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1. Introduction 

In this chapter, we describe non-expansive mapping in Banach space and several popular fixed point theorems. Our goal is to 

apply the non-expansive mapping and theorems to Banach space. We generalize a well-known Gregus (1980) result by 

establishing a common fixed point theorem for self-mappings that are not always commuting of a closed and convex subset of 

a Banach space. For every 𝛼, 𝛽 in 𝑋, let 𝐺 be a mapping of 𝑋 into itself that satisfies the inequality ∣∣ 𝐺𝛼 −  𝐺𝛽 ∣∣ ≤ ∣∣ 𝛼 − 𝛽 ∣∣. 
The class of contraction mapping is generally known to be non-expensive, and 𝐺 is appropriately included in the class of all 

continuous mappings. For non-expansive mappings defined on a closed, bounded, and convex subset of a uniformly convex 

Banach space and in spaces with richer structure, Kirk (1965) separately demonstrated a fixed point theorem. 

Many authors have considered various generalizations of non-expansive mappings. Particularly noteworthy are the works of 

Goebel (1969); Goebel and Zlotkiewicz (1971); Goebel, Kirk, and Shimi (1973); Massa and Roux (1978); Dotson (1972a and 

b); Emmanuele (1981); and Rhoades (1982). Kirk (1965, 1981, 1983) provides a thorough overview of fixed point theorems for 

non-expansive and related mappings. 

However, certain mappings have a unique fixed point and meet constraints that are comparable to those of non-expansive 

mappings. However, these mappings cannot be thought of as extensions of non-expansive mappings. Recent instances of this 

type can be found in Rhoades (1978) and Gregus (1980). Inspired by a contractive condition of Hardy and Rogers (1973), we 

expand Gregus's (1980) solution to the situation of two mappings in this chapter. 

Let 𝑀 be a subset of 𝑋 that is closed and convex. In conclusion, this author demonstrated the following outcome under the 

assumption that 𝑦 =  𝑧 in Gregus's (1980) contractive condition.  

 

1.1 Preliminaries 

1.1.1 Banach space  

Let X be a vector space over ℝ 𝑜𝑟 ℂ and let || . || be a norm on X then (X, || . ||) is called a Banach space if every Cauchy sequence 

in X converges to a limit in X. 
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1.1.2 Non expansive mapping 

Let C be a nonempty convex subset of a real Banach space 𝐸 and ℝ be the set of real numbers. A mapping 𝑇:  𝐶 →  𝐶 is called 

non expansive if ∥ 𝑇𝑥 −  𝑇𝑦 ∥  ≤  ∥ 𝑥 −  𝑦 ∥ for all 𝑥,  𝑦 ∈  𝐶. 

 

1.1.3 Fixed point 

let T be a mapping from a se X into itself, i.e, T: X → X. A point x ∈ X is called a fixed point of the mapping T if T (x) = x.  

 

1.1.4 Common fixed point  

Let (X, d) be a metric space and let 𝑇1, 𝑇2, 𝑇3, …..,𝑇𝑛 : X → X be mappings a point 𝑥∗ 𝜖 X is called a common fixed point of 

these mapping if 𝑇1(𝑥∗) = 𝑇2(𝑥∗) = 𝑇3(𝑥∗)=…..= 𝑇𝑛(𝑥∗) = 𝑥∗ 

 

1.1.5 Cauchy Sequence  

Let (X, d) be a metric space. A sequence {𝑥𝑛} ⊂ 𝑋 is known as Cauchy sequence if 

∀ ε > 0, ∃ N ∈ ℕ such that || 𝑥𝑛 - 𝑥𝑚 || < ε for all n, m ≥ N.  

 

1.2 Theorem  

Let 𝐺 be a mapping of 𝑀 by itself, so resolving the inequality 

 

∣∣ 𝐺𝛼 − 𝐺𝛽 ∣∣ ≤  𝑥. ∣∣ 𝛼 − 𝛽 ∣∣  + 𝑦. {∣∣ 𝐺𝛼 − 𝛼 ∣∣ + ∣∣ 𝐺𝛽 − 𝛽 ∣∣}  (1) 

 

for all 𝛼, 𝛽 in 𝑀, where 0 <  𝑥 <  1, 𝑦 >  0 and 𝑥 +  2𝑦 =  1. Then 𝐺 has a unique fixed point. The following theorem is now 

proven. 

