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direction analysis; ascertain the trend of the landcover/landuse dynamics over the last
25 years; determine the Landuse Intensity across Sapele LGA over the last 25 years.
and predict the future landcover/landuse dynamics of Sapele LGA in 2040 using
artificial neural network. A multi-temporal and multi-sensor approach was adopted to
analyze landcover and landuse dynamics in Sapele Local Government Area between
2000 and 2025. Satellite imagery from Landsat 5, Landsat 7 ETM+, Landsat 8 OLI,
and Sentinel-2 were used alongside ground control data for classification and accuracy
validation. Supervised classification was conducted using the Random Forest
algorithm in QGIS, while change detection, land use intensity analysis, and directional
transition trends were assessed using post-classification comparison, gradient
direction analysis, and land use intensity index computations. Future landcover
prediction to the year 2050 was carried out using an Artificial Neural Network (ANN)
model in the MOLUSCE plugin. The results revealed a significant increase in Built-
Up Area from 18.78 km? in 2000 to 82.05 km? in 2025, while Open Space and
Vegetation declined substantially. The Land Use Intensity Index rose from 1.334 in
2000 to 1.722 in 2025, indicating increasing anthropogenic pressure. Gradient
direction analysis showed a consistent north-northeastward orientation of landcover
change, aligning with urban expansion corridors. The ANN model predicted further
transformation by 2050, projecting Built-Up Area to reach 123.62 km2 and Open
Space to reduce to less than 1 km2. The findings of this study are recommended as a
decision-support framework for guiding landcover and landuse management strategies
within Sapele Local Government Area.
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1. Introduction
Landcover and landuse change (LULCC) has become one of the most critical indicators of anthropogenic impact on the
environment, especially in rapidly urbanizing regions across the Global South.
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These changes not only reflect shifts in socio-economic and
political processes but also represent fundamental
transformations of the Earth’s surface with far-reaching
consequences for ecological integrity, climate regulation, and
sustainable development (Lambin et al., 2003; Foley et al.,
2005) 6 4. The dynamic interaction between human
settlements, agricultural expansion, deforestation, and
infrastructural development contributes significantly to land
transformation patterns observed globally (Turner et al.,
2007) 22,

In Nigeria, landcover change has accelerated significantly
over the past two decades, fueled by population growth,
industrialization, and weak enforcement of land use policies
(Ndukwu & Achi, 2018) [, Sapele Local Government Area
(LGA) in Delta State serves as a microcosm of these broader
transformations, with its rapidly changing landscape
influenced by urban expansion, timber processing, oil-related
activities, and agricultural encroachment. The area’s unique
location in the Niger Delta, coupled with its industrial
significance, makes it particularly susceptible to landcover
transitions that can compromise ecosystem services, reduce
biodiversity, and intensify flood vulnerability (Abua & Ekpo,
2015; Dike et al., 2018) - 31,

Detecting, quantifying, and modeling these changes is
essential for effective land management, spatial planning, and
environmental monitoring. Traditional techniques of change
detection, such as pixel-based classification and image
differencing, while useful, often fail to adequately model the
complex, non-linear patterns of land transformation over time
(Singh, 1989) %, As such, the adoption of Artificial Neural
Networks (ANNSs) for LULC modeling has gained traction
due to their ability to learn from historical transitions,
integrate multiple driving factors, and simulate future
scenarios with high spatial and temporal resolution (Al-sharif
& Pradhan, 2014; Tayyebi et al., 2011) > 111,

ANNSs, inspired by the structure of biological neurons, are
well-suited for landuse modeling because they can model
spatial processes that are both stochastic and deterministic in
nature (Pijanowski et al., 2002) [°1. By training the network
with historical landcover data and relevant driving factors—
such as elevation, proximity to roads, and existing urban
zones—ANNSs can predict the probability of transition from
one landcover class to another (Li & Yeh, 2002) Il This
capability has proven valuable for land managers and urban
planners seeking to anticipate urban sprawl, manage
agricultural resources, and conserve sensitive ecosystems.

In the context of Sapele LGA, there is a growing need for
predictive modeling that captures not only the historical
evolution of landuse but also forecasts its future state under a
“business-as-usual” scenario. The integration of remote
sensing data from platforms such as Landsat and Sentinel
with machine learning models like ANN provides an
efficient, scalable, and reproducible approach for such
modeling (Guan et al., 2011) Bl. This study thus aims to
develop an ANN-based model to analyze historical landcover
change in Sapele LGA between 2000 and 2025 and to
simulate its possible configuration by 2050. Understanding
these trends is essential not only for academic purposes but
also for policy formulation, disaster risk reduction, and
environmental impact assessment in an increasingly
urbanized and ecologically fragile region. By deploying
intelligent modeling techniques, this research contributes to
the growing body of knowledge on spatial transformation and
offers a decision-support tool for sustainable land
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governance.

