Pipelines, and Analytics Infrastructure 

Cloud-based platforms (AWS, Azure, Google Cloud) and 

big-data frameworks (Hadoop, Spark) have become essential 

in healthcare, pharmaceutical R&D, and environmental 

biology. A recent review outlines how cloud infrastructure 

enables scalable data processing, secure sharing, and ML-

driven analysis across industries. These environments 

support high-performance storage, distributed computation, 

and elastic scalability (Manik, 2020) [16]. For bioinformatics 

workflows, tools like Nextflow and Galaxy stand out. 

Nextflow provides a portable, resilient engine for pipeline 

execution across local, HPC, and cloud contexts, supporting 

containerization and community-driven standardization (e.g., 

nf-core). 

 

5.2 Graph Neural Networks & Knowledge Graphs 

Graph-structured data underpin complex relationships in 

healthcare (EHR networks), drug discovery (molecular 

interactions), and fungal ecology (species interactions). A 

review of GNN applications in healthcare highlights their 

strength in disease prediction and drug discovery, modeling 

relationships via graph convolution and attention 

mechanisms. Another survey in computer vision emphasizes 

GNNs' suitability for multimodal data fusion a need 

especially acute when combining imaging, genomic, and 

ecological data (Allegra, 2019) [4]. 

 

5.3 Interoperability and Data Standards 

Interoperability in healthcare hinges on FHIR (Fast 

Healthcare Interoperability Resources), which defines 

modular, RESTful data structures for EHR exchange. FHIR’s 

public implementation in systems worldwide including U.S. 

CMS mandates and projects in Brazil and Israel enhances 

real-time data sharing and clinical pipeline alignment. In the 

cloud context, FHIR-compatible data pipelines enable 

federated ML without centralizing sensitive health records 

(Ma et al., 2020; Manik et al., 2018) [16]. 

 

5.4 Open Science & FAIR Data Practices 

Adhering to FAIR principles (Findable, Accessible, 

Interoperable, Reusable) ensures data generated across 

disciplines becomes a shared resource. For example, a BMC 

study emphasized the importance of integrating FAIR into 

training programs to improve reproducibility and literacy 

among researchers. Reviews in biopharma advocate for FAIR 

data adoption to enhance collaboration and data value 

(Andrew et al., 2020; c; Allegra, 2019) [4]. 

FAIR frameworks have been successfully applied in mental 

health, global health, and genomic surveillance to ensure 

ethical reuse of shared datasets. 

Tools supporting FAIR practices include: 

 Repository Platforms: Zenodo, Figshare 

 BioRxiv/medRxiv: for preprint sharing and metadata 

 Galaxy and nf-core: embed metadata and version 

control by design  

 

These infrastructures encourage transparency, 

reproducibility, open peer review, and equitable access. 

Infrastructure, interoperability, and FAIR data are the 

backbone of big data–biotech synergy. From cloud-native 

pipelines in healthcare, standardized genomic workflows in 

pharma, to open mycology databases, integrated tools unlock 

innovation across domains. Building shared standards, 

capacity, and open frameworks is essential for sustainable, 

equitable advancement in data-driven science. 

 

6. Challenges and Ethical Considerations 

6.1 Data Privacy and Security Across Sectors 

In healthcare and biotech, data is governed by frameworks 

like HIPAA (U.S.) and GDPR (EU), but AI systems often 

exploit subtle gaps. Commercial AI implementations can 

expose sensitive medical data via de-anonymization or 

insecure storage on third-party platforms. Medical robotics 

and wearable sensors further expand the attack surface, 

potentially enabling malicious access to private health data. 

Precision health models integrating EHR, genomic, and 

device streams require advanced privacy-preserving 

cryptographic techniques such as federated learning and 

homomorphic encryption. Establishing secure environments 
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for cross-institutional AI development while maintaining 

patient consent and trust is a central necessity. 

 

6.2 Bias in Training Data and Model Generalizability 

AI models mirror and magnify biases embedded in training 

data—especially when datasets are unrepresentative of the 

populations they serve. In healthcare, this leads to 

discriminatory outcomes regarding race, gender, ethnicity, 

and socioeconomic status. A notable example: a clinical 

algorithm using healthcare costs as a proxy for systematically 

under-selected Black patients. In global deployment, models 

tuned in high-income settings often fail in low- and 

middle-income contexts (e.g., UK vs. Vietnam hospitals). 

Emerging strategies to combat this include fairness audits, 

diverse benchmarking datasets, and data partitioning rules 

augmented by transfer learning and threshold calibration. 

