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Abstract 

The landscape of Sapele LGA, is currently in the throes of transformative changes 

propelled by an amalgamation of factors, including rapid population growth, 

industrialization, and the ongoing expansion of urban areas. Despite the discernible 

evolution taking place, a noticeable void exists in our comprehensive understanding 

of the intricate spatio-temporal dynamics underpinning these urban development 

processes within Sapele LGA. Hence this study is aimed at a Spatio-temporal analysis 

of landcover/landuse dynamics in Sapele LGA, using gradient direction analysis and 

artificial neural network with the view of providing a framework for sustainable 

development. The objectives are to: investigate the spatial pattern of 

landcover/landuse in Sapele LGA over the last 25 years (2000 – 2025) using gradient 

direction analysis; ascertain the trend of the landcover/landuse dynamics over the last 

25 years; determine the Landuse Intensity across Sapele LGA over the last 25 years. 

and predict the future landcover/landuse dynamics of Sapele LGA in 2040 using 

artificial neural network. A multi-temporal and multi-sensor approach was adopted to 

analyze landcover and landuse dynamics in Sapele Local Government Area between 

2000 and 2025. Satellite imagery from Landsat 5, Landsat 7 ETM+, Landsat 8 OLI, 

and Sentinel-2 were used alongside ground control data for classification and accuracy 

validation. Supervised classification was conducted using the Random Forest 

algorithm in QGIS, while change detection, land use intensity analysis, and directional 

transition trends were assessed using post-classification comparison, gradient 

direction analysis, and land use intensity index computations. Future landcover 

prediction to the year 2050 was carried out using an Artificial Neural Network (ANN) 

model in the MOLUSCE plugin. The results revealed a significant increase in Built-

Up Area from 18.78 km² in 2000 to 82.05 km² in 2025, while Open Space and 

Vegetation declined substantially. The Land Use Intensity Index rose from 1.334 in 

2000 to 1.722 in 2025, indicating increasing anthropogenic pressure. Gradient 

direction analysis showed a consistent north-northeastward orientation of landcover 

change, aligning with urban expansion corridors. The ANN model predicted further 

transformation by 2050, projecting Built-Up Area to reach 123.62 km² and Open 

Space to reduce to less than 1 km². The findings of this study are recommended as a 

decision-support framework for guiding landcover and landuse management strategies 

within Sapele Local Government Area.
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1. Introduction 

Landcover and landuse change (LULCC) has become one of the most critical indicators of anthropogenic impact on the 

environment, especially in rapidly urbanizing regions across the Global South. 
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These changes not only reflect shifts in socio-economic and 

political processes but also represent fundamental 

transformations of the Earth’s surface with far-reaching 

consequences for ecological integrity, climate regulation, and 

sustainable development (Lambin et al., 2003; Foley et al., 

2005) [6, 4]. The dynamic interaction between human 

settlements, agricultural expansion, deforestation, and 

infrastructural development contributes significantly to land 

transformation patterns observed globally (Turner et al., 

2007) [12]. 

In Nigeria, landcover change has accelerated significantly 

over the past two decades, fueled by population growth, 

industrialization, and weak enforcement of land use policies 

(Ndukwu & Achi, 2018) [8]. Sapele Local Government Area 

(LGA) in Delta State serves as a microcosm of these broader 

transformations, with its rapidly changing landscape 

influenced by urban expansion, timber processing, oil-related 

activities, and agricultural encroachment. The area’s unique 

location in the Niger Delta, coupled with its industrial 

significance, makes it particularly susceptible to landcover 

transitions that can compromise ecosystem services, reduce 

biodiversity, and intensify flood vulnerability (Abua & Ekpo, 

2015; Dike et al., 2018) [1, 3]. 

Detecting, quantifying, and modeling these changes is 

essential for effective land management, spatial planning, and 

environmental monitoring. Traditional techniques of change 

detection, such as pixel-based classification and image 

differencing, while useful, often fail to adequately model the 

complex, non-linear patterns of land transformation over time 

(Singh, 1989) [10]. As such, the adoption of Artificial Neural 

Networks (ANNs) for LULC modeling has gained traction 

due to their ability to learn from historical transitions, 

integrate multiple driving factors, and simulate future 

scenarios with high spatial and temporal resolution (Al-sharif 

& Pradhan, 2014; Tayyebi et al., 2011) [2, 11]. 

ANNs, inspired by the structure of biological neurons, are 

well-suited for landuse modeling because they can model 

spatial processes that are both stochastic and deterministic in 

nature (Pijanowski et al., 2002) [9]. By training the network 

with historical landcover data and relevant driving factors—

such as elevation, proximity to roads, and existing urban 

zones—ANNs can predict the probability of transition from 

one landcover class to another (Li & Yeh, 2002) [7]. This 

capability has proven valuable for land managers and urban 

planners seeking to anticipate urban sprawl, manage 

agricultural resources, and conserve sensitive ecosystems. 

In the context of Sapele LGA, there is a growing need for 

predictive modeling that captures not only the historical 

evolution of landuse but also forecasts its future state under a 

“business-as-usual” scenario. The integration of remote 

sensing data from platforms such as Landsat and Sentinel 

with machine learning models like ANN provides an 

efficient, scalable, and reproducible approach for such 

modeling (Guan et al., 2011) [5]. This study thus aims to 

develop an ANN-based model to analyze historical landcover 

change in Sapele LGA between 2000 and 2025 and to 

simulate its possible configuration by 2050. Understanding 

these trends is essential not only for academic purposes but 

also for policy formulation, disaster risk reduction, and 

environmental impact assessment in an increasingly 

urbanized and ecologically fragile region. By deploying 

intelligent modeling techniques, this research contributes to 

the growing body of knowledge on spatial transformation and 

offers a decision-support tool for sustainable land 

governance. 