 

1.3 Main result  

1.3.1 Theorem  

Let 𝐹 and 𝐺 be mappings of 𝑀 into themselves satisfying the inequality 

 

∣∣ 𝐹𝛼 −  𝐺𝛽 ∣∣ ≤  𝑥. ∣∣ 𝛼 − 𝛽 ∣∣ + 𝑦. {∣∣ 𝐹𝛼 − 𝛼 ∣∣ + ∣∣ 𝐺𝛽 − 𝛽 ∣∣}  (2) 

 

+ 𝑧. {∣∣ 𝐹𝛼 −  𝛽 ∣∣ + ∣∣ 𝐺𝛽 − 𝛼 ∣∣} 

 
for all 𝛼, 𝛽 in 𝑀, where 0 <  𝑥 < 1, 𝑦 > 0 and 𝑥 + 2𝑦 + 2𝑧 = 1 and (1 −  𝑦). 𝑧 <  𝑥𝑦. If 

 

∣∣ 𝐺𝛼 −  𝛼 ∣∣ ≤ ∣∣ 𝐹𝛼 −  𝛼 ∣∣  (3) 

 

∀ 𝛼 in 𝑀, then 𝐹 and 𝐺 have a unique common fixed point 𝑤 in 𝑀. Moreover, 𝑤 is the unique fixed point of 𝐹 and 𝐺. 

 

Proof:  

Let 𝛼 be an arbitrary point in M. From (2), we deduce that 

 

∣∣ 𝐹𝐺𝛼 − 𝐺𝛼 ∣∣ ≤  𝑥. ∣∣ 𝐺𝛼 − 𝛼 ∣∣  + 𝑦. {∣∣ 𝐹𝐺𝛼 − 𝐺𝛼 ∣∣ + ∣∣ 𝐺𝛼 − 𝛼 ∣∣ } 

 

+ 𝑧. {∣∣ 𝐹𝐺𝛼 − 𝐺𝛼 ∣∣ + ∣∣ 𝐺𝛼 − 𝛼 ∣∣ } + t ∣∣ 𝐹𝛼 − 𝐺𝛼 ∣∣ 
 

Combining like terms 

 

∣∣ 𝐹𝐺𝛼 − 𝐺𝛼 ∣∣ ≤ (x+ y + z) ∣∣ 𝐺𝛼 − 𝛼 ∣∣ + (y + z) ∣∣ 𝐹𝐺𝛼 − 𝐺𝛼 ∣∣ + ∣∣ 𝐹𝛼 − 𝐺𝛼 ∣∣ 
 

Rewriting, we get  

 

(1 - y - z) ∣∣ 𝐹𝐺𝛼 − 𝐺𝛼 ∣∣ ≤ (x+ y +z) ∣∣ 𝐺𝛼 − 𝛼 ∣∣ + ∣∣ 𝐹𝛼 − 𝐺𝛼 ∣∣ 
 

Assuming from condition 3 

 

 ∣∣ 𝐹𝛼 − 𝐺𝛼 ∣∣ ≤ ∣∣ 𝐹𝛼 − 𝛼 ∣∣ + ∣∣ 𝐺𝛼 − 𝛼 ∣∣ ≤ 2 ∣∣ 𝐹𝛼 − 𝛼 ∣∣ 
 

which implies that 

 

∣∣ 𝐹𝐺𝛼 −  𝐺𝛼 ∣∣ ≤  
𝑥+𝑦+𝑧

1−𝑦−𝑧
 . ∣∣ 𝐺𝛼 − 𝛼 ∣∣  + 

𝑡

1−𝑦−𝑧
 .2 ∣∣ 𝐹𝛼 − 𝛼 ∣∣  (4) 

 