2. Materials and Methods

2.1 Study Area Description

The study was conducted in Sapele Local Government Area
(LGA), situated in the southwestern part of Delta State,
Nigeria. Geographically, Sapele LGA lies within latitudes
5°50'N to 5°59'N and longitudes 5°40'E to 5°52’E. The area
covers an approximate landmass of 580 square kilometers
and is characterized by a tropical rainforest climate with two
distinct seasons—rainy and dry. The mean annual rainfall
exceeds 2,500 mm, while the average temperature hovers
around 27°C. Topographically, the region is relatively flat,
with low-lying plains that make it susceptible to flooding and
land use conflicts. Its strategic location along the Benin River
and its proximity to Warri port and industrial hubs make it a
significant center of economic and industrial activities in
Delta State. These anthropogenic pressures have influenced
the transformation of landcover and landuse over time.

2.2 Data Sources and Satellite Imagery

To assess the spatio-temporal dynamics of landcover/landuse
(LULC) in Sapele LGA, a multi-temporal and multi-sensor
approach was adopted. Satellite images used in this study
include Landsat 5 Thematic Mapper (TM) for the year 2000
and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) for
the year 2005. These images were selected due to their spatial
resolution of 30 meters and the consistency of the temporal
coverage over the study period. All images were acquired
from the United States Geological Survey (USGS)
EarthExplorer portal, which provides pre-processed Level-1
terrain-corrected products. Only images with minimal cloud
cover (<10%) and acquired within the same season
(preferably dry season) were selected to ensure
comparability.

2.3 Image Preprocessing

Image preprocessing is essential to enhance image quality
and improve classification accuracy. The Landsat images
were subjected to both radiometric and atmospheric
corrections using the Semi-Automatic Classification Plugin
(SCP) in QGIS 3.28. Radiometric correction was carried out
to convert digital numbers (DN) into top-of-atmosphere
reflectance values, thereby minimizing the influence of
sensor calibration errors. Atmospheric correction was applied
using the Dark Object Subtraction (DOS) method to remove
haze and scattering effects. The images were also clipped to
the Sapele LGA boundary using the administrative shapefile
obtained from the Office of the Surveyor General of the
Federation (OSGOF).

2.4 Training Sample Collection and Classification
Landcover/landuse classification was performed using a
supervised classification method. Training samples
representing five major classes—Built-up Area, Vegetation,
Waterbody, Open Land, and Wetland—were generated based
on field observations, historical land records, and high-
resolution reference data from Google Earth. These samples
were used to train a machine learning classifier using the
Random Forest algorithm, which has been proven to provide
high classification accuracy and robustness to noisy data. The
classification was conducted within the SCP environment in
QGIS, with 70% of the samples used for training and 30%
reserved for accuracy assessment.
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2.5 Accuracy Assessment

After classification, accuracy assessment was conducted
using a confusion matrix generated by comparing the
classified results with independent validation data. Overall
accuracy, producer’s accuracy, user’s accuracy, and the
kappa coefficient were calculated. The overall accuracy for
2000 and 2005 images were 88.3% and 91.2%, respectively,
with kappa coefficients exceeding 0.80, indicating strong
agreement between classified maps and reference data.

2.6 Change Detection Analysis

Post-classification comparison was used to evaluate
landcover/landuse changes between 2000 and 2005. This
method involves overlaying classified images from two time
periods to generate a change matrix, which quantifies gains
and losses in each LULC category. The analysis enabled the
detection of specific transitions, such as vegetation-to-built-
up or wetland-to-open land, which are critical in
understanding the magnitude and direction of land
transformation.

To further evaluate human-induced change, the Land Use
Intensity Index (LUI) was calculated using the formula:

Number of changed pixels
LUI =

Total number of pixels

The index measures the proportion of land experiencing
transitions within the study period, thereby reflecting the
degree of anthropogenic pressure on the landscape.

2.7 Gradient Direction Analysis

To determine the spatial orientation and pattern of
landcover/landuse transitions, gradient direction analysis was
carried out. This analysis used centroid displacement and
vector analysis techniques to trace the movement of land use
changes from 2000 to 2005. Specifically, the spatial centroid
of each landcover class was calculated for both years, and the
vector displacement between centroids was used to determine
the direction and magnitude of change. The resulting vectors
were classified into eight directional zones: North, Northeast,
East, Southeast, South, Southwest, West, and Northwest. The
dominant direction of expansion was identified and
visualized using rose diagrams and vector field overlays in
QGIS.

Gradient direction analysis is particularly useful in
identifying urban sprawl corridors and environmental stress
zones, especially in rapidly urbanizing regions like Sapele
LGA. This method allowed the study to uncover whether land
development was biased toward industrial corridors, riverine
areas, or transportation nodes.

2.8 Artificial Neural Network (ANN) Simulation

In order to forecast future landcover and landuse (LULC)
conditions in Sapele Local Government Area, an Artificial
Neural Network (ANN)-based simulation was carried out
using the MOLUSCE (Modules for Land Use Change
Evaluation) plugin integrated within QGIS 3.28. The aim of
this simulation was to generate a predictive landcover map
for the year 2050 by leveraging observed historical landcover
transitions from the years 2000 through 2025. The ANN
model was chosen due to its proven ability to capture
complex non-linear relationships among spatial variables and
to learn generalized transition patterns from temporal data
without relying on rigid statistical assumptions.