Bias in biotech data particularly pharmacogenomic and 

fungal species datasets, also needs balancing to avoid over-

representation of well-studied populations or taxa. 

 

6.3 Regulatory Hurdles in AI-Enabled Biotech Systems 

Existing regulatory frameworks are ill-suited to AI-driven 

tools that continuously learn or operate across modalities. 

The FDA and other authorities still treat algorithmic systems 

as either fixed software medical devices or emerging SaMD, 

with limited guidance on how to assess evolving models. 

Model interpretability and transparency are increasingly 

mandated, yet many generative or DNN models remain black 

boxes (Sitarek et al., 2020; Tobore et al., 2019) [22, 23]. Data 

quality concerns, especially in genomics or ADMET 

prediction, further complicate regulatory acceptance. 

Harmonization of pipelines via standards like TRIPOD-AI, 

DECIDE-AI, BioCompute, and CWL is important but often 

overlooked. For fungiculture and bioprospecting, additional 

norms are needed for genetic resource usage, sample 

provenance, and biosafety (Sitarek et al., 2020) [22]. 

 

6.4 Ethical Concerns in Fungal Bioprospecting and 

Health Surveillance 

Bioprospecting fungal biodiversity raises environmental, 

social, and legal dilemmas. While fungi offer a treasure trove 

of antibiotics and enzymes, unregulated harvesting can 

damage ecosystems and violate communal rights. The 1999 

Maya ICBG case illustrates the hazards of failing to secure 

community consent or benefit-sharing. Ethical frameworks 

now emphasize prior informed consent, equitable benefit-

sharing, and conservation safeguards. In public health 

surveillance, fungal monitoring tools, especially those 

involving genomic sequencing, respect privacy norms in 

environmental sampling. Where fungal exposures map to 

human activity, data may implicate communities, 

necessitating transparency in sampling and usage (Sitarek et 

al., 2020) [22]. The synergy of big data and biotech creates 

transformative opportunities but only under careful ethical 

stewardship. Privacy-preserving, unbiased, regulation-

friendly, and socially responsible AI is essential to deliver 

sustainable healthcare, responsible fungal resource use, and 

equitable pharmaceutical innovation. Future progress hinges 

on transparent governance, global capacity building, and 

inclusive frameworks that honor both innovation and 

integrity. 

 

7. Future Directions and Cross-Sector Synergy 

As biotechnology continues to intersect with big data, the 

path forward lies in building holistic, integrated platforms 

that bridge healthcare, pharma, and fungal research. These 

systems will enhance therapeutic discovery, public health, 

and ecosystem monitoring, especially in under-resourced 

settings. Four key future directions emerge: 

 

7.1 Toward Integrated Platforms Combining Health, 

Pharma, and Fungal Intelligence 

The concept of bioconvergence bringing together diverse 

biological and data-driven disciplines is gaining momentum. 

Future platforms could combine EHRs, wearable data, 

genomic/pharmacogenomic insights, chemical libraries, 

fungal metabolite profiles, and environmental metadata to 

create unified biosystems (Sitarek et al., 2020; Tobore et al., 

2019; Ma et al., 2020; Manik et al., 2018) [22, 16, 23]. For 

example: 

 In drug development, insights drawn from fungal 

biosynthetic gene clusters (BGCs) and macro-molecular 

ecological signals could be integrated with patient-

specific pharmacogenomic data to speed up bioactive 

compound discovery. 

 In public health, wearable physiological data could 

trigger environmental fungal surveillance alerts 

bolstering early warnings under One Health initiatives. 

 

These platforms can be powered by hybrid AI pipelines 

leveraging graph neural networks, federated learning, and 

provenance tracking (via BioCompute/RO-Crate 

frameworks) delivering transparent, cross-domain analytics 

at scale². 

 

7.2 Potential of Hybrid Biotech–Data Pipelines 

A critical frontier lies in workflows that transform fungal 

metabolite data into drug lead candidates: 

1. Genomic and metabolomic analysis of fungi to identify 

promising BGCs. 

2. Predictive cheminformatics to forecast novel 

compound activities (e.g., AI for antimicrobial peptides). 

3. Generative AI design to create optimized analogs 

tailored to human pharmacokinetics and safety. 

4. Virtual screening and ADMET modeling to assess 

efficacy and toxicity before lab testing. 

5. Closed-loop lab validation, feeding results back into AI 

systems for continuous improvement. 

 

This hybrid ecosystem spanning omics, AI, simulation, and 

bioprospecting offers a pipeline for rapid, data-driven natural 

product drug discovery with impact on antimicrobial 

resistance and other public health priorities (Aminuzzaman & 

Das, 2017; Marzana et al., 2018) [10]. 