∣∣ 𝐹𝐺𝛼 − 𝐺𝛼 ∣∣ ≤ A ∣∣ 𝐺𝛼 − 𝛼 ∣∣ + B ∣∣ 𝐹𝛼 − 𝛼 ∣∣ 
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Where A = 
𝑥+𝑦+𝑧

1−𝑦−𝑧
, B = 

2𝑡

1−𝑦−𝑧
 

 

Similarly, we have 

 

∣∣ 𝐺𝐹𝛼 −  𝐹𝛼 ∣∣ ≤ ∣∣ 𝐹𝛼 − 𝛼 ∣∣.  (5) 

 

Since 5 holds ∀ 𝛼 in 𝑀, we deduce that 

 

∣∣  𝐹𝐺𝐹𝛼 − 𝐹𝐺𝛼 ∣∣ ≤ ∣∣ 𝐺𝐹𝛼 − 𝐹𝛼 ∣∣, 
 

Which implies, by (3) and (5), that 

 

∣∣ 𝐺𝐺𝐹𝛼 −  𝐺𝐹𝛼 ∣∣ ≤ ∣∣  𝐹𝐺𝐹𝛼 −  𝐺𝐹𝛼 ∣∣ ≤ ∣∣ 𝐹𝛼 −  𝛼 ∣∣ .  (6) 

 

We now define the point 𝛾 by 

 

𝛾 =  
1

2
𝐺𝐹𝛼 +

1

2
𝐺𝐺𝐹𝛼 

 

Then, it follows, from the above inequality, that 

 

2 ∣∣ 𝐺𝐹𝛼 − 𝛾 ∣∣ =  2 ∣∣ 𝐺𝐺𝐹𝛼 − 𝛾 ∣∣ = ∣∣ 𝐺𝐺𝐹𝛼 − 𝐺𝐹𝛼 ∣∣ ≤ ∣∣ 𝐹𝛼 − 𝛼 ∣∣.  (7) 

 

Since 𝑀 is convex, 𝛾 ∈ 𝑀 and using above steps and added the term t ∣∣ 𝐹𝛼 − 𝐺𝛼 ∣∣ we have that 

 

2 ∣∣ 𝐹𝛾 −  𝛾 ∣∣ = ∣∣ 2𝐹𝛾 − (𝐺𝐹𝛼 + 𝐺𝐺𝐹𝛼)  ∣∣ = ∣∣  𝐹𝛾 −  𝐺𝐹𝛼 ∣∣  + ∣∣ 𝐹𝛾 − 𝐺𝐺𝐹𝛼 ∣∣  (8) 

 

Apply the contractive inequality to each term  

 

∣∣ 𝐹𝛾 − 𝐺𝐹𝛼 ∣∣ ≤ 𝑥. ∣∣ 𝛾 − 𝐹𝛼 ∣∣ + 𝑦. {∣∣ 𝐹𝛾 − 𝛾 ∣∣ + ∣∣ 𝐹𝛼 − 𝛼 ∣∣}  
 

+ 𝑧. {∣∣ 𝐹𝛾 − 𝛾 ∣∣ + ∣∣ 𝐹𝛼 −  𝛾 ∣∣ + ∣∣ 𝐺𝐹𝛼 −  𝛾 ∣∣} + t ∣∣ 𝐹𝛾 − 𝐺𝐹𝛾 ∣∣ 
 

∣∣ 𝐹𝛾 − 𝐺𝐺𝐹𝛼 ∣∣ ≤ 𝑥. ∣∣ 𝛾 − 𝐹𝛼 ∣∣ + 𝑦. {∣∣ 𝐹𝛾 − 𝛾 ∣∣ + ∣∣ 𝐹𝛼 − 𝛼 ∣∣}  
 

+ 𝑧. {∣∣ 𝐹𝛾 − 𝛾 ∣∣ + ∣∣ 𝐺𝐹𝛼 −  𝛾 ∣∣ + ∣∣ 𝐺𝐺𝐹𝛼 −  𝛾 ∣∣} + t ∣∣ 𝐹𝛾 − 𝐺𝐹𝛾 ∣∣ 
 

Combining these 

 

