[ international Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary
Research and Growth Evaluation.

Common Fixed Point Theorems and Non-Expansive Mapping In Banach Space
Mayuri Nema **, Dr. Abha Tenguria 2

1-5Research Scholar, Department of Mathematics, Barkatullah University, Bhopal, Madhya Pradesh, India

2 Professor and Head, Department of Mathematics Government MLB Girls College Bhopal, Madhya Pradesh, India

* Corresponding Author: Mayuri Nema

Article Info Abstract _ _ o
In this paper, we describe non-expansive mapping in Banach space and several popular

ISSN (online): 2582-7138 fixed point theorems. Our goal is to apply the non-expansive mapping and theorems
Volume: 06 to Banach space.

Issue: 03 DOI: https://doi.org/10.54660/.1JMRGE.2025.6.3.1953-1958
May - June 2025

Received: 18-04-2025
Accepted: 22-05-2025
Published: 21-06-2025
Page No: 1953-1958

Keywords: Fixed Point, Fundamentally Nonexpansive Mappings, Nonexpansive Mappings, Opial’s Condition, Uniformly
Convex Banach Spaces

1. Introduction

In this chapter, we describe non-expansive mapping in Banach space and several popular fixed point theorems. Our goal is to
apply the non-expansive mapping and theorems to Banach space. We generalize a well-known Gregus (1980) result by
establishing a common fixed point theorem for self-mappings that are not always commuting of a closed and convex subset of
a Banach space. For every a, 8 in X, let G be a mapping of X into itself that satisfies the inequality || Ga — GBI < Il a — B II.
The class of contraction mapping is generally known to be non-expensive, and G is appropriately included in the class of all
continuous mappings. For non-expansive mappings defined on a closed, bounded, and convex subset of a uniformly convex
Banach space and in spaces with richer structure, Kirk (1965) separately demonstrated a fixed point theorem.

Many authors have considered various generalizations of non-expansive mappings. Particularly noteworthy are the works of
Goebel (1969); Goebel and Zlotkiewicz (1971); Goebel, Kirk, and Shimi (1973); Massa and Roux (1978); Dotson (1972a and
b); Emmanuele (1981); and Rhoades (1982). Kirk (1965, 1981, 1983) provides a thorough overview of fixed point theorems for
non-expansive and related mappings.

However, certain mappings have a unique fixed point and meet constraints that are comparable to those of non-expansive
mappings. However, these mappings cannot be thought of as extensions of non-expansive mappings. Recent instances of this
type can be found in Rhoades (1978) and Gregus (1980). Inspired by a contractive condition of Hardy and Rogers (1973), we
expand Gregus's (1980) solution to the situation of two mappings in this chapter.

Let M be a subset of X that is closed and convex. In conclusion, this author demonstrated the following outcome under the
assumption that y = z in Gregus's (1980) contractive condition.

1.1 Preliminaries

1.1.1 Banach space

Let X be a vector space over R or Cand let || . || be a norm on X then (X, || . ||) is called a Banach space if every Cauchy sequence
in X converges to a limit in X.
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1.1.2 Non expansive mapping
Let C be a nonempty convex subset of a real Banach space E and R be the set of real numbers. A mapping T: C — C is called
nonexpansive if | Tx — Tyl < llx — yllforallx, y € C.

1.1.3 Fixed point
let T be a mapping from a se X into itself, i.e, T: X — X. A point x € X is called a fixed point of the mapping T if T (x) = x.

1.1.4 Common fixed point

Let (X, d) be a metric space and let Ty, T, T, .....,T,, : X = X be mappings a point x* € X is called a common fixed point of
these mapping if T; (x™) = T, (x™) = T3 (x*)=....=T(x™) = x*

1.1.5 Cauchy Sequence

Let (X, d) be a metric space. A sequence {x, } c X is known as Cauchy sequence if

V £>0,3 N € N such that || x,, - x,,, || <& forall n, m>N.

1.2 Theorem
Let G be a mapping of M by itself, so resolving the inequality

NGa —GB IS xlla—B Il +y.{llGa —all+11GB—p I} (1)

foralla,finM,where0 < x < 1,y > 0andx + 2y = 1. Then G has a unique fixed point. The following theorem is now
proven.

1.3 Main result
1.3.1 Theorem
Let F and G be mappings of M into themselves satisfying the inequality
lFa— GBI xlla =B Il +y.{l Fa —all+1lGB —B I} )
+z{ll Fa — BII+11GB —all}
foralla,finM,where0 < x <l,y>0andx+2y+2z=1and (1 — y).z < xy.If
llGa — all<I||Fa — all 3

V a in M, then F and G have a unique common fixed point w in M. Moreover, w is the unique fixed point of F and G.