The input data used for the ANN model included a series of
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classified landcover maps for the years 2000, 2005, 2010,
2015, 2020, and 2025. Additionally, change detection layers
were generated to represent the transition probabilities
between LULC classes. These layers were complemented by
explanatory driving variables, which were derived from
spatial analysis and included factors such as elevation data
from the Shuttle Radar Topography Mission (SRTM),
distance to roads, proximity to water bodies, and the spatial
proximity to existing built-up areas. All raster datasets were
projected to a common spatial reference system (WGS 84 /
UTM Zone 31N) and resampled to ensure consistent
resolution across layers.

Training of the ANN model was conducted using the Multi-
Layer Perceptron (MLP) architecture, where the network
learns by adjusting connection weights through
backpropagation. A portion of the available dataset (70%)
was used for training, while the remaining 30% was set aside
for model validation. The ANN model iteratively minimized
the prediction error between observed and predicted LULC
transitions, allowing it to identify spatial rules associated with
land changes, such as vegetation loss to urban expansion and
conversion of open lands to built-up zones.

Once the model was adequately trained, it was used to
simulate the landcover configuration for the year 2050. This
simulation followed a "business-as-usual” scenario,
assuming that current trends in land transformation would
continue without any significant policy intervention. The
result was a classified raster map representing the predicted
spatial distribution of landcover classes in 2050, as well as a
transition probability surface showing the likelihood of
individual pixels undergoing specific class changes.

The ANN simulation revealed areas with high probability of
urban encroachment, projected expansion corridors, and
zones where natural vegetation may potentially recover due
to reduced development intensity. These spatially explicit
projections are instrumental for decision-makers in urban
planning, environmental management, and infrastructure
development. They offer valuable insight into future land
consumption patterns, inform sustainable land allocation, and
assist in identifying ecologically sensitive areas that may
require conservation efforts. The use of ANN modeling
within this context demonstrates the utility of intelligent
predictive tools in supporting forward-looking spatial
planning and environmental stewardship.

3. Results

3.1 Landcover/Landuse Class Distribution (2000-2025)
An assessment of the landcover/landuse statistics across the
study period further highlighted the profound transformations
that occurred between 2000 and 2025. The landcover classes
considered include Built-Up Area, Vegetation, Open Space,
and Wetland.

In the year 2000, Open Space was the most dominant
landcover class, covering approximately 371.503 km?2 or
82.47% of the total area. Vegetation accounted for 26.327
km? (5.84%), Wetlands covered 33.824 km? (7.51%), while
Built-Up Areas were relatively limited, covering only 18.780
km? (4.17%), see table 1 and figure 1.

Table 1: Landcover/landuse Distribution for Sapele LGA in 2000

SIN Class (Year 2000) | Area (Km?) Percentage
1 Built Up Area 18.780 4.17
2 Vegetation 26.327 5.84
3 Open Space 371.503 82.47
4 Wetland 33.824 7.51
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Fig 1: Landcover/landuse Map of Sapele 2000

By 2005, there was a notable expansion in Built-Up Area,
which increased to 29.924 km? (6.64%), while Vegetation
expanded significantly to 68.328 km? (15.17%). However,
Open Space decreased to 323.050 km? (71.72%), indicating
land consumption for built-up purposes. Wetland areas
slightly reduced to 29.132 km? (6.47%), see table 2 and 2.

Table 2: Landcover/landuse Distribution for Sapele LGA in 2005

S/N| Class (Year 2005) | Area (Km?) | Percentage
1 Built Up Area 29.924 6.64
2 Vegetation 68.328 15.17
3 Open Space 323.050 71.72
4 Wetland 29.132 6.47
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Fig 2: Landcover/landuse Map of Sapele 2005

The trend continued into 2010, with Built-Up Area increasing
further to 41.513 km2 (9.22%), while Vegetation dramatically
decreased to 27.004 km? (5.99%). Open Space slightly
rebounded to 337.731 km?2 (74.97%), possibly due to
reclassification or temporal land abandonment, while
Wetland coverage rose to 44.183 km? (9.80%), indicating
localized wetland expansions, see table 3 and figure 3.
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Table 3: Landcover/landuse Distribution for Sapele LGA in 2010

SIN| Class (Year 2010) Area (Km?) Percentage
1 Built Up Area 41.513 9.22
2 Vegetation 27.004 5.99
3 Open Space 337.731 74.97
4 Wetland 44.183 9.80
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Fig 3: Landcover/landuse Map of Sapele 2005

In 2015, Built-Up Area slightly increased to 43.470 km?
(9.65%), while Vegetation continued its downward trend,
reducing to 15.726 km? (3.49%). Open Space expanded to
352.029 km2? (78.15%), while Wetland areas declined
marginally to 39.211 km?2 (8.70%), see table 4 and figure 4.
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Table 4: Landcover/landuse Distribution for Sapele LGA in 2015
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Fig 4: Landcover/landuse Map of Sapele 2015

By 2020, Built-Up Areas experienced substantial growth,
reaching 58.726 km? (13.04%), reflecting intensified
urbanization. Vegetation decreased further to 13.772 km?
(3.06%), while Open Space contracted to 335.245 km?
(74.43%), and Wetland slightly expanded to 42.675 km?2
(9.47%). See table 5 and figure 5.