2∣∣ 𝐹𝛾 − 𝛾 ∣∣≤  𝑥. ∣∣ 𝐹𝛼 − 𝛾 ∣∣ +∣∣ 𝛾 − 𝐺𝐹𝛼 ∣∣ + 2𝑦. {∣∣ 𝐹𝛾 −  𝛾 ∣∣ + ∣∣ 𝐹𝛼 −  𝛼 ∣∣}  
 

+ 𝑧. {2 ∣∣ 𝐹𝛾 −  𝛾 ∣∣ + ∣∣ 𝐹𝛼 −  𝛾 ∣∣  + 3 ∣∣ 𝐹𝛼 −  𝛼 ∣∣} + 2t ∣∣ 𝐹𝛾 − 𝐺𝛾 ∣∣ 
 

Simplify using the bounds: 

 

∣∣ 𝐹𝛼 − 𝛾 ∣∣ ≤ 
1

2
∣∣ 𝐹𝛼 − 𝛼 ∣∣, ∣∣ 𝐺𝐹𝛼 − 𝛾 ∣∣ ≤ 

1

2
 ∣∣ 𝐹𝛼 −  𝛼 ∣∣, ∣∣ 𝐺𝐺𝐹𝛼 −  𝛾 ∣∣ ≤ 

1

2
 ∣∣ 𝐹𝛼 −  𝛼 ∣∣  (9) 

 

2{∣∣ 𝐹𝛾 − 𝛾 ∣∣ ≤ 𝑥. {2.
1

2
. ∣∣ 𝐹𝛼 − 𝛼 ∣∣} +  2𝑦. {∣∣ 𝐹𝛾 −  𝛾 ∣∣ + ∣∣ 𝐹𝛼 −  𝛼 ∣∣}  +  𝑧. {2 ∣∣ 𝐹𝛾 −  𝛾 ∣∣ + 

1

2
 ∣∣ 𝐹𝛼 −  𝛼 ∣∣

 + 
3

2
 . ∣∣ 𝐹𝛼 −  𝛼 ∣∣} +2t {∣∣ 𝐹𝛾 − 𝐺𝛾 ∣∣ 

 

2{∣∣ 𝐹𝛾 − 𝛾 ∣∣ ≤ x ∣∣ 𝐹𝛼 − 𝛼 ∣∣ + 2y {∣∣ 𝐹𝛾 −  𝛾 ∣∣ + ∣∣ 𝐹𝛼 −  𝛼 ∣∣} + z {2 ∣∣ 𝐹𝛾 −  𝛾 ∣∣ + 2 ∣∣ 𝐹𝛼 −  𝛼 ∣∣ + 2t ∣∣ 𝐹𝛾 − 𝐺 𝛾 ∣
∣ 
∣∣ 𝐹𝛾 − 𝐺𝛾 ∣∣ ≤ ∣∣ 𝐹𝛾 − 𝛾 ∣∣ + ∣∣ 𝐺𝛾 − 𝛾 ∣∣ ≤ 2 ∣∣ 𝐹𝛾 − 𝛾 ∣∣ +∣∣ 𝐹𝛼 − 𝛼 ∣∣ 
 

2 ∣∣ 𝐹𝛾 −  𝛾 ∣∣ ≤ 𝑥 . (2 − 𝑦) . ∣∣ 𝐹𝛼 − 𝛼 ∣∣  +2𝑦 . {∣∣ 𝐹𝛼 −  𝛼 ∣∣  + ∣∣ 𝐹𝛾 −  𝛾 ∣∣} +  𝑧 . {2 ∣∣  𝐹𝛾 −  𝛾 ∣∣  + (3 −  𝑦) . ∣
∣  𝐹𝛼 −  𝛼 ∣∣}. 