 

7.3 Scalable AI Systems for Underserved and Remote 

Populations 

AI platforms must be accessible globally, particularly in 

regions with high health burden and low resources. Key 

strategies include: 

 Edge deployment of AI on wearables, smartphones, and 

portable imaging devices, reducing dependence on 

central compute. 

 Federated learning frameworks to support distributed 

model training without sharing sensitive data, crucial for 

protecting patient privacy. 

 Affordable cloud resources and modular AI-as-a-

service platforms enabling local institutions to analyze 
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genomics, drug potential, fungal outbreaks, and health 

records, regardless of infrastructure constraints. 

 Tools like federated patient monitoring and AI-

powered diagnostics are already being trialed for 

cardiovascular care, infectious diseases, and 

environmental health monitoring [⁶]. 

These approaches democratize access to AI-driven healthcare 

and biosurveillance, reducing global inequities. 

 

7.4 Strategic Policy & Funding Priorities for Biotech–Big 

Data Ecosystems 

To support such ecosystems, forward-thinking policy and 

investment are essential based on the previous research (Das 

& Aminuzzaman 2017; Das et al., 2016) [10, 11]: 

 Incentivize open, FAIR-compliant data sharing: 

Mandate metadata-rich publication in public repositories 

(e.g., fungal BGCs, EHR phenotypes, wearable signals) 

and support FAIR training programs [⁷]. 

 Support bioconvergence hubs that co-locate 

disciplines across AI, biology, forestry, healthcare, and 

pharma similar to Israel’s AION Labs ecosystem. 

 Promote cross-sector translational funding: Funds 

should specifically prioritize projects combining fungal 

metabolites with drug pipelines, distributed health 

monitoring, or environmental health surveillance 

accelerating ecosystems with social impact. 

 Update regulatory frameworks for AI-generated 

bioactives and diagnostics: Establish pre-competitive 

standards for explainability (e.g., XAI benchmarks), 

provenance (BioCompute), and trial validation of edge-

AI tools. 

 Invest in hybrid capacity-building: Support training 

programs that combine biology, computational science, 

ethics, and data stewardship enabling the next generation 

to manage high-dimensional, cross-disciplinary projects. 

 

8. Conclusion 

The convergence of big data and biotechnology is redefining 

how we approach some of the most pressing challenges 

across health, pharmaceuticals, and environmental science. 

Predictive analytics, powered by AI and machine learning, 

now enables real-time disease monitoring, precision drug 

discovery, and high-throughput fungal classification and 

bioprospecting. In healthcare, big data systems improve 

diagnostics, personalizing treatment through genomics, and 

enabling scalable remote monitoring via wearable devices. In 

pharmaceutical innovation, AI-driven platforms have 

reduced lead identification timelines, enhanced drug safety 

through predictive ADMET modeling, and opened the door 

for the rapid development of next-generation therapeutics. 

Meanwhile, fungal research is gaining new momentum 

through image-based identification, genomic trait prediction, 

and integration into biopharma pipelines. Together, these 

cross-sectoral advances underscore the transformative 

potential of big data–biotech synergy. 

A key enabler of this transformation is the emergence of 

interdisciplinary frameworks. The most impactful 

innovations stem not from isolated advances in computing or 

biology, but from their intentional integration what is 

increasingly referred to as bioconvergence. Whether it's 

combining fungal metabolite screening with AI drug 

modeling or merging environmental fungal surveillance with 

wearable health data for public health risk forecasting, these 

frameworks bridge gaps between traditionally siloed 

disciplines. Tools such as graph neural networks, federated 

learning, FAIR data standards, and cloud-native 

bioinformatics pipelines now support the operationalization 

of these complex systems. As such, fostering collaborations 

across healthcare providers, environmental scientists, 

pharmacologists, and data engineers will be vital to future 

success. Looking forward, ensuring that these innovations are 

not only advanced but also equitable and sustainable will 

be critical. Strategic investments in infrastructure, regulatory 

adaptation, data ethics, and capacity-building, especially in 

underrepresented regions, must accompany technological 

development. Open science, explainable AI, and inclusive 

policies will help ensure that the benefits of this 

transformation are shared globally. As we move into an era 

of intelligent, integrated biotechnology, the focus must 

remain on creating resilient systems that improve health, 

advance discovery, and protect ecosystems all through the 

ethical and efficient use of data. This synergy of big data and 

biotech is more than a scientific trend. It is a structural shift 

with the power to redefine 21st-century innovation. 
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