

International Journal of Multidisciplinary Research and Growth Evaluation.

Mechanisms of Viral Entry and Fusion: Developing Effective Inhibitors

Tolulope Bolarinwa 1*, Irene Sagay-Omonogor 2, Opeoluwa Oluwanifemi Akomolafe 3

- ¹ Independent Researcher, UK
- ² Independent Researcher, Maryland, MD, USA
- ³ Indepenent Researcher, Indiana, USA
- * Corresponding Author: Tolulope Bolarinwa

Article Info

ISSN (online): 2582-7138

Volume: 04 Issue: 02

March - April 2023 Received: 16-03-2023 Accepted: 18-04-2023 Published: 22-04-2023 Page No: 883-888

Abstract

Understanding the mechanisms of viral entry and fusion is crucial for developing effective antiviral inhibitors. This review paper examines the intricate processes involved in viral entry and fusion, highlighting the roles of fusion proteins, host cell factors, and the sequential stages of membrane fusion. It discusses the main challenges in developing inhibitors, including resistance, specificity, and delivery issues, and explores emerging technologies and approaches that could enhance inhibitor development. The potential for broad-spectrum inhibitors and future research directions are also evaluated. Advancements in computational tools, structural biology, and drug delivery systems are pivotal in overcoming these challenges and improving antiviral strategies.

DOI: https://doi.org/10.54660/.IJMRGE.2023.4.2.883-888

Keywords: Viral Entry, Fusion Proteins, Antiviral Inhibitors, Drug Resistance, Broad-Spectrum Inhibitors

1. Introduction

1.1. Overview of Viral Entry and Fusion

Viruses are highly adaptive and complex entities that require entry into host cells to propagate and cause infection. The viral entry and fusion process is a critical step in the viral life cycle, involving the attachment of the virus to the host cell, penetration, and the subsequent release of viral genetic material into the host cytoplasm. This process begins when viral surface proteins interact with specific receptors on the host cell membrane, leading to direct fusion at the cell membrane or endocytosis followed by fusion within endosomal compartments. These entry mechanisms vary among different types of viruses but share common principles essential for initiating infection (Leroy *et al.*, 2020; Yolles & Frieden, 2022).

Understanding the mechanisms of viral entry and fusion is paramount because it provides insights into how viruses bypass host defenses and establish infections. For instance, the influenza virus entry involves hemagglutinin binding to sialic acid on host cells, followed by fusion mediated by acidic conditions within endosomes. In contrast, HIV entry requires binding its envelope glycoprotein to CD4 receptors and co-receptors on the host cell surface, culminating in membrane fusion. Similarly, the SARS-CoV-2 virus responsible for COVID-19 utilizes its spike protein to bind to the ACE2 receptor on host cells, facilitating entry. These mechanisms highlight viruses' intricate and varied strategies to infiltrate host cells, underscoring the importance of studying these processes (Masenga *et al.*, 2023; Palombi *et al.*, 2021).

1.2. Significance of the Study

For several reasons, studying viral entry and fusion is crucial for developing antiviral strategies. Firstly, the initial entry of a virus into a host cell is a pivotal moment that determines the success of infection. By targeting and inhibiting this step, it is possible to prevent the virus from replicating and spreading within the host, effectively curbing the disease at its onset. Secondly, understanding these mechanisms can aid in developing broad-spectrum antiviral agents. Since many viruses share similar entry pathways, inhibitors designed to block these pathways could be effective against a wide range of viruses, providing a versatile

tool for combating viral infections.

Moreover, the emergence of new viral pathogens, such as the novel coronaviruses, poses significant challenges to global health. The rapid development of vaccines and therapeutic agents against SARS-CoV-2 was made possible by extensive research into its entry mechanisms. This underscores the importance of foundational knowledge in viral entry and fusion for responding to emerging infectious diseases. Additionally, resistance to current antiviral drugs is an ongoing concern, necessitating the continuous search for new therapeutic targets. By focusing on viral entry and fusion, researchers can identify novel targets for drug development, potentially overcoming resistance issues and leading to more effective treatments (Anand *et al.*, 2021; Ghaebi, Osali, Valizadeh, Roshangar, & Ahmadi, 2020).