SIN| Class (Year 2015) Area (Km?) Percentage
1 Built Up Area 43.470 9.65
2 Vegetation 15.726 3.49
3 Open Space 352.029 78.15
4 Wetland 39.211 8.70
120|000 130I000 14DI000
N

Table 5: Landcover/landuse Distribution for Sapele LGA in 2020

SIN| Class (Year 2020) Area (Km?) | Percentage
1 Built Up Area 58.726 13.04
2 Vegetation 13.772 3.06
3 Open Space 335.245 74.43
4 Wetland 42.675 9.47
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Fig 5: Landcover/landuse Map of Sapele 2020

In 2025, Built-Up Area occupied approximately 82.046 km?

Table 6: Landcover/landuse Distribution for Sapele LGA in 2025

(18'2.1%)' signifying a near flve-fol_d Increase from the S/IN| Class (Year 2025) Area (Km?) | Percentage
baseline year 2000. Vegetation remained critically low at 1 Built Up Area 82.046 18.21
13.382 km? (2.97%), highlighting significant landscape 2 Vegetation 13.382 297
alteration. Open Space decreased further to 322.079 km? 3 Open Space 322.079 71.49
(71.49%), while Wetland areas declined to 32.971 km? 4 Wetland 32.971 7.32
(7.32%), see table 4.6, figure 6 and 7.
120000 130000 140000
N
8 8
3 3
o (=3
8- -8
3 3
Legend
2025.tif
Name
4 Built up Area =
(=3 (=]
5' -Open Space '§
-Vegatalion
-Weuand
0 2,600 5200 10,400 15,600
E | I | | Meters
120000 130000 140000

Fig 6: Landcover/landuse Map of Sapele 2025
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Fig 7: Trend of Landcover/Landuse Distribution in Sapele LGA (2000 -2025)

3.2 Spatial Pattern of Landcover/Landuse Dynamics
(2000-2025) Based on Gradient Direction Analysis

The spatial analysis of landcover/landuse dynamics in Sapele

LGA between 2000 and 2025 was undertaken using Gradient

Direction Analysis. This approach provided valuable insight
into the intensity and directional trends of landcover
transitions over the 25-year period, see figure 8.
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Fig 8: Mean Gradient Magnitude of Landcover Transitions in Sapele LGA (2000 -2025)

The Mean Gradient Magnitude, which represents the spatial
intensity of landcover transitions, exhibited a dynamic trend
over the study period. In 2000, the mean gradient magnitude
was recorded at 0.108, indicating moderate spatial changes
primarily associated with natural landcover types. A
noticeable increase occurred in 2005, with the mean
magnitude rising to 0.141, indicating intensification of
landcover transitions, likely linked to the onset of
urbanization activities. This trend continued into 2010, where
the mean magnitude peaked at 0.165, implying a period of
rapid urban expansion and landscape transformation.

However, by 2015, a temporary decline was observed, with
the mean magnitude decreasing to 0.103, indicating a brief
slowdown or stabilization in spatial transitions. This
deceleration was short-lived, as 2020 experienced a
resurgence in landcover changes, with the mean gradient
magnitude rising again to 0.139, and further increasing to

0.164 by 2025, reaffirming the ongoing intensification of
urban and infrastructural developments.

Throughout the period, the Maximum Gradient Magnitude
remained consistently high at 13.416, across all years
analyzed. This consistency indicated the presence of
localized areas undergoing intense landcover changes,
potentially corresponding to newly developing urban fringes
and zones of active wetland modification.

Analysis of the Mean Gradient Direction (figure 9), revealed
a consistent north-north-eastward orientation of landcover
transitions across all years. In 2000, the mean direction was
approximately 14.85°, which shifted slightly to 24.17° by
2005. A moderate adjustment occurred in 2010, with the
mean direction at 21.63°, followed by a more northward
orientation of 11.54° in 2015. By 2020, the mean direction
had settled at 15.99°, and slightly adjusted to 19.71° by 2025.
These findings confirm that the dominant spatial progression
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of landcover transitions, particularly urbanization, was
consistently oriented towards the North-Northeast quadrant
of the study area.

Mean Gradient Direction and Variability (2000-2025)
0

180°

Fig 9: Mean Gradient Direction and Variability of Landcover
Transitions in Sapele LGA (2000 -2025)
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Furthermore, the Standard Deviation of Gradient Direction,
which represents the variability of transition directions,
fluctuated during the study period. A relatively higher
variability was recorded in 2005 (69.31°) and 2010 (65.89°),
indicating spatial changes occurring in multiple directions.
This variability reduced to 49.40° by 2015, indicating a more
focused and organized land development trend. However,
moderate increases in variability were observed again in 2020
(57.46°) and 2025 (62.96°), indicating the emergence of new
transition directions possibly associated with expanded urban
and infrastructural activities in newly developing areas.