 

2. Materials and Methods 

2.1 Study Area Description 

The study was conducted in Sapele Local Government Area 

(LGA), situated in the southwestern part of Delta State, 

Nigeria. Geographically, Sapele LGA lies within latitudes 

5°50′N to 5°59′N and longitudes 5°40′E to 5°52′E. The area 

covers an approximate landmass of 580 square kilometers 

and is characterized by a tropical rainforest climate with two 

distinct seasons—rainy and dry. The mean annual rainfall 

exceeds 2,500 mm, while the average temperature hovers 

around 27°C. Topographically, the region is relatively flat, 

with low-lying plains that make it susceptible to flooding and 

land use conflicts. Its strategic location along the Benin River 

and its proximity to Warri port and industrial hubs make it a 

significant center of economic and industrial activities in 

Delta State. These anthropogenic pressures have influenced 

the transformation of landcover and landuse over time. 

 

2.2 Data Sources and Satellite Imagery 

To assess the spatio-temporal dynamics of landcover/landuse 

(LULC) in Sapele LGA, a multi-temporal and multi-sensor 

approach was adopted. Satellite images used in this study 

include Landsat 5 Thematic Mapper (TM) for the year 2000 

and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) for 

the year 2005. These images were selected due to their spatial 

resolution of 30 meters and the consistency of the temporal 

coverage over the study period. All images were acquired 

from the United States Geological Survey (USGS) 

EarthExplorer portal, which provides pre-processed Level-1 

terrain-corrected products. Only images with minimal cloud 

cover (<10%) and acquired within the same season 

(preferably dry season) were selected to ensure 

comparability. 

 

2.3 Image Preprocessing 

Image preprocessing is essential to enhance image quality 

and improve classification accuracy. The Landsat images 

were subjected to both radiometric and atmospheric 

corrections using the Semi-Automatic Classification Plugin 

(SCP) in QGIS 3.28. Radiometric correction was carried out 

to convert digital numbers (DN) into top-of-atmosphere 

reflectance values, thereby minimizing the influence of 

sensor calibration errors. Atmospheric correction was applied 

using the Dark Object Subtraction (DOS) method to remove 

haze and scattering effects. The images were also clipped to 

the Sapele LGA boundary using the administrative shapefile 

obtained from the Office of the Surveyor General of the 

Federation (OSGOF). 

 

2.4 Training Sample Collection and Classification 

Landcover/landuse classification was performed using a 

supervised classification method. Training samples 

representing five major classes—Built-up Area, Vegetation, 

Waterbody, Open Land, and Wetland—were generated based 

on field observations, historical land records, and high-

resolution reference data from Google Earth. These samples 

were used to train a machine learning classifier using the 

Random Forest algorithm, which has been proven to provide 

high classification accuracy and robustness to noisy data. The 

classification was conducted within the SCP environment in 

QGIS, with 70% of the samples used for training and 30% 

reserved for accuracy assessment. 
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2.5 Accuracy Assessment 

After classification, accuracy assessment was conducted 

using a confusion matrix generated by comparing the 

classified results with independent validation data. Overall 

accuracy, producer’s accuracy, user’s accuracy, and the 

kappa coefficient were calculated. The overall accuracy for 

2000 and 2005 images were 88.3% and 91.2%, respectively, 

with kappa coefficients exceeding 0.80, indicating strong 

agreement between classified maps and reference data. 

 

2.6 Change Detection Analysis 

Post-classification comparison was used to evaluate 

landcover/landuse changes between 2000 and 2005. This 

method involves overlaying classified images from two time 

periods to generate a change matrix, which quantifies gains 

and losses in each LULC category. The analysis enabled the 

detection of specific transitions, such as vegetation-to-built-

up or wetland-to-open land, which are critical in 

understanding the magnitude and direction of land 

transformation. 
To further evaluate human-induced change, the Land Use 
Intensity Index (LUI) was calculated using the formula: 
 

LUI =
Number of changed pixels

Total number of pixels
× 100 

 
The index measures the proportion of land experiencing 
transitions within the study period, thereby reflecting the 
degree of anthropogenic pressure on the landscape. 
 
2.7 Gradient Direction Analysis 
To determine the spatial orientation and pattern of 
landcover/landuse transitions, gradient direction analysis was 
carried out. This analysis used centroid displacement and 
vector analysis techniques to trace the movement of land use 
changes from 2000 to 2005. Specifically, the spatial centroid 
of each landcover class was calculated for both years, and the 
vector displacement between centroids was used to determine 
the direction and magnitude of change. The resulting vectors 
were classified into eight directional zones: North, Northeast, 
East, Southeast, South, Southwest, West, and Northwest. The 
dominant direction of expansion was identified and 
visualized using rose diagrams and vector field overlays in 
QGIS. 
Gradient direction analysis is particularly useful in 
identifying urban sprawl corridors and environmental stress 
zones, especially in rapidly urbanizing regions like Sapele 
LGA. This method allowed the study to uncover whether land 
development was biased toward industrial corridors, riverine 
areas, or transportation nodes. 
 
2.8 Artificial Neural Network (ANN) Simulation 
In order to forecast future landcover and landuse (LULC) 
conditions in Sapele Local Government Area, an Artificial 
Neural Network (ANN)-based simulation was carried out 
using the MOLUSCE (Modules for Land Use Change 
Evaluation) plugin integrated within QGIS 3.28. The aim of 
this simulation was to generate a predictive landcover map 
for the year 2050 by leveraging observed historical landcover 
transitions from the years 2000 through 2025. The ANN 
model was chosen due to its proven ability to capture 
complex non-linear relationships among spatial variables and 
to learn generalized transition patterns from temporal data 
without relying on rigid statistical assumptions. 
The input data used for the ANN model included a series of 

classified landcover maps for the years 2000, 2005, 2010, 
2015, 2020, and 2025. Additionally, change detection layers 
were generated to represent the transition probabilities 
between LULC classes. These layers were complemented by 
explanatory driving variables, which were derived from 
spatial analysis and included factors such as elevation data 
from the Shuttle Radar Topography Mission (SRTM), 
distance to roads, proximity to water bodies, and the spatial 
proximity to existing built-up areas. All raster datasets were 
projected to a common spatial reference system (WGS 84 / 
UTM Zone 31N) and resampled to ensure consistent 
resolution across layers. 
Training of the ANN model was conducted using the Multi-
Layer Perceptron (MLP) architecture, where the network 
learns by adjusting connection weights through 
backpropagation. A portion of the available dataset (70%) 
was used for training, while the remaining 30% was set aside 
for model validation. The ANN model iteratively minimized 
the prediction error between observed and predicted LULC 
transitions, allowing it to identify spatial rules associated with 
land changes, such as vegetation loss to urban expansion and 
conversion of open lands to built-up zones. 
Once the model was adequately trained, it was used to 
simulate the landcover configuration for the year 2050. This 
simulation followed a "business-as-usual" scenario, 
assuming that current trends in land transformation would 
continue without any significant policy intervention. The 
result was a classified raster map representing the predicted 
spatial distribution of landcover classes in 2050, as well as a 
transition probability surface showing the likelihood of 
individual pixels undergoing specific class changes. 

The ANN simulation revealed areas with high probability of 

urban encroachment, projected expansion corridors, and 

zones where natural vegetation may potentially recover due 

to reduced development intensity. These spatially explicit 

projections are instrumental for decision-makers in urban 

planning, environmental management, and infrastructure 

development. They offer valuable insight into future land 

consumption patterns, inform sustainable land allocation, and 

assist in identifying ecologically sensitive areas that may 

require conservation efforts. The use of ANN modeling 

within this context demonstrates the utility of intelligent 

predictive tools in supporting forward-looking spatial 

planning and environmental stewardship. 

. 

3. Results  

3.1 Landcover/Landuse Class Distribution (2000–2025) 

An assessment of the landcover/landuse statistics across the 

study period further highlighted the profound transformations 

that occurred between 2000 and 2025. The landcover classes 

considered include Built-Up Area, Vegetation, Open Space, 

and Wetland. 

In the year 2000, Open Space was the most dominant 

landcover class, covering approximately 371.503 km² or 

82.47% of the total area. Vegetation accounted for 26.327 

km² (5.84%), Wetlands covered 33.824 km² (7.51%), while 

Built-Up Areas were relatively limited, covering only 18.780 

km² (4.17%), see table 1 and figure 1. 

 
Table 1: Landcover/landuse Distribution for Sapele LGA in 2000 

 

S/N Class (Year 2000) Area (Km2) Percentage 

1 Built Up Area 18.780 4.17 

2 Vegetation 26.327 5.84 

3 Open Space 371.503 82.47 

4 Wetland 33.824 7.51 
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Fig 1: Landcover/landuse Map of Sapele 2000 

 

By 2005, there was a notable expansion in Built-Up Area, 

which increased to 29.924 km² (6.64%), while Vegetation 

expanded significantly to 68.328 km² (15.17%). However, 

Open Space decreased to 323.050 km² (71.72%), indicating 

land consumption for built-up purposes. Wetland areas 

slightly reduced to 29.132 km² (6.47%), see table 2 and 2. 

 

Table 2: Landcover/landuse Distribution for Sapele LGA in 2005 
 

S/N Class (Year 2005) Area (Km2) Percentage 

1 Built Up Area 29.924 6.64 

2 Vegetation 68.328 15.17 

3 Open Space 323.050 71.72 

4 Wetland 29.132 6.47 

 
 

Fig 2: Landcover/landuse Map of Sapele 2005 

 

The trend continued into 2010, with Built-Up Area increasing 

further to 41.513 km² (9.22%), while Vegetation dramatically 

decreased to 27.004 km² (5.99%). Open Space slightly 

rebounded to 337.731 km² (74.97%), possibly due to 

reclassification or temporal land abandonment, while 

Wetland coverage rose to 44.183 km² (9.80%), indicating 

localized wetland expansions, see table 3 and figure 3. 

Table 3: Landcover/landuse Distribution for Sapele LGA in 2010 
 

S/N Class (Year 2010) Area (Km2) Percentage 

1 Built Up Area 41.513 9.22 

2 Vegetation 27.004 5.99 

3 Open Space 337.731 74.97 

4 Wetland 44.183 9.80 
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Fig 3: Landcover/landuse Map of Sapele 2005 

 

In 2015, Built-Up Area slightly increased to 43.470 km² 

(9.65%), while Vegetation continued its downward trend, 

reducing to 15.726 km² (3.49%). Open Space expanded to 

352.029 km² (78.15%), while Wetland areas declined 

marginally to 39.211 km² (8.70%), see table 4 and figure 4. 

 

Table 4: Landcover/landuse Distribution for Sapele LGA in 2015 
 

S/N Class (Year 2015) Area (Km2) Percentage 

1 Built Up Area 43.470 9.65 

2 Vegetation 15.726 3.49 

3 Open Space 352.029 78.15 

4 Wetland 39.211 8.70 

 
 

Fig 4: Landcover/landuse Map of Sapele 2015 

 

By 2020, Built-Up Areas experienced substantial growth, 

reaching 58.726 km² (13.04%), reflecting intensified 

urbanization. Vegetation decreased further to 13.772 km² 

(3.06%), while Open Space contracted to 335.245 km² 

(74.43%), and Wetland slightly expanded to 42.675 km² 

(9.47%). See table 5 and figure 5. 

 

Table 5: Landcover/landuse Distribution for Sapele LGA in 2020 
 

S/N Class (Year 2020) Area (Km2) Percentage 

1 Built Up Area 58.726 13.04 

2 Vegetation 13.772 3.06 

3 Open Space 335.245 74.43 

4 Wetland 42.675 9.47 
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Fig 5: Landcover/landuse Map of Sapele 2020 

 

In 2025, Built-Up Area occupied approximately 82.046 km² 

(18.21%), signifying a near five-fold increase from the 

baseline year 2000. Vegetation remained critically low at 

13.382 km² (2.97%), highlighting significant landscape 

alteration. Open Space decreased further to 322.079 km² 

(71.49%), while Wetland areas declined to 32.971 km² 

(7.32%), see table 4.6, figure 6 and 7. 

Table 6: Landcover/landuse Distribution for Sapele LGA in 2025 
 

S/N Class (Year 2025) Area (Km2) Percentage 

1 Built Up Area 82.046 18.21 

2 Vegetation 13.382 2.97 

3 Open Space 322.079 71.49 

4 Wetland 32.971 7.32 

 

 
 

Fig 6: Landcover/landuse Map of Sapele 2025 
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Fig 7: Trend of Landcover/Landuse Distribution in Sapele LGA (2000 -2025) 

 

3.2 Spatial Pattern of Landcover/Landuse Dynamics 

(2000–2025) Based on Gradient Direction Analysis 

The spatial analysis of landcover/landuse dynamics in Sapele 

LGA between 2000 and 2025 was undertaken using Gradient 

Direction Analysis. This approach provided valuable insight 

into the intensity and directional trends of landcover 

transitions over the 25-year period, see figure 8. 

 

 
 

Fig 8: Mean Gradient Magnitude of Landcover Transitions in Sapele LGA (2000 -2025) 

 

The Mean Gradient Magnitude, which represents the spatial 

intensity of landcover transitions, exhibited a dynamic trend 

over the study period. In 2000, the mean gradient magnitude 

was recorded at 0.108, indicating moderate spatial changes 

primarily associated with natural landcover types. A 

noticeable increase occurred in 2005, with the mean 

magnitude rising to 0.141, indicating intensification of 

landcover transitions, likely linked to the onset of 

urbanization activities. This trend continued into 2010, where 

the mean magnitude peaked at 0.165, implying a period of 

rapid urban expansion and landscape transformation. 

However, by 2015, a temporary decline was observed, with 

the mean magnitude decreasing to 0.103, indicating a brief 

slowdown or stabilization in spatial transitions. This 

deceleration was short-lived, as 2020 experienced a 

resurgence in landcover changes, with the mean gradient 

magnitude rising again to 0.139, and further increasing to 

0.164 by 2025, reaffirming the ongoing intensification of 

urban and infrastructural developments. 

Throughout the period, the Maximum Gradient Magnitude 

remained consistently high at 13.416, across all years 

analyzed. This consistency indicated the presence of 

localized areas undergoing intense landcover changes, 

potentially corresponding to newly developing urban fringes 

and zones of active wetland modification. 

Analysis of the Mean Gradient Direction (figure 9), revealed 

a consistent north-north-eastward orientation of landcover 

transitions across all years. In 2000, the mean direction was 

approximately 14.85°, which shifted slightly to 24.17° by 

2005. A moderate adjustment occurred in 2010, with the 

mean direction at 21.63°, followed by a more northward 

orientation of 11.54° in 2015. By 2020, the mean direction 

had settled at 15.99°, and slightly adjusted to 19.71° by 2025. 

These findings confirm that the dominant spatial progression 
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of landcover transitions, particularly urbanization, was 

consistently oriented towards the North-Northeast quadrant 

of the study area. 

 

 
 

Fig 9: Mean Gradient Direction and Variability of Landcover 

Transitions in Sapele LGA (2000 -2025) 

 

Furthermore, the Standard Deviation of Gradient Direction, 

which represents the variability of transition directions, 

fluctuated during the study period. A relatively higher 

variability was recorded in 2005 (69.31°) and 2010 (65.89°), 

indicating spatial changes occurring in multiple directions. 

This variability reduced to 49.40° by 2015, indicating a more 

focused and organized land development trend. However, 

moderate increases in variability were observed again in 2020 

(57.46°) and 2025 (62.96°), indicating the emergence of new 

transition directions possibly associated with expanded urban 

and infrastructural activities in newly developing areas. 

In general, the Gradient Direction Analysis demonstrates that 

landcover transitions in Sapele LGA were neither random nor 

isotropic but exhibited a consistent spatial progression 

towards the North-Northeast, with increasing intensity over 

time. This pattern reflects the combined effects of urban 

expansion, infrastructural developments, and associated land 

transformation processes within the LGA. 

 

3.3 Change Detection Between 2000 and 2025 

The landcover and landuse pattern in Sapele Local 

Government Area between 2000 and 2025 underwent 

significant transformations across the major classes: Built-Up 

Area, Vegetation, Open Space, and Wetland (figure 10). 

 

 
 

Fig 10: Landcover/Landuse Area Changes in Sapele LGA (2000 -2025) 

 

Between 2000 and 2005, Built-Up Areas experienced a 

substantial increase of 11.144 km², indicating a strong onset 

of urbanization. Vegetation also recorded an exceptional gain 

of 42.001 km² within the same period, which may be 

attributed to reforestation efforts, classification adjustments, 

or temporary land-use recovery. Meanwhile, Open Space 

declined by 48.453 km², marking a major loss of undeveloped 

land, while Wetland areas reduced by 4.692 km², pointing to 

the early stages of wetland degradation. During the period 

2005 to 2010, the Built-Up Area continued to expand, gaining 

11.589 km². However, Vegetation suffered a sharp decline, 

losing 41.324 km². This significant vegetation loss points to 

widespread deforestation and land clearing activities linked 

to urban growth and agricultural expansion. Conversely, 

Open Space slightly increased by 14.681 km², and Wetlands 

expanded markedly by 15.051 km², indicating hydrological 

restoration or improved wetland delineation. 

The landcover changes from 2010 to 2015 showed a relative 

slowdown in urban expansion, with Built-Up Areas 

increasing by only 1.957 km². Vegetation continued its 

downward trend, declining by 11.278 km², while Open Space 

increased by 14.298 km², possibly as a result of abandoned or 

cleared land not yet developed. Wetland areas, however, 

experienced a modest loss of 4.972 km². Between 2015 and 

2020, urban development regained momentum as Built-Up 

Areas expanded significantly by 15.256 km². Vegetation loss 

persisted, albeit at a slower rate, with a reduction of 1.954 

km². Open Space decreased by 16.784 km², signaling 

intensifying land pressures, while Wetlands exhibited a slight 

gain of 3.464 km², indicating localized restoration efforts or 
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seasonal wetland dynamics. 

Finally, from 2020 to 2025, Built-Up Areas experienced their 

highest expansion over the entire study period, with an 

increase of 23.320 km². Vegetation loss slowed substantially, 

recording a marginal decline of 0.390 km². Open Space 

reduced further by 13.166 km², while Wetlands suffered a 

substantial decrease of 9.704 km², reinforcing concerns over 

wetland vulnerability in the face of expanding urbanization. 

Overall, the period from 2000 to 2025 highlights a clear trend 

of urban expansion, steady vegetation depletion, gradual 

open space reduction, and unstable wetland dynamics across 

Sapele LGA. 

 

3.4 Trend and Annual Rate of Landcover Change within 

Sapele LGA between 2000 and 2025 

The analysis of the rate of landcover change between 2000 

and 2025 reveals varied dynamics across different periods, 

reflecting fluctuating landuse pressures and environmental 

responses (figure 11). 

 

 
 

Fig 11: Landcover/Landuse Changes Rates in Sapele LGA (2000 -2025) 

 

From 2000 to 2005, the Built-Up Area grew by 59.34%, at an 

annual rate of 11.87%, signaling an early rapid phase of urban 

expansion. During the same period, Vegetation increased 

remarkably by 159.54% (an annual rate of 31.91%), while 

Open Space declined moderately by -13.04% (annual rate of 

-2.61%) and Wetland reduced by -13.87% (annual rate of -

2.77%). Between 2005 and 2010, urban expansion continued, 

with Built-Up Areas growing by 38.73% (annual 7.75%). 

However, this period witnessed a drastic loss of Vegetation, 

which declined by -60.48% at an alarming annual rate of -

12.10%. Open Space slightly increased by 4.54%, while 

Wetland areas recovered impressively, growing by 51.66% 

(annual 10.33%). 

During 2010 to 2015, the rate of Built-Up Area growth 

slowed significantly to 4.71% (annual rate 0.94%), indicating 

a temporary stabilization. Vegetation continued its sharp 

decline, reducing by -41.76% (annual rate -8.35%), while 

Open Space experienced a modest rise of 4.23%. Wetlands, 

however, declined by -11.25%, indicating environmental 

stress. The period 2015 to 2020 marked a renewed surge in 

urbanization, with Built-Up Areas increasing by 35.10% 

(annual 7.02%). Vegetation loss slowed to -12.43% (annual -

2.49%), and Open Space reduced slightly by -4.77%. 

Wetland areas grew by 8.83%, indicating some positive 

hydrological conditions or management interventions. 

Finally, from 2020 to 2025, Built-Up Areas recorded a strong 

expansion rate of 39.71% (annual 7.94%), whereas 

Vegetation showed a minimal loss of -2.83% (annual -

0.57%), indicating a nearing saturation of buildable land. 

Open Space declined by -3.93%, while Wetlands suffered a 

significant reduction of -22.74% (annual -4.55%), 

highlighting continued environmental vulnerability. 

In summary, the period from 2000 to 2025 in Sapele LGA 

has been characterized by consistent Built-Up Area 

expansion, fluctuating Vegetation dynamics, progressive loss 

of Open Space, and episodic but overall declining Wetland 

coverage, with varying rates across different intervals. 

 

3.5 Land Use Intensity Index (LUI) Analysis (2000–2025) 

The Land Use Intensity Index (LUI) provides a 

comprehensive indicator for evaluating the degree to which 

land is utilized based on the anthropogenic pressure 

associated with various landcover classes. This index is 

particularly useful in tracking the transformation of natural 

landscapes into built environments, thereby offering a lens 

through which spatial planners and environmental analysts 

can assess developmental dynamics. For this study, weights 

were assigned to landcover categories based on their assumed 

intensity of use: Built-Up Areas (4), Wetland (3), Vegetation 

(2), and Open Space (1). These weights reflect the degree of 

environmental alteration and human influence associated 

with each category, where higher weights indicate more 

intense use (figure 12). 

 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    302 | P a g e  

 

 
 

Fig 12: Landcover/Landuse Intensity Index (2000 -2025) 

 

In the year 2000, Sapele LGA exhibited a relatively low land 

use intensity, with an LUI value of 1.334. At this time, the 

landscape was dominated by Open Space, accounting for 

over 80% of the area, while Built-Up Areas occupied only a 

small fraction. This configuration signified a largely 

undeveloped terrain with extensive ecological coverage, 

minimal urban encroachment, and relatively low 

environmental stress. The low LUI at this point in time 

indicated a landscape that still retained its natural buffering 

capacity and biodiversity functions. 

By 2005, the LUI had increased to 1.480, reflecting the early 

stages of intensifying land use. This shift was driven largely 

by a noticeable increase in Built-Up Areas and a surge in 

vegetative cover, the latter possibly due to improved 

classification or actual landscape regeneration. The increase 

in land use intensity indicated the commencement of urban 

expansion, infrastructure development, and possibly 

agricultural activities. Though the ecological balance was not 

yet critically affected, the upward trend in LUI indicated that 

human-induced changes were beginning to take root more 

aggressively. 

In 2010, the LUI continued its ascent to 1.533, fueled by 

continued growth in urban areas and a corresponding decline 

in vegetation. Wetlands, however, experienced an 

unexpected increase, which may have resulted from seasonal 

hydrological shifts or improved remote sensing detection. 

Despite the fluctuating ecological categories, the persistence 

of upward pressure on Built-Up Area expansion marked a 

steady shift towards a more anthropogenically influenced 

landscape. This period represented a transition phase where 

development began to encroach more visibly on vegetated 

and open spaces. 

The year 2015 showed a slight moderation in LUI growth, 

reaching 1.499. While Built-Up Areas continued to increase, 

the pace slowed marginally, possibly due to temporary 

stagnation in urban infrastructure projects or localized land 

policy interventions. Vegetation continued to decline, as did 

Wetlands, indicating a reduction in the ecological resilience 

of the region. The persistence of high intensity despite slower 

development points to a scenario where cumulative effects of 

land transformation outweighed the gains from any 

environmental preservation measures. 

In 2020, the LUI index rose sharply to 1.611, highlighting a 

new wave of intensified land use driven predominantly by an 

accelerated expansion of Built-Up Areas. By this point, built 

infrastructure had consumed a significantly larger proportion 

of land, while Vegetation reached one of its lowest levels 

across the study period. This rapid transformation 

underscores increasing population pressure, urban sprawl, 

and weak regulatory enforcement in managing land 

consumption. The implication here is a substantial loss of 

ecosystem services, increased flood risk, and degradation of 

environmental quality, especially in areas historically 

protected by vegetation buffers and natural drainage 

corridors. 

By 2025, the LUI reached a peak of 1.722, the highest 

recorded across the entire 25-year observation period. Built-

Up Areas had increased more than fourfold compared to the 

year 2000, a clear testament to aggressive urbanization and 

the growing demand for residential, industrial, and 

commercial land. Meanwhile, Vegetation and Wetlands 

continued their downward trends, resulting in a highly 

modified landscape dominated by impervious surfaces and 

reduced ecological functions. This level of land use intensity 

implies not only environmental degradation but also social 

and economic consequences, such as reduced agricultural 

productivity, water scarcity, and heightened vulnerability to 

climate-induced hazards. 

The steady rise in the LUI from 2000 to 2025 reflects a 

transition from a predominantly natural landscape to one 

increasingly shaped by human needs. It emphasizes the 

necessity for integrated spatial planning, with a focus on 

balancing urban growth with environmental conservation. If 

unchecked, the current trajectory portends a future where 

ecological thresholds may be surpassed, thereby undermining 

the long-term sustainability of the region. 

 

3.6 Landscape Prediction to 2040 

The prediction of landcover dynamics for Sapele Local 

Government Area (LGA) using data between 2000 and 2025 

was enhanced using an Artificial Neural Network (ANN) 

model implemented via the MOLUSCE plugin in QGIS. This 

data-driven modeling approach was chosen for its ability to 

learn complex, non-linear spatial patterns in landcover 

change from historical data. The ANN was configured with a 

neighborhood size of 1 pixel, corresponding to a 3x3 spatial 
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window. This setting allowed the model to evaluate local 

spatial dependencies and interactions in land transformation. 

The learning rate was set at 0.100, providing a balance 

between convergence speed and model stability. The network 

architecture included 10 hidden neurons, which enabled it to 

capture intermediate relationships between inputs and 

outputs during training. Training was carried out over a 

maximum of 1000 iterations. To improve convergence and 

reduce oscillations during training, a momentum value of 

0.050 was applied. The performance of the network was 

evaluated through internal metrics, which showed a slight 

decline in overall accuracy (−0.00778), indicating minor 

fluctuations between training and validation performance. 

However, this change did not significantly impact the 

model’s predictive reliability. 

Most importantly, the ANN achieved a minimum validation 

error of 0.02503 and a validation Kappa coefficient of 

0.8593. The Kappa value, which measures agreement 

between predicted and actual class changes beyond chance, 

falls within the range generally considered “very good” in 

spatial modeling. This high validation Kappa reinforces the 

reliability of the ANN in capturing realistic transition 

potentials and underlying spatial dynamics of landcover 

change in the study area (figure 13). 

 

 
 

Fig 13: Artificial Neural Network Model Training 

 

3.6.1 Transition Potential Matrix 

The resulting transition potential matrix, derived from the 

ANN model, quantifies the likelihood of each landcover class 

in 2025 being derived from each class in 2000. The rows of 

the matrix represent the current (initial) landcover classes, 

while the columns represent the potential future classes. Each 

value ranges from 0 to 1, with higher values indicating 

stronger transition tendencies or class stability. 

Built-Up Areas show a high degree of persistence, with a self-

transition value of 0.8095. This indicated that once 

developed, urban areas are highly stable and unlikely to 

revert to other landcover types. However, there are still 

modest probabilities of Built-Up Areas transitioning to Open 

Space (0.1024) and Vegetation (0.0864). These transitions 

could reflect urban decline, underutilized developments, or 

classification ambiguities. The transition potential to 

Wetland (0.0017) is extremely low, indicating clear spatial 

separation between urban and wetland zones, possibly due to 

environmental restrictions or hydrological constraints. 

Open Space, on the other hand, exhibits a high tendency to 

transition into Built-Up Areas, with a probability of 0.6500. 

This highlights the role of Open Space as a primary source 

for urban expansion in Sapele LGA. The probability of 

transitioning to Vegetation is 0.2659, indicating some degree 

of natural regeneration or temporary land abandonment. The 

self-transition value for Open Space is relatively low at 

0.0812, indicating that Open Space is a transitional or 

temporary class, vulnerable to change. Very limited 

transitions to Wetlands (0.0030) were recorded, reinforcing 

its distinct ecological character. 

Vegetation displays a strong level of persistence, with a self-

transition probability of 0.8312, meaning that most vegetated 

areas are likely to remain unchanged. However, it is still 

susceptible to urban pressure, as indicated by a 13.4% 

probability of converting to Built-Up Area. This reflects 

ongoing deforestation and conversion of vegetation to 

accommodate infrastructure, housing, and agriculture. Minor 

transitions to Open Space (0.0248) and Wetland (0.0099) 

were also observed, which may result from changes in land 

management or seasonal hydrological variation. 

Wetland emerges as the most stable landcover class, with a 

self-transition value of 0.8655. This high persistence implies 

strong ecological resistance to change or the presence of 

conservation or zoning policies. However, 12.78% of 

Wetland is expected to convert to Vegetation, which could 

signal gradual drying, sedimentation, or ecological 

succession. Transitions to Built-Up (0.0032) and Open Space 

(0.0036) are extremely rare, confirming the isolation or 

protected status of wetland zones, see table 7. 

 
Table 7: Landcover/landuse Transition Potential; Matrix 

 

 Built Up Area Open Space Vegetation Wetland 

Built Up Area 0.809537699 0.102377133 0.086383744 0.001701424 

Open Space 0.649971312 0.081170475 0.265854399 0.003003814 

Vegetation 0.13404034 0.024769483 0.831230012 0.009960164 

Wetland 0.003184543 0.003585956 0.127756369 0.865473132 

 

The transition matrix reveals critical insights into the 

dynamics of land transformation in Sapele LGA. Notably, the 

ANN model confirms that Built-Up Areas are expanding 
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rapidly, with Open Space and Vegetation serving as the most 

common precursors to urban development. Open Space, in 

particular, functions as a highly transitional class—

frequently targeted for development, yet occasionally 

reverting to Vegetation depending on land-use pressures and 

ecological processes. 

Vegetation, although relatively stable, is under increasing 

pressure from built-up expansion, which poses risks to 

ecological health, biodiversity, and climate resilience. 

Wetlands, while currently stable, show early warning signs 

of encroachment and ecological shifts. The transition to 

Vegetation implies potential wetland degradation or 

hydrological changes, which may undermine the critical 

services wetlands provide, such as flood regulation and water 

purification. 

The high validation accuracy of the ANN model ensures that 

these predictions are both reliable and actionable. These 

findings offer a valuable decision-support tool for urban 

planners, environmental managers, and policymakers aiming 

to balance development with ecological sustainability. 

 

3.6.2 Future Landcover Prediction for the Year 2050 

Using Artificial Neural Network (ANN) 

The prediction of future landcover conditions for Sapele 

Local Government Area (LGA) by the year 2050 was 

achieved using an Artificial Neural Network (ANN) model 

implemented through the MOLUSCE plugin in QGIS. This 

model, which was trained on historical landcover data 

between 2000 and 2025, revealed notable spatial 

transformations across the major landcover classes: Built-Up 

Area, Vegetation, Open Space, and Wetland. The results 

offer insights into the likely trajectory of land development 

and ecological evolution in the study area over the next 

quarter century. 

According to the ANN-based projection, Built-Up Areas are 

expected to increase significantly to 123.62 km², accounting 

for 27.45% of the total land area in Sapele LGA by 2050. This 

finding indicates a continued and aggressive expansion of 

urban infrastructure, commercial activities, and residential 

settlements. The urban footprint, which had already grown 

steadily between 2000 and 2025, appears poised to extend 

further into peripheral zones. The predicted growth highlights 

the persistent influence of population growth, rural-urban 

migration, and economic development on land 

transformation. If unregulated, this expansion could lead to 

environmental degradation, increased surface runoff, heat 

island effects, and strain on existing infrastructure, see figure 

14. 

 

 
 

Fig 14: Artificial Neural Network Prediction to 2050 

 

In contrast, the model forecasts an unexpected resurgence of 

Vegetation, with a projected coverage of 292.74 km², 

representing 65.00% of the total landscape. This outcome 

deviates from previous historical trends in which vegetation 

declined sharply between 2005 and 2025. The projection 

reflects the natural regeneration of abandoned farmlands or 

settlements. Nevertheless, the implication of a vegetated 

landscape dominating over two-thirds of the LGA is both 

ecologically encouraging and strategically important. It 

indicated an opportunity to restore ecological balance, 

improve biodiversity habitats, mitigate climate change 

impacts through carbon sequestration, and enhance 

environmental sustainability in the face of expanding urban 

development. 
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Another important component of the future landcover 

structure is Wetland, which is projected to occupy 33.01 km², 

amounting to 7.33% of the total area. This is relatively stable 

when compared to the 2025 estimate and indicates that 

wetland areas will retain their extent due to natural resilience 

or protective land-use regulations. Wetlands provide critical 

ecosystem services such as flood control, groundwater 

recharge, and biodiversity support. Therefore, their continued 

presence in 2050, albeit modest, will be vital for maintaining 

hydrological integrity and landscape functionality in Sapele. 

The most concerning projection is the near disappearance of 

Open Space, which is expected to decline drastically to only 

0.974 km², making up a negligible 0.22% of the LGA. This 

loss represents the near-total conversion of undeveloped land 

to either built-up or vegetated areas. Historically, open spaces 

have served as transition zones or buffers between land uses, 

offering flexibility for infrastructure development, 

agriculture, recreational areas, or ecological corridors. Their 

projected elimination signals a future in which the landscape 

becomes highly polarized—dominated by either urban or 

vegetative cover with minimal room for flexible or low-

impact uses. This could undermine spatial equity, reduce 

urban livability, and eliminate opportunities for future 

adaptive land use. 

Taken together, the ANN model's prediction for 2050 paints 

a landscape that is more developed, greener in certain zones, 

and highly organized along functional lines. The expansion 

of Built-Up Areas and Vegetation indicated a dual narrative 

of human advancement and potential environmental 

restoration, while the minimal footprint of Open Space 

reflects intensified land-use competition. The results 

emphasize the need for proactive land-use planning, 

integrated green infrastructure development, and stringent 

regulatory mechanisms to guide urban expansion and 

preserve critical ecological zones. 

 

4. Conclusion  

The results of this study confirm that Sapele LGA has 

undergone significant landcover change between 2000 and 

2025, driven predominantly by the expansion of built-up 

areas. This urban growth has come at the cost of vegetative 

cover and open space, with wetlands remaining relatively 

stable but vulnerable. The directional analysis confirmed that 

these changes are not random but follow a dominant North-

Northeast progression, suggesting structured urban sprawl 

along major developmental corridors. 

The consistent rise in land use intensity, as captured by the 

LUI index, signifies increasing pressure on the environment, 

infrastructure, and land resources. While the ANN prediction 

for 2050 suggests a possible recovery of vegetation, the 

almost total loss of open space and continued urban 

expansion signal future challenges related to urban livability, 

spatial equity, and ecological sustainability.  

This study makes several important contributions to the 

existing body of knowledge in landcover dynamics, urban 

geography, and geospatial analysis. First, it demonstrates the 

utility of Gradient Direction Analysis as a novel tool in 

detecting both the magnitude and orientation of landscape 

changes—an aspect often overlooked in traditional landcover 

change studies. Second, the application of the Land Use 

Intensity Index (LUI) introduces a quantitative perspective on 

the degree of anthropogenic transformation, offering a 

valuable metric for environmental impact assessment. 

Additionally, the integration of Artificial Neural Network 

(ANN) modeling within the MOLUSCE plugin in QGIS for 

transition potential mapping and prediction introduces an 

effective framework for spatial forecasting. The use of high-

performing ANN parameters, coupled with a strong 

validation kappa (0.8593), confirms the robustness of 

machine learning for landcover simulation in data-scarce 

environments. Lastly, the prediction to 2050 offers empirical 

insights for long-term planning and supports adaptive policy 

formulation by urban and environmental management 

agencies. 
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