1.3. Scope and Objectives

This paper aims to provide a comprehensive review of viral entry and fusion mechanisms and the development of effective inhibitors targeting these processes. The main focus will be understanding the various strategies viruses employ to gain entry into host cells and the molecular interactions involved. This includes detailing the role of viral surface proteins, host cell receptors, and the subsequent steps leading to fusion and entry.

The objectives of this paper are threefold. First, it aims to elucidate the detailed mechanisms of viral entry and fusion, providing a comparative analysis of different viruses. By understanding these mechanisms, we can appreciate the commonalities and differences that might influence the development of inhibitors. Second, the paper will explore the current state of research in developing inhibitors that target viral entry and fusion. This will include a discussion on the types of inhibitors, their mechanisms of action, and the challenges faced in their development. Finally, the paper aims to identify future research directions and emerging technologies that could enhance our ability to develop effective antiviral inhibitors.

2. Mechanisms of Viral Entry

2.1. Attachment to Host Cell

The first crucial step in the life cycle of a virus is the attachment to a host cell. This interaction is highly specific and is mediated by viral surface proteins that recognize and bind to specific receptors on the host cell membrane. The attachment process is essential for the virus to identify and latch onto suitable host cells, initiating the infection process (Yolles & Frieden, 2022). For example, the influenza virus uses its hemagglutinin (HA) protein to bind to sialic acid residues on the surface of respiratory epithelial cells. Similarly, the human immunodeficiency virus (HIV) employs its envelope glycoprotein (gp120) to attach to the CD4 receptor on T-helper cells. This initial binding is often facilitated by high-affinity interactions between viral proteins and host receptors, ensuring the virus can effectively anchor itself to the cell surface (X. Li, Yuan, Li, & Wang, 2023; Masenga et al., 2023).

2.2. Receptor Binding and Conformational Changes

Once attached, the virus must undergo further steps to facilitate entry into the host cell. This involves binding viral proteins to host cell receptors and the subsequent conformational changes in the viral and host proteins. These changes are crucial for preparing the virus for entry. For

instance, after the initial attachment of HIV to the CD4 receptor, gp120 undergoes a conformational change that allows it to interact with a co-receptor, usually CCR5 or CXCR4. This secondary interaction is necessary for the fusion of the viral envelope with the host cell membrane (García & Marsh, 2020; Yandrapally, Mohareer, Arekuti, Vadankula, & Banerjee, 2021).

Similarly, binding the SARS-CoV-2 spike (S) protein to the angiotensin-converting enzyme 2 (ACE2) receptor on host cells induces significant conformational changes in the spike protein. These changes expose the S2 subunit, which contains the fusion machinery necessary for the virus to merge its envelope with the host cell membrane. These conformational alterations are critical because they often expose or activate the fusion peptides or domains required for the subsequent steps of viral entry (Borkotoky, Dey, & Hazarika, 2023; Chen, Kang, Duan, & Hou, 2021).

2.3. Endocytosis and Membrane Fusion

Following receptor binding and conformational changes, viruses employ different strategies to enter the host cell, primarily through endocytosis or direct membrane fusion. Endocytosis involves the virus being engulfed by the host cell in a vesicle, which then transports the virus into the cell. Many viruses, including the influenza virus, commonly use this pathway. Once inside the endosome, the acidic environment triggers further conformational changes in the HA protein, leading to the fusion of the viral envelope with the endosomal membrane and the release of viral RNA into the cytoplasm (Aganovic, 2023; Borau & Stertz, 2021).

Direct membrane fusion, on the other hand, involves merging the viral envelope with the host cell membrane, allowing the viral nucleic acid to enter the cytoplasm directly. This process is characteristic of viruses like HIV and some paramyxoviruses. In the case of HIV, the conformational changes in gp120 and the subsequent interaction with the coreceptor bring the viral and cellular membranes into proximity, facilitating the fusion process. Similarly, the SARS-CoV-2 virus can enter host cells through endocytosis or direct fusion, depending on the availability of proteases that activate the spike protein (X. Li *et al.*, 2023; Whittaker, Daniel, & Millet, 2021).

Different viruses utilize distinct mechanisms for entry, reflecting their unique adaptations and interactions with host cells. The influenza virus, as mentioned, uses HA to bind sialic acid and enters cells via endocytosis. The acidic environment of the endosome induces conformational changes in HA, triggering membrane fusion and releasing viral RNA into the cytoplasm. This process highlights the virus's ability to exploit cellular machinery for entry (Borau & Stertz, 2021; Du, de Vries, van Kuppeveld, Matrosovich, & de Haan, 2021). HIV exemplifies a different strategy, relying on CD4 and co-receptors for attachment and entry. The initial binding of gp120 to CD4 is followed by conformational changes that expose binding sites for the coreceptor, leading to membrane fusion. This dual-receptor requirement ensures that HIV targets specific immune cells, facilitating its replication and persistence in the host.SARS-CoV-2, responsible for the COVID-19 pandemic, employs its spike protein to bind ACE2 on host cells. Depending on the cellular context, the spike protein undergoes proteolytic cleavage and conformational changes upon receptor binding, facilitating direct membrane fusion or endocytosis. This flexibility in entry mechanisms contributes to the virus's high transmissibility and ability to infect various tissues (Iyede *et al.*, 2023; Joseph, Fasipe, Joseph, & Olatunji, 2022; Mittal *et al.*, 2020; Saxena *et al.*, 2020).

3. Viral Fusion Process

3.1. Fusion Proteins

Viral fusion proteins are critical mediators in how viruses merge their envelopes with host cell membranes, allowing viral genetic material to enter the host cell and initiate infection. These proteins are typically embedded in the viral envelope and undergo significant conformational changes upon interaction with host cell receptors. Their primary function is to overcome the energy barrier that separates the viral and host cell membranes, facilitating their merger (Jia & Patel, 2021).

Fusion proteins can be broadly classified into three classes based on their structural characteristics and mechanisms of action: Class I, Class II, and Class III. Class I fusion proteins, such as the hemagglutinin (HA) of the influenza virus and the spike (S) protein of coronaviruses, typically form trimeric structures that undergo a transition from a metastable prefusion state to a stable post-fusion state. This transition is often triggered by receptor binding and proteolytic cleavage, which releases the energy necessary to drive membrane fusion (Duivelshof et al., 2021; Tang, Bidon, Jaimes, Whittaker, & Daniel, 2020). Class II fusion proteins, like the E protein of flaviviruses (e.g., dengue virus), are characterized by their beta-sheet-rich structures and typically form dimers in the pre-fusion state. Upon exposure to low pH in endosomes, these proteins rearrange into trimers that facilitate membrane fusion. Class III fusion proteins, such as the glycoprotein (G) of vesicular stomatitis virus (VSV), combine features of both Class I and Class II proteins and can mediate fusion at both the plasma membrane and within endosomes (Morris, Black, & Stollar, 2022; Poojari, Bommer, & Hub, 2023).

3.2. Stages of Fusion

The process of viral fusion occurs in several distinct stages: attachment, hemifusion, and pore formation. The viral fusion protein initially binds to the host cell receptor, bringing the viral and host membranes into proximity. This binding induces conformational changes in the fusion protein, often receptor engagement or proteolytic facilitated by cleavage. Following these initial interactions, the fusion protein undergoes further conformational changes that result in inserting a fusion peptide or loop into the host cell membrane. This insertion destabilizes the lipid bilayer, leading to the intermediate state known as hemifusion. In this stage, the outer leaflets of the viral and host membranes merge while the inner leaflets remain distinct. Hemifusion is a crucial intermediate that sets the stage for the final membrane fusion step (Risselada & Mayer, 2020).

The transition from hemifusion to complete fusion involves the formation of a fusion pore. This occurs when the inner leaflets of the viral and host membranes merge, creating a continuous aqueous channel through which the viral nucleocapsid or genome can be delivered into the host cell cytoplasm. The fusion pore initially forms as a small, transient structure that expands to allow the transfer of viral contents. The process is highly coordinated and depends on the precise timing and regulation of fusion protein conformational changes (Barrett & Dutch, 2020; Joardar, Pattnaik, & Chakraborty, 2022).

3.3. Host Cell Factors

Host cell factors play a pivotal role in facilitating or inhibiting viral fusion. These factors can include cellular receptors, proteases, and membrane lipids that interact with viral fusion proteins. For instance, the entry of SARS-CoV-2 into host cells requires the ACE2 receptor and the serine protease TMPRSS2. The binding of the spike protein to ACE2 facilitates the initial attachment, while TMPRSS2 cleaves the spike protein, triggering the conformational changes necessary for fusion (X. Li et al., 2023; Saxena et al., 2020). In some cases, host cell factors can inhibit viral fusion. Restriction factors like the interferon-induced transmembrane proteins (IFITMs) can impede viral fusion by altering the composition and fluidity of host cell membranes, thereby preventing the proper insertion and function of viral fusion peptides. Some host cells may also express decoy receptors or soluble proteins that bind to viral fusion proteins without facilitating entry, effectively neutralizing the virus.Different fusion viruses' processes exhibit commonalities and distinctions that reflect their diverse evolutionary adaptations. Influenza virus fusion is primarily mediated by the HA protein, which undergoes a dramatic conformational change in response to the acidic environment of the endosome. This change facilitates the insertion of the fusion peptide into the host membrane, leading to hemifusion and subsequent pore formation. The requirement for endosomal acidification is a key feature of influenza virus entry (Benhaim & Lee, 2020; Gao, Gui, & Xiang, 2020).

In contrast, HIV utilizes its envelope glycoprotein (gp120/gp41 complex) to mediate fusion at the plasma membrane. The binding of gp120 to the CD4 receptor and a co-receptor (CCR5 or CXCR4) induces conformational changes in gp41, exposing the fusion peptide and promoting membrane merger. This process relies not on endosomal acidification but on receptor-mediated signaling and membrane proximity.SARS-CoV-2 exhibits a dual pathway for entry, utilizing both direct membrane fusion and endocytosis. The spike protein binds to ACE2 and is subsequently cleaved by host proteases such as TMPRSS2 or endosomal cathepsins, triggering fusion. This versatility in entry mechanisms may contribute to the virus's broad tissue tropism and high transmissibility (García & Marsh, 2020; Xiao, Cai, & Chen, 2021).

These examples illustrate the diversity of viral fusion strategies, each finely tuned to exploit specific host cell factors and entry pathways. Understanding these processes at a detailed level is essential for developing targeted antiviral therapies that can block viral entry and prevent infection. By comparing and contrasting the fusion mechanisms of different viruses, researchers can identify common vulnerabilities and design broad-spectrum inhibitors that may offer effective protection against a range of viral pathogens.

4. Developing Effective Inhibitors

4.1. Targets for Inhibition

The development of effective antiviral inhibitors necessitates identifying key targets within the viral entry and fusion processes. These targets are often critical proteins and steps in the viral life cycle that, when inhibited, can prevent the virus from successfully infecting host cells. One primary target is the viral fusion protein, which undergoes conformational changes essential for merging the viral and host membranes. For instance, the hemagglutinin (HA) protein of influenza, the envelope glycoprotein (gp41) of

HIV, and the spike (S) protein of SARS-CoV-2 are all vital for their respective viruses' entry and are prime targets for inhibition (Allen, 2021; Negi, Sharma, Dey, Dhanawat, & Parveen, 2022).

Host cell receptors and co-receptors that viruses bind to initiate entry also represent crucial targets. For HIV, the CD4 receptor and CCR5/CXCR4 co-receptors are essential for viral attachment and entry. Similarly, the ACE2 receptor is vital for SARS-CoV-2 entry, making it an attractive target. Additionally, host proteases like TMPRSS2 and cathepsins, which activate viral fusion proteins through cleavage, are potential targets for inhibitors. By blocking these proteases, the necessary conformational changes in viral proteins can be prevented, thereby inhibiting fusion and entry (García & Marsh, 2020).

4.2. Types of Inhibitors

Inhibitors targeting viral entry and fusion can be classified into several types based on their mechanisms of action. Entry inhibitors block the initial attachment of the virus to host cell receptors. For example, maraviroc is an entry inhibitor for HIV that binds to the CCR5 co-receptor, preventing the virus from attaching to and entering host cells. Fusion inhibitors, on the other hand, block the subsequent steps that lead to the merging of viral and host membranes. Enfuvirtide is a notable fusion inhibitor for HIV that binds to gp41, preventing the conformational changes required for membrane fusion (Ahmadi, Farasat, Rostamian, Johari, & Madanchi, 2022; Xiao *et al.*, 2021).

Small molecules, peptides, and monoclonal antibodies represent different inhibitors that can be designed to target these processes. Small molecules, like camostat mesylate, inhibit proteases such as TMPRSS2, thereby blocking SARS-CoV-2 entry. Peptides that mimic regions of viral fusion proteins can also act as competitive inhibitors. For instance, peptides derived from the heptad repeat regions of viral fusion proteins can interfere with the formation of the fusion core, as seen with enfuvirtide for HIV. Monoclonal antibodies can target viral surface proteins, neutralizing the virus by preventing it from binding to host receptors. For instance, monoclonal antibodies targeting the SARS-CoV-2 spike protein have been developed and authorized for emergency use in treating COVID-19 (Kumar, Chandele, & Sharma, 2021; J. Z. Li & Gandhi, 2022).

4.3. Design and Screening

The design and screening of potential inhibitors involve multiple strategies, including structure-based drug design, high-throughput screening (HTS), and computational modeling. Structure-based drug design leverages the detailed knowledge of the three-dimensional structures of viral proteins and their interactions with host receptors. By understanding these structures, researchers can identify critical binding sites and design molecules that can effectively block these sites. Crystallography and cryoelectron microscopy have been instrumental in providing high-resolution structures of viral proteins like HIV gp120/gp41 and SARS-CoV-2 spike, guiding the design of inhibitors (Abernathy, Dam, Esswein, Jette, & Bjorkman, 2021; Joseph, Joseph, Olokoba, & Olatunji, 2020; Vincenzi & Leone, 2021).

High-throughput screening allows the rapid testing of large libraries of compounds to identify those with potential antiviral activity. This approach involves automated testing of thousands to millions of compounds for their ability to inhibit viral entry or fusion in cell-based assays. Hits from HTS are then further validated and optimized through medicinal chemistry efforts. Computational modeling and in silico screening are increasingly used to predict the binding affinity of potential inhibitors to their targets. These methods can prioritize compounds for experimental testing, reducing the time and cost associated with drug discovery. Molecular dynamics simulations and docking studies provide insights into the interactions between inhibitors and viral proteins, guiding the optimization of lead compounds (Ren, Long, & Cao, 2021; Skariyachan, Gopal, Muddebihalkar, Uttarkar, & Niranjan, 2021).

Recent advancements in developing antiviral inhibitors have yielded promising candidates across various viral pathogens. For SARS-CoV-2, several monoclonal antibodies, such as bamlanivimab and etesevimab, have shown efficacy in neutralizing the virus by targeting the spike protein. Small molecule inhibitors like remdesivir, which targets the viral RNA polymerase, have also been approved for COVID-19 treatment, demonstrating the potential for targeting different stages of the viral life cycle.

Researchers are exploring inhibitors for influenza that target the HA protein's conformational changes, preventing membrane fusion. Baloxavirmarboxil, a novel antiviral targeting the cap-dependent endonuclease of the influenza virus, has been approved for treatment, showcasing the ongoing efforts to develop new class inhibitors.HIV research continues to advance, with long-acting formulations of existing drugs and the development of broadly neutralizing antibodies that target conserved regions of the virus, offering the potential for treatment and prevention. Identifying small molecules inhibiting the conformational changes in gp120/gp41 has also shown promise in preclinical studies (Kumari *et al.*, 2023; Sarker *et al.*, 2022; Wang, Sun, & Liu, 2022).

5. Challenges and Future Directions

5.1. Challenges in Inhibitor Development

The development of effective viral entry and fusion inhibitors faces several significant challenges. One primary issue is the emergence of resistance. Viruses, particularly RNA viruses like HIV and influenza, have high mutation rates, which can lead to the rapid emergence of resistant strains. This necessitates continuous monitoring and the development of inhibitors that can target conserved regions of viral proteins that are less prone to mutations. Specificity is another challenge; inhibitors must selectively target viral proteins without affecting host cell functions to minimize toxicity and side effects. Additionally, the delivery of inhibitors to the site of infection poses practical challenges, particularly for respiratory viruses like influenza and SARS-CoV-2, where effective delivery to the lungs is crucial. Formulating stable, bioavailable inhibitorsthat can reach their target in the host organism remains complex.

5.2. Emerging Technologies and Approaches

Emerging technologies offer promising avenues to overcome these challenges. Advanced computational tools, such as artificial intelligence (AI) and machine learning, are revolutionizing drug discovery by enabling the rapid screening and optimization of potential inhibitors. AI can predict the interactions between viral proteins and inhibitors, identify potential resistance mutations, and suggest

modifications to enhance efficacy. Cryo-electron microscopy and other high-resolution imaging techniques provide detailed structural insights into viral proteins, facilitating the design of inhibitors that can precisely target these structures. Nanotechnology-based delivery systems are also being developed to enhance the delivery and stability of antiviral drugs, ensuring that they reach their target sites effectively. There is significant potential for developing broad-spectrum inhibitors that are effective against multiple viruses. Targeting conserved viral entry and fusion mechanisms offers a strategic advantage in this regard. For instance, inhibitors that block common host cell receptors or proteases used by various viruses could provide broad-spectrum antiviral activity. Research into pan-coronavirus inhibitors, which target conserved regions of the spike protein, is a promising approach in the wake of the COVID-19 pandemic. Similarly, inhibitors that target the fusion machinery common to several viral families could offer protection against a wide range of pathogens, reducing the need for virus-specific drugs.

5.3. Future Research Directions

Future research should focus on several key areas to improve our understanding and development of viral entry and fusion inhibitors. First, a deeper understanding of the structural dynamics of viral fusion proteins and their interactions with host receptors is essential. This knowledge will aid in the design of more effective inhibitors. Second, developing innovative drug delivery systems that can efficiently target sites of infection, particularly for respiratory viruses, is critical. Third, research should explore the potential of combination therapies that use multiple inhibitors targeting different stages of the viral life cycle to reduce the likelihood of resistance. Lastly, continued surveillance of viral mutations and emerging pathogens will ensure that inhibitors remain effective against new strains and variants.

6. References

- Abernathy ME, Dam KMA, Esswein SR, Jette CA, Bjorkman PJ. How antibodies recognize pathogenic viruses: Structural correlates of antibody neutralization of HIV-1, SARS-CoV-2, and Zika. Viruses. 2021;13(10):2106.
- Aganovic A. pH-dependent endocytosis mechanisms for influenza A and SARS-coronavirus. Front Microbiol. 2023;14:1190463.
- 3. Ahmadi K, Farasat A, Rostamian M, Johari B, Madanchi H. Enfuvirtide, an HIV-1 fusion inhibitor peptide, can act as a potent SARS-CoV-2 fusion inhibitor: An in silico drug repurposing study. J Biomol Struct Dyn. 2022;40(12):5566-76.
- 4. Allen J. The glycan shields of HIV-1 and SARS-CoV-2 spike proteins and their differential importance in vaccine design [dissertation]. University of Southampton; 2021.
- 5. Anand U, Jakhmola S, Indari O, *et al.* Potential therapeutic targets and vaccine development for SARS-CoV-2/COVID-19 pandemic management: A review on the recent update. Front Immunol. 2021;12:658519.
- 6. Barrett CT, Dutch RE. Viral membrane fusion and the transmembrane domain. Viruses. 2020;12(7):693.
- Benhaim MA, Lee KK. New biophysical approaches reveal the dynamics and mechanics of type I viral fusion machinery and their interplay with

- membranes. Viruses. 2020;12(4):413.
- 8. Borau MS, Stertz S. Entry of influenza A virus into host cells—Recent progress and remaining challenges. Curr Opin Virol. 2021;48:23-9.
- Borkotoky S, Dey D, Hazarika Z. Interactions of angiotensin-converting enzyme-2 (ACE2) and SARS-CoV-2 spike receptor-binding domain (RBD): A structural perspective. Mol Biol Rep. 2023;50(3):2713-21
- 10. Bitragunta SLV. Multiconnected interleaved boost converter for hybrid energy system. Int J Sci Res Eng Manag. 2024;8(1):1-13.
- 11. Chen H, Kang Y, Duan M, Hou T. Regulation mechanism for the binding between the SARS-CoV-2 spike protein and host angiotensin-converting enzyme II. J Phys Chem Lett. 2021;12(27):6252-61.
- 12. Du W, de Vries E, van Kuppeveld FJ, Matrosovich M, de Haan CA. Second sialic acid-binding site of influenza A virus neuraminidase: Binding receptors for efficient release. FEBS J. 2021;288(19):5598-612.
- 13. Duivelshof BL, Murisier A, Camperi J, *et al*. Therapeutic Fc-fusion proteins: Current analytical strategies. J Sep Sci. 2021;44(1):35-62.
- 14. Gao J, Gui M, Xiang Y. Structural intermediates in the low pH-induced transition of influenza hemagglutinin. PLoS Pathog. 2020;16(11):e1009062.
- 15. García IL, Marsh M. A biophysical perspective on receptor-mediated virus entry with a focus on HIV. Biochim Biophys Acta Biomembr. 2020;1862(6):183158.
- Ghaebi M, Osali A, Valizadeh H, Roshangar L, Ahmadi M. Vaccine development and therapeutic design for 2019-nCoV/SARS-CoV-2: Challenges and chances. J Cell Physiol. 2020;235(12):9098-109.
- 17. Iyede TO, Raji AM, Olatunji OA, *et al.* Seroprevalence of Hepatitis E Virus infection among HIV-infected patients in Saki, Oyo State, Nigeria. Niger J Immunol. 2023;4(2).
- 18. Jia N, Patel DJ. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat Rev Mol Cell Biol. 2021;22(8):563-79.
- Joardar A, Pattnaik GP, Chakraborty H. Mechanism of membrane fusion: Interplay of lipid and peptide. J Membr Biol. 2022;255(2):211-24.
- 20. Joseph AA, Fasipe OJ, Joseph OA, Olatunji OA. Contemporary and emerging pharmacotherapeutic agents for the treatment of Lassa viral haemorrhagic fever disease. J Antimicrob Chemother. 2022;77(6):1525-31.
- 21. Joseph AA, Joseph OA, Olokoba BL, Olatunji OA. Chronicles of challenges confronting HIV prevention and treatment in Nigeria. Port Harcourt Med J. 2020;14(3):100-13.
- 22. Kumar S, Chandele A, Sharma A. Current status of therapeutic monoclonal antibodies against SARS-CoV-2. PLoS Pathog. 2021;17(9):e1009885.
- 23. Kumari R, Sharma SD, Kumar A, *et al.* Antiviral approaches against influenza virus. Clin Microbiol Rev. 2023;36(1):e00040-22.
- 24. Leroy H, Han M, Woottum M, *et al.* Virus-mediated cell-cell fusion. Int J Mol Sci. 2020;21(24):9644.
- Li JZ, Gandhi RT. Realizing the potential of anti-SARS-CoV-2 monoclonal antibodies for COVID-19 management. JAMA. 2022;327(5):427-9.

- 26. Li X, Yuan H, Li X, Wang H. Spike protein mediated membrane fusion during SARS-CoV-2 infection. J Med Virol. 2023;95(1):e28212.
- 27. Masenga SK, Mweene BC, Luwaya E, *et al.* HIV–host cell interactions. Cells. 2023;12(10):1351.
- 28. Mittal A, Manjunath K, Ranjan RK, *et al.* COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathog. 2020;16(8):e1008762.
- 29. Morris R, Black KA, Stollar EJ. Uncovering protein function: From classification to complexes. Essays Biochem. 2022;66(3):255-85.
- 30. Negi G, Sharma A, Dey M, Dhanawat G, Parveen N. Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: Resolving the mechanisms with biophysical methods. Biophys Rev. 2022;14(5):1109-40.
- 31. Palombi N, Brai A, Gerace M, *et al.* Viral envelope membrane: A special entry pathway and a promising drug target. Curr Med Chem. 2021;28(34):6957-76.
- 32. Poojari CS, Bommer T, Hub JS. Viral fusion proteins of classes II and III but not of class I sense the lipid composition of host membranes. bioRxiv. 2023.05.26.541230.
- 33. Ren Y, Long S, Cao S. Molecular docking and virtual screening of an influenza virus inhibitor that disrupts protein-protein interactions. Viruses. 2021;13(11):2229.
- 34. Risselada HJ, Mayer A. SNAREs, tethers and SM proteins: How to overcome the final barriers to membrane fusion? Biochem J. 2020;477(1):243-58.
- 35. Sarker A, Gu Z, Mao L, *et al*. Influenza-existing drugs and treatment prospects. Eur J Med Chem. 2022;232:114189.
- 36. Saxena SK, Kumar S, Baxi P, *et al.* Chasing COVID-19 through SARS-CoV-2 spike glycoprotein. In: VirusDisease. 2020;31:399-407.
- 37. Skariyachan S, Gopal D, Muddebihalkar AG, Uttarkar A, Niranjan V. Structural insights on the interaction potential of natural leads against major protein targets of SARS-CoV-2: Molecular modelling, docking and dynamic simulation studies. Comput Biol Med. 2021;132:104325.
- 38. Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res. 2020;178:104792.
- 39. Vincenzi M, Leone M. The fight against human viruses: How NMR can help? Curr Med Chem. 2021;28(22):4380-453.
- 40. Wang J, Sun Y, Liu S. Emerging antiviral therapies and drugs for the treatment of influenza. Expert Opin Emerg Drugs. 2022;27(4):389-403.
- 41. Whittaker GR, Daniel S, Millet JK. Coronavirus entry: How we arrived at SARS-CoV-2. Curr Opin Virol. 2021;47:113-20.
- 42. Xiao T, Cai Y, Chen B. HIV-1 entry and membrane fusion inhibitors. Viruses. 2021;13(5):735.
- 43. Yandrapally S, Mohareer K, Arekuti G, Vadankula GR, Banerjee S. HIV co-receptor-tropism: Cellular and molecular events behind the enigmatic co-receptor switching. Crit Rev Microbiol. 2021;47(4):499-516.
- 44. Yolles M, Frieden R. Viruses as living systems—A metacybernetic view. Systems. 2022;10(3):70.