In general, the Gradient Direction Analysis demonstrates that
landcover transitions in Sapele LGA were neither random nor
isotropic but exhibited a consistent spatial progression
towards the North-Northeast, with increasing intensity over
time. This pattern reflects the combined effects of urban
expansion, infrastructural developments, and associated land
transformation processes within the LGA.

3.3 Change Detection Between 2000 and 2025

The landcover and landuse pattern in Sapele Local
Government Area between 2000 and 2025 underwent
significant transformations across the major classes: Built-Up
Area, Vegetation, Open Space, and Wetland (figure 10).

Landcover and Landuse Area Changes in Sapele LGA (2000-2025)
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Fig 10: Landcover/Landuse Area Changes in Sapele LGA (2000 -2025)

Between 2000 and 2005, Built-Up Areas experienced a
substantial increase of 11.144 km2, indicating a strong onset
of urbanization. Vegetation also recorded an exceptional gain
of 42.001 km? within the same period, which may be
attributed to reforestation efforts, classification adjustments,
or temporary land-use recovery. Meanwhile, Open Space
declined by 48.453 kmz2, marking a major loss of undeveloped
land, while Wetland areas reduced by 4.692 kmz, pointing to
the early stages of wetland degradation. During the period
2005 to 2010, the Built-Up Area continued to expand, gaining
11.589 km2. However, Vegetation suffered a sharp decline,
losing 41.324 kmz2. This significant vegetation loss points to
widespread deforestation and land clearing activities linked
to urban growth and agricultural expansion. Conversely,
Open Space slightly increased by 14.681 km?, and Wetlands

expanded markedly by 15.051 km?, indicating hydrological
restoration or improved wetland delineation.

The landcover changes from 2010 to 2015 showed a relative
slowdown in urban expansion, with Built-Up Areas
increasing by only 1.957 km2. Vegetation continued its
downward trend, declining by 11.278 kmz2, while Open Space
increased by 14.298 kmz, possibly as a result of abandoned or
cleared land not yet developed. Wetland areas, however,
experienced a modest loss of 4.972 kmz2. Between 2015 and
2020, urban development regained momentum as Built-Up
Areas expanded significantly by 15.256 km?2. VVegetation loss
persisted, albeit at a slower rate, with a reduction of 1.954
km2. Open Space decreased by 16.784 km?2, signaling
intensifying land pressures, while Wetlands exhibited a slight
gain of 3.464 kmz, indicating localized restoration efforts or
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seasonal wetland dynamics.

Finally, from 2020 to 2025, Built-Up Areas experienced their
highest expansion over the entire study period, with an
increase of 23.320 km2. Vegetation loss slowed substantially,
recording a marginal decline of 0.390 km2. Open Space
reduced further by 13.166 km2, while Wetlands suffered a
substantial decrease of 9.704 km?, reinforcing concerns over
wetland vulnerability in the face of expanding urbanization.
Overall, the period from 2000 to 2025 highlights a clear trend
of urban expansion, steady vegetation depletion, gradual
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open space reduction, and unstable wetland dynamics across
Sapele LGA.

3.4 Trend and Annual Rate of Landcover Change within
Sapele LGA between 2000 and 2025

The analysis of the rate of landcover change between 2000

and 2025 reveals varied dynamics across different periods,

reflecting fluctuating landuse pressures and environmental

responses (figure 11).

Landcover Change Rates in Sapele LGA (2000-2025)

150

100

50}

Rate of Change (%)

o
T

—50+F

Built-Up
Il Vegetation
mmm Open Space

Wetland

2000-2005 2005-2010

2010-2015
Period

2015-2020 2020-2025

Fig 11: Landcover/Landuse Changes Rates in Sapele LGA (2000 -2025)

From 2000 to 2005, the Built-Up Area grew by 59.34%, at an
annual rate of 11.87%, signaling an early rapid phase of urban
expansion. During the same period, Vegetation increased
remarkably by 159.54% (an annual rate of 31.91%), while
Open Space declined moderately by -13.04% (annual rate of
-2.61%) and Wetland reduced by -13.87% (annual rate of -
2.77%). Between 2005 and 2010, urban expansion continued,
with Built-Up Areas growing by 38.73% (annual 7.75%).
However, this period witnessed a drastic loss of Vegetation,
which declined by -60.48% at an alarming annual rate of -
12.10%. Open Space slightly increased by 4.54%, while
Wetland areas recovered impressively, growing by 51.66%
(annual 10.33%).

During 2010 to 2015, the rate of Built-Up Area growth
slowed significantly to 4.71% (annual rate 0.94%), indicating
a temporary stabilization. Vegetation continued its sharp
decline, reducing by -41.76% (annual rate -8.35%), while
Open Space experienced a modest rise of 4.23%. Wetlands,
however, declined by -11.25%, indicating environmental
stress. The period 2015 to 2020 marked a renewed surge in
urbanization, with Built-Up Areas increasing by 35.10%
(annual 7.02%). Vegetation loss slowed to -12.43% (annual -
2.49%), and Open Space reduced slightly by -4.77%.
Wetland areas grew by 8.83%, indicating some positive
hydrological conditions or management interventions.
Finally, from 2020 to 2025, Built-Up Areas recorded a strong
expansion rate of 39.71% (annual 7.94%), whereas

Vegetation showed a minimal loss of -2.83% (annual -
0.57%), indicating a nearing saturation of buildable land.
Open Space declined by -3.93%, while Wetlands suffered a
significant reduction of -22.74% (annual -4.55%),
highlighting continued environmental vulnerability.

In summary, the period from 2000 to 2025 in Sapele LGA
has been characterized by consistent Built-Up Area
expansion, fluctuating Vegetation dynamics, progressive loss
of Open Space, and episodic but overall declining Wetland
coverage, with varying rates across different intervals.

3.5 Land Use Intensity Index (LUI) Analysis (2000-2025)
The Land Use Intensity Index (LUI) provides a
comprehensive indicator for evaluating the degree to which
land is utilized based on the anthropogenic pressure
associated with various landcover classes. This index is
particularly useful in tracking the transformation of natural
landscapes into built environments, thereby offering a lens
through which spatial planners and environmental analysts
can assess developmental dynamics. For this study, weights
were assigned to landcover categories based on their assumed
intensity of use: Built-Up Areas (4), Wetland (3), Vegetation
(2), and Open Space (1). These weights reflect the degree of
environmental alteration and human influence associated
with each category, where higher weights indicate more
intense use (figure 12).
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Fig 12: Landcover/Landuse Intensity Index (2000 -2025)

In the year 2000, Sapele LGA exhibited a relatively low land
use intensity, with an LUI value of 1.334. At this time, the
landscape was dominated by Open Space, accounting for
over 80% of the area, while Built-Up Areas occupied only a
small fraction. This configuration signified a largely
undeveloped terrain with extensive ecological coverage,
minimal urban encroachment, and relatively low
environmental stress. The low LUI at this point in time
indicated a landscape that still retained its natural buffering
capacity and biodiversity functions.

By 2005, the LUI had increased to 1.480, reflecting the early
stages of intensifying land use. This shift was driven largely
by a noticeable increase in Built-Up Areas and a surge in
vegetative cover, the latter possibly due to improved
classification or actual landscape regeneration. The increase
in land use intensity indicated the commencement of urban
expansion, infrastructure development, and possibly
agricultural activities. Though the ecological balance was not
yet critically affected, the upward trend in LUI indicated that
human-induced changes were beginning to take root more
aggressively.

In 2010, the LUI continued its ascent to 1.533, fueled by
continued growth in urban areas and a corresponding decline
in vegetation. Wetlands, however, experienced an
unexpected increase, which may have resulted from seasonal
hydrological shifts or improved remote sensing detection.
Despite the fluctuating ecological categories, the persistence
of upward pressure on Built-Up Area expansion marked a
steady shift towards a more anthropogenically influenced
landscape. This period represented a transition phase where
development began to encroach more visibly on vegetated
and open spaces.

The year 2015 showed a slight moderation in LUI growth,
reaching 1.499. While Built-Up Areas continued to increase,
the pace slowed marginally, possibly due to temporary
stagnation in urban infrastructure projects or localized land
policy interventions. Vegetation continued to decline, as did
Wetlands, indicating a reduction in the ecological resilience
of the region. The persistence of high intensity despite slower
development points to a scenario where cumulative effects of
land transformation outweighed the gains from any
environmental preservation measures.

In 2020, the LUI index rose sharply to 1.611, highlighting a

new wave of intensified land use driven predominantly by an
accelerated expansion of Built-Up Areas. By this point, built
infrastructure had consumed a significantly larger proportion
of land, while Vegetation reached one of its lowest levels
across the study period. This rapid transformation
underscores increasing population pressure, urban sprawl,
and weak regulatory enforcement in managing land
consumption. The implication here is a substantial loss of
ecosystem services, increased flood risk, and degradation of
environmental quality, especially in areas historically
protected by vegetation buffers and natural drainage
corridors.

By 2025, the LUI reached a peak of 1.722, the highest
recorded across the entire 25-year observation period. Built-
Up Areas had increased more than fourfold compared to the
year 2000, a clear testament to aggressive urbanization and
the growing demand for residential, industrial, and
commercial land. Meanwhile, Vegetation and Wetlands
continued their downward trends, resulting in a highly
modified landscape dominated by impervious surfaces and
reduced ecological functions. This level of land use intensity
implies not only environmental degradation but also social
and economic consequences, such as reduced agricultural
productivity, water scarcity, and heightened vulnerability to
climate-induced hazards.

The steady rise in the LUI from 2000 to 2025 reflects a
transition from a predominantly natural landscape to one
increasingly shaped by human needs. It emphasizes the
necessity for integrated spatial planning, with a focus on
balancing urban growth with environmental conservation. If
unchecked, the current trajectory portends a future where
ecological thresholds may be surpassed, thereby undermining
the long-term sustainability of the region.

3.6 Landscape Prediction to 2040

The prediction of landcover dynamics for Sapele Local
Government Area (LGA) using data between 2000 and 2025
was enhanced using an Artificial Neural Network (ANN)
model implemented via the MOLUSCE plugin in QGIS. This
data-driven modeling approach was chosen for its ability to
learn complex, non-linear spatial patterns in landcover
change from historical data. The ANN was configured with a
neighborhood size of 1 pixel, corresponding to a 3x3 spatial
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window. This setting allowed the model to evaluate local
spatial dependencies and interactions in land transformation.
The learning rate was set at 0.100, providing a balance
between convergence speed and model stability. The network
architecture included 10 hidden neurons, which enabled it to
capture intermediate relationships between inputs and
outputs during training. Training was carried out over a
maximum of 1000 iterations. To improve convergence and
reduce oscillations during training, a momentum value of
0.050 was applied. The performance of the network was
evaluated through internal metrics, which showed a slight
decline in overall accuracy (—0.00778), indicating minor
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fluctuations between training and validation performance.
However, this change did not significantly impact the
model’s predictive reliability.

Most importantly, the ANN achieved a minimum validation
error of 0.02503 and a validation Kappa coefficient of
0.8593. The Kappa value, which measures agreement
between predicted and actual class changes beyond chance,
falls within the range generally considered “very good” in
spatial modeling. This high validation Kappa reinforces the
reliability of the ANN in capturing realistic transition
potentials and underlying spatial dynamics of landcover
change in the study area (figure 13).
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Fig 13: Artificial Neural Network Model Training

3.6.1 Transition Potential Matrix

The resulting transition potential matrix, derived from the
ANN model, quantifies the likelihood of each landcover class
in 2025 being derived from each class in 2000. The rows of
the matrix represent the current (initial) landcover classes,
while the columns represent the potential future classes. Each
value ranges from 0 to 1, with higher values indicating
stronger transition tendencies or class stability.

Built-Up Areas show a high degree of persistence, with a self-
transition value of 0.8095. This indicated that once
developed, urban areas are highly stable and unlikely to
revert to other landcover types. However, there are still
modest probabilities of Built-Up Areas transitioning to Open
Space (0.1024) and Vegetation (0.0864). These transitions
could reflect urban decline, underutilized developments, or
classification ambiguities. The transition potential to
Wetland (0.0017) is extremely low, indicating clear spatial
separation between urban and wetland zones, possibly due to
environmental restrictions or hydrological constraints.

Open Space, on the other hand, exhibits a high tendency to
transition into Built-Up Areas, with a probability of 0.6500.
This highlights the role of Open Space as a primary source
for urban expansion in Sapele LGA. The probability of
transitioning to Vegetation is 0.2659, indicating some degree
of natural regeneration or temporary land abandonment. The
self-transition value for Open Space is relatively low at
0.0812, indicating that Open Space is a transitional or
temporary class, vulnerable to change. Very limited
transitions to Wetlands (0.0030) were recorded, reinforcing
its distinct ecological character.

Vegetation displays a strong level of persistence, with a self-
transition probability of 0.8312, meaning that most vegetated
areas are likely to remain unchanged. However, it is still
susceptible to urban pressure, as indicated by a 13.4%
probability of converting to Built-Up Area. This reflects
ongoing deforestation and conversion of vegetation to
accommodate infrastructure, housing, and agriculture. Minor
transitions to Open Space (0.0248) and Wetland (0.0099)
were also observed, which may result from changes in land
management or seasonal hydrological variation.

Wetland emerges as the most stable landcover class, with a
self-transition value of 0.8655. This high persistence implies
strong ecological resistance to change or the presence of
conservation or zoning policies. However, 12.78% of
Wetland is expected to convert to Vegetation, which could
signal gradual drying, sedimentation, or ecological
succession. Transitions to Built-Up (0.0032) and Open Space
(0.0036) are extremely rare, confirming the isolation or
protected status of wetland zones, see table 7.

Table 7: Landcover/landuse Transition Potential; Matrix

Built Up ArealOpen Space] Vegetation | Wetland

Built Up Area| 0.809537699 |0.102377133/0.0863837440.001701424
Open Space | 0.649971312 |0.081170475/0.2658543990.003003814
Vegetation | 0.13404034 |0.024769483|0.831230012/0.009960164
Wetland | 0.003184543 |0.003585956/0.1277563690.865473132

The transition matrix reveals critical insights into the
dynamics of land transformation in Sapele LGA. Notably, the
ANN model confirms that Built-Up Areas are expanding
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rapidly, with Open Space and Vegetation serving as the most
common precursors to urban development. Open Space, in
particular, functions as a highly transitional class—
frequently targeted for development, yet occasionally
reverting to Vegetation depending on land-use pressures and
ecological processes.

Vegetation, although relatively stable, is under increasing
pressure from built-up expansion, which poses risks to
ecological health, biodiversity, and climate resilience.
Wetlands, while currently stable, show early warning signs
of encroachment and ecological shifts. The transition to
Vegetation implies potential wetland degradation or
hydrological changes, which may undermine the critical
services wetlands provide, such as flood regulation and water
purification.

The high validation accuracy of the ANN model ensures that
these predictions are both reliable and actionable. These
findings offer a valuable decision-support tool for urban
planners, environmental managers, and policymakers aiming
to balance development with ecological sustainability.

3.6.2 Future Landcover Prediction for the Year 2050
Using Artificial Neural Network (ANN)
The prediction of future landcover conditions for Sapele
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Local Government Area (LGA) by the year 2050 was
achieved using an Artificial Neural Network (ANN) model
implemented through the MOLUSCE plugin in QGIS. This
model, which was trained on historical landcover data
between 2000 and 2025, revealed notable spatial
transformations across the major landcover classes: Built-Up
Area, Vegetation, Open Space, and Wetland. The results
offer insights into the likely trajectory of land development
and ecological evolution in the study area over the next
quarter century.

According to the ANN-based projection, Built-Up Areas are
expected to increase significantly to 123.62 kmz2, accounting
for 27.45% of the total land area in Sapele LGA by 2050. This
finding indicates a continued and aggressive expansion of
urban infrastructure, commercial activities, and residential
settlements. The urban footprint, which had already grown
steadily between 2000 and 2025, appears poised to extend
further into peripheral zones. The predicted growth highlights
the persistent influence of population growth, rural-urban
migration, and economic development on land
transformation. If unregulated, this expansion could lead to
environmental degradation, increased surface runoff, heat
island effects, and strain on existing infrastructure, see figure
14,
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Fig 14: Artificial Neural Network Prediction to 2050

In contrast, the model forecasts an unexpected resurgence of
Vegetation, with a projected coverage of 292.74 kmz,
representing 65.00% of the total landscape. This outcome
deviates from previous historical trends in which vegetation
declined sharply between 2005 and 2025. The projection
reflects the natural regeneration of abandoned farmlands or
settlements. Nevertheless, the implication of a vegetated

landscape dominating over two-thirds of the LGA is both
ecologically encouraging and strategically important. It
indicated an opportunity to restore ecological balance,
improve biodiversity habitats, mitigate climate change
impacts through carbon sequestration, and enhance
environmental sustainability in the face of expanding urban
development.
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Another important component of the future landcover
structure is Wetland, which is projected to occupy 33.01 kmz,
amounting to 7.33% of the total area. This is relatively stable
when compared to the 2025 estimate and indicates that
wetland areas will retain their extent due to natural resilience
or protective land-use regulations. Wetlands provide critical
ecosystem services such as flood control, groundwater
recharge, and biodiversity support. Therefore, their continued
presence in 2050, albeit modest, will be vital for maintaining
hydrological integrity and landscape functionality in Sapele.
The most concerning projection is the near disappearance of
Open Space, which is expected to decline drastically to only
0.974 kmz2, making up a negligible 0.22% of the LGA. This
loss represents the near-total conversion of undeveloped land
to either built-up or vegetated areas. Historically, open spaces
have served as transition zones or buffers between land uses,
offering flexibility for infrastructure development,
agriculture, recreational areas, or ecological corridors. Their
projected elimination signals a future in which the landscape
becomes highly polarized—dominated by either urban or
vegetative cover with minimal room for flexible or low-
impact uses. This could undermine spatial equity, reduce
urban livability, and eliminate opportunities for future
adaptive land use.

Taken together, the ANN model's prediction for 2050 paints
a landscape that is more developed, greener in certain zones,
and highly organized along functional lines. The expansion
of Built-Up Areas and Vegetation indicated a dual narrative
of human advancement and potential environmental
restoration, while the minimal footprint of Open Space
reflects intensified land-use competition. The results
emphasize the need for proactive land-use planning,
integrated green infrastructure development, and stringent
regulatory mechanisms to guide urban expansion and
preserve critical ecological zones.

4. Conclusion

The results of this study confirm that Sapele LGA has
undergone significant landcover change between 2000 and
2025, driven predominantly by the expansion of built-up
areas. This urban growth has come at the cost of vegetative
cover and open space, with wetlands remaining relatively
stable but vulnerable. The directional analysis confirmed that
these changes are not random but follow a dominant North-
Northeast progression, suggesting structured urban sprawl
along major developmental corridors.

The consistent rise in land use intensity, as captured by the
LUI index, signifies increasing pressure on the environment,
infrastructure, and land resources. While the ANN prediction
for 2050 suggests a possible recovery of vegetation, the
almost total loss of open space and continued urban
expansion signal future challenges related to urban livability,
spatial equity, and ecological sustainability.

This study makes several important contributions to the
existing body of knowledge in landcover dynamics, urban
geography, and geospatial analysis. First, it demonstrates the
utility of Gradient Direction Analysis as a novel tool in
detecting both the magnitude and orientation of landscape
changes—an aspect often overlooked in traditional landcover
change studies. Second, the application of the Land Use
Intensity Index (LUI) introduces a quantitative perspective on
the degree of anthropogenic transformation, offering a
valuable metric for environmental impact assessment.
Additionally, the integration of Artificial Neural Network
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(ANN) modeling within the MOLUSCE plugin in QGIS for
transition potential mapping and prediction introduces an
effective framework for spatial forecasting. The use of high-
performing ANN parameters, coupled with a strong
validation kappa (0.8593), confirms the robustness of
machine learning for landcover simulation in data-scarce
environments. Lastly, the prediction to 2050 offers empirical
insights for long-term planning and supports adaptive policy
formulation by urban and environmental management
agencies.
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