Proof:
Let a be an arbitrary point in M. From (2), we deduce that

| FGa —Ga ll< x.|| Ga —all +y.{ll FGa —Ga |l +1| Ga —a |l }
+z{l FGa —Ga |l +11Ga —all}+tll Fo —Ga |l
Combining like terms
[l FGa —Ga ll<S (x+y+2) | Ga —all+(y+2) || FGa — Ga ll + || Fa — Ga ||
Rewriting, we get
(1-y-2) 1l FGa —Ga |l < (x+y+2) Il Ga —a |l + || Fa —Ga ||
Assuming from condition 3
lFa —Gall<l|Fa —all+llGa —all<2|| Fa —all
which implies that

x+y+z

| FGa — Ga || < NGa —all + —— 2 || Fa —all (4)
1-y-z 1-y—-z

[l FGa —Ga ll<AllGa —all+Bll Fa —all

1954|Page



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

Where A =2*2 g =2t

1-y—z 1-y—z
Similarly, we have
Il GFa — Fa ll<|| Fa —alll. ®)
Since 5 holds V « in M, we deduce that
Il FGFa — FGa |l <l GFa — Fa ll,
Which implies, by (3) and (5), that
|l GGFa — GFa || < || FGFa — GFa ||<|| Fa — a |l. (6)

We now define the point y by

= L6ra +1cor
yo=phie myhhta

Then, it follows, from the above inequality, that

2llGFa —yIll= 21l GGFa —y ||=1l GGFa — GFa ||<|| Fa —a ll. ©)
Since M is convex, y € M and using above steps and added the term t [| Fa — Ga || we have that

21lFy — yll=1II 2Fy — (GFa + GGFa) |I=I| Fy — GFa |l +1| Fy — GGFa || (8)
Apply the contractive inequality to each term

|Fy —GFall<x.ly—Fall+y{llFy —y I+l Fa —all}

+z{lFy —yll+ Il Fa — vyl + 1l GFa — y I} +tIl Fy — GFy ||

[l Fy = GGFa | < x.lly—=Fall+y.{ll Fy =yl + Il Fa —a |I}

+z.{l Fy —y Il +ll GFa — y |l + |l GGFa — y |I} +t|| Fy — GFy ||
Combining these

20Fy —y IS x.IFa—y Il +lly —GFa Il + 2y.{ll Fy — y Il + |l Fa — a |}

+z{2IFy —yll+llFa —yIll +31|Fa — all}+2t|l Fy -Gy |l

Simplify using the bounds:

Il Fa—y <1l Fa—all Il GFa—y 1< Il Fa — all, 1| G6Fa — y <5 |l Fa — all ©)

2{IIFy—yIISx.{2.%.IIFa—aII}+ 2y {lFy —yll+IlFa — all} + z.{21| Fy — yll+§ | Fe — all
+§um—awmmw—wu

lFy —ylI<xllFa—all+2y{ll Fy —yll+ I Fa — al}+z{21|Fy —yll+2|| Fa — all+2t||Fy — Gy |

I
HFy =Gy W<l Fy =y I+ 11 Gy =y I<2I Fy —y I +ll Fa — e ||

2INFy —yll=sx.2-y).IFa —all +2y {ll Fa —all +IIFy —yI}+ z. 21l Fy —y 1l +(3 — y).I
| Fa — a ll}.

211 Fy — y 1<y 2z +20) || Fa —a || +(2y +2z +4t) || Fy — vy ||

(2-2y-22-4t) || Fy —y 1< (x 12y 2z +20) || Fa —a ||
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Consequently, we have that

HFy—ylI< 8.0l Fa — all, (10)
Where

X+ 2y +2z + 2t
 2-2y—2z-—4t

x+ 2y +2z+ 2t <1=36<1

It follows that 0 < § < 1 based on the assumptions made about the constants x, y, z and t. Specifically that x + 2y + 2z + 2t
<1 We claim that

h = inf{ll Fa — all: « € M} = 0,

(1-6).n
5 ’

suppose for the contradiction that h > 0 then forany 0 < € < there exists a point @eM such that || F&d — @ || < (h+€)

then from above inequality we have
h<|| Fy —ylI<dll Foa — all<d(h+e)<h,

which is a contradiction . therefore the assumption h > 0 must be false and we conclude a Thus h = 0 and the sets
1
H, ={a e M: {Il Foa — all< Z}}

are non-empty foranyn = 1,2, ...;
Now we have,
1) H, 2 H, 2..... 2H,2....
Let H,, be the closure of H,,. We now show that
— 3

(12) diam H,, < ﬁ foranyn = 1,2, .......Indeed, we obtain on using (2)withadded term t || Fa — Ga |l.

Na—BlI<IFa — all+Il Fa — B ||
<|lFa — all+11GB =B Il + 1l Fa — GB ||

| Fe — GBlII<xlla = Bll+yllFa —all+IGB — flI+z(l Fa — all +lla = BI+1IGB — Bl +lla —
Bl +t || Fe — Ga ||

We know || Fae — a |1 <z, 1| GB — BII<I| F§ — f 1l <-and | Fa — Ga ||

Sl Fa —all + |l Ga — aIISESO,S%+x.IIa—,3II +y {lFa—all+1GB—=BI}+z.{ll Fa—all+Ila—
BIL+NGE—=BIl+1la—=pB I}

2 _ (2y+2z) 2t
<Z4(+22).dla—pl + 242

B—x)

n

la — B ll=

+(1=-2y).lla—-p Il

By equation(3) Il GB =B II<IIFB =B 11 < % By above inequality (12)
diam H,, = diam H,, and clearly it follows from (11) that

The series diam H,, converges to zero asn — oo by (12), indicating that {H.,,} is a decreasing sequence of non-empty subsets
of M. Cantor's intersection theorem states that since X and M are complete, there is a point w in M such that
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© J—
w €E ﬂ H,,.
n=1

Accordingly, Il Fw — w || < %for anyn = 1,2, ... ,and so Fw = w, By using (3), we have Gw = w. Then, w is a fixed

point that both F and G share. Assume that w’ is an additional fixed point of F. With (2) appliedto «a =wand 8 =w’ we
obtain that

Hw—-—wll=llFw —-GwlI< x. 1w —wll +z.{Ilw —wll+Ilw — w [} +t]| Fw — Gw ||
=(x+ 22).1lw — wll

Thisimpliesthat w’ = wsincex + 2z <1.

Ix-22)llw —w [I<0=llw — W [|=0=w=w

Therefore w is the unique fixed point of F and similarly it is shown that w is the unique fixed point of G. This completes the
proof.

Remark
Theorem 5.3.1 becomes theorem 1 if F = G and z = 0 are assumed.

The following outcome is obtained by enunciating theorem 5.3.1 for certain iterates of F and G.
1.4 Theorem

Let F and G be self maps on a non empty closed convex subset M of a Banach space (X, || .[]). Assume there exist constant
x,y,z,t = 0 satisfying x + 2y + 2z + 2t < 1, and integers u, v € N such that for all «, 8 € M, the inequality holds:

[l F*a — G’BlII< xlla=Bll+yUlFra—all+ 111G’ — BID+z(l Fta—B Il +1IG°B —all) + t |
| Fa — G a |l.

Assume also that:
HG°B—all<IIFta—allVa € M.
Then F and G have a unique common fixed point w € M.

Proof:
Let

F(a):= F*a,G(a): = GV a.
Then the contractive inequality becomes

NEF@ -GN xlla=Bll+yUIF@—all+11GB) — BID+z(UIF@ =L UIN+IGPB) —all) +t |
| F(a) — G() II.

Also, the assumption becomes
NGB —all<lFl@)—all Va€eM.
Since all the assumptions of the earlier theorem (which included the term ¢ || F(a) — G (a) |1) are satisfied:
M is closed and convex in a Banach space. The inequality is satisfied with constants x, y, z, t such that x + 2y + 2z + 2t < 1,
The dominance condition || G(8) — a || < || F(a) — a || holds;
we conclude from that theorem that there exists a unique point w € M such that:
Fw)=w=_GWw).
So,

F*(w) = w = G"(w)
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We will prove that w is also a fixed point of F and G
From F*(w) = w, apply F repeatedly:

F*(w) =F*Y(Fw)) =w = F(w) = F*(w) = w.

Similarly, G(w) = G*(w) = w.

So, w is a fixed point of F and G.

For uniqueness of fixed point Suppose w’ € M is another point such that F(w') = w’,G(w") = w'.
Then:

Ft(w") =w',G"(w) =w'.
Apply the contractive inequality with ¢ = w, 8 = w'

Hw —w ll=IlF*(w) — GPWHIN< xllw —=w Ill+yO0O+0)+z(lw —w lIl+1Iw —wl) + t |
| F¥(w) — GY(w) Il

But since w and w’ are fixed points
Ft(w) = G"(w) =w,F*(W) =G"(W") =w/,

so || F*(w) — GY(w) |l = 0, and the inequality becomes
Hw —w < x+22)(lw — w |l

Since x + 2z < 1 (as implied by x + 2y + 2z 4+ 2t < 1), it follows that
A=-x=-22)l1lw—wIIS0=(lw—-—wl=0=>w=w"

So the fixed point is unique. Under the given assumptions, the mappings F and G have a unique common fixed point w € M,
and F(w) = w = G(w). The following example shows the stronger generality of theorem 5.3.3 over theorem 5.3.2.

Example
Let X be the Banach space of reals with Euclidean norm and M = [0,2]. We define F and G by putting Fa = 0if 0 < a <

1,Fa = gifl <a<2,6x =0if0< a <2and Ga = g Then the condition (2) of theorem 5.2.1does not hold,
otherwise, we should have fora =1and g = 2

6_||F Gl xl2=11l+y.{l1 3||-|-||2 9|| + ||9 11 +12 3||
5_ 1 2 s X y'{ 5 5 } Z'{ 5 5 }

=1-2y -2z + 2+ =2

Which implies §+ %y < g i.e,1+ 7y < z, acontradiction. However, the conditions of theorem 5.3.3 are trivially satisfied

foru = v = 2since F2a = G2a =0 forall ¢ in M.

Although the contradictive condition used in this chapter is more general than (2), we explicitly note that the results for F = G
are not comparable to the results where the additional assumptions on the coefficients and the uniform convexity of X neither
imply nor are implied by the assumptions of theorem 5.3.2.
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