 
2 ∣∣ 𝐹𝛾 −  𝛾 ∣∣ ≤ (x +2y +2z +2t) ∣∣ 𝐹𝛼 − 𝛼 ∣∣ +(2y +2z +4t) ∣∣ 𝐹𝛾 − 𝛾 ∣∣ 
 

(2-2y-2z-4t) ∣∣ 𝐹𝛾 − 𝛾 ∣∣ ≤ (x +2y +2z +2t) ∣∣ 𝐹𝛼 − 𝛼 ∣∣ 
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Consequently, we have that 

 

∣∣ 𝐹𝛾 − 𝛾 ∣∣ ≤  𝛿 . ∣∣ 𝐹𝛼 −  𝛼 ∣∣,  (10) 

 

Where 

 

𝛿 =  
𝑥 +  2𝑦 + 2𝑧 +  2𝑡 

2 − 2𝑦 − 2𝑧 − 4𝑡
 𝑥 +  2𝑦 + 2𝑧 +  2𝑡 < 1 ⇒ 𝛿 < 1 

 

It follows that 0 <  𝛿 <  1 based on the assumptions made about the constants 𝑥, 𝑦, 𝑧 𝑎𝑛𝑑 𝑡. Specifically that x + 2y + 2z + 2t 

<1 We claim that 

 

 ℎ =  𝑖𝑛𝑓{∣∣ 𝐹𝛼 −  𝛼 ∣∣∶  𝛼 ∈ 𝑀}  =  0,  

 

suppose for the contradiction that h > 0 then for any 0 < 𝜀 <  
(1−𝛿).ℎ

𝛿
, there exists a point 𝛼̅∈𝑀 such that ∣∣ 𝐹𝛼̅  −  𝛼̅ ∣∣ ≤  (ℎ+∈) 

then from above inequality we have  

 

h ≤ ∣∣  𝐹𝛾 −  𝛾 ∣∣ ≤ δ ∣∣  𝐹𝛼̅  −  𝛼̅ ∣∣ ≤ δ (h +ε) < h, 

 

which is a contradiction . therefore the assumption h > 0 must be false and we conclude a Thus ℎ = 0 and the sets 

 

ℍ𝑛  =  {𝛼 ∈  𝑀 ∶  {∣∣ 𝐹𝛼 −  𝛼 ∣∣ <  
1

𝑛
}} 

 

are non-empty for any 𝑛 =  1, 2, … ;  
 

Now we have, 

 

(11) ℍ1 ⊇ ℍ2 ⊇ . . . . . ⊇ ℍ𝑛 ⊇ . . . ..  
 

Let ℍ𝑛 be the closure of ℍ𝑛. We now show that 

 

(12) diam ℍ𝑛 ≤  
(3 −𝑥)

2𝑦𝑛
 for any 𝑛 =  1, 2, … … . Indeed, we obtain on using (2)withadded term t ∣∣ 𝐹𝛼 −  𝐺𝛼 ∣∣ . 

 

∣∣ 𝛼 − 𝛽 ∣∣ ≤ ∣∣ 𝐹𝛼 −  𝛼 ∣∣ + ∣∣ 𝐹𝛼 − 𝛽 ∣∣ 
 

 ≤ ∣∣ 𝐹𝛼 −  𝛼 ∣∣ + ∣∣ 𝐺𝛽 − 𝛽 ∣∣ + ∣∣ 𝐹𝛼 −  𝐺𝛽 ∣∣ 
 

∣∣ 𝐹𝛼 −  𝐺𝛽 ∣∣ ≤ x ∣∣ 𝛼 −  𝛽 ∣∣ + y ∣∣ 𝐹𝛼 −  𝛼 ∣∣ + ∣∣ 𝐺𝛽 −  𝛽 ∣∣ + z(∣∣ 𝐹𝛼 −  𝛼 ∣∣  + ∣∣ 𝛼 −  𝛽 ∣∣ + ∣∣ 𝐺𝛽 −  𝛽 ∣∣ + ∣∣ 𝛼 −
 𝛽 ∣∣ +𝑡 ∣∣ 𝐹𝛼 −  𝐺𝛼 ∣∣ 
 

We know ∣∣ 𝐹𝛼 −  𝛼 ∣∣ <
1

𝑛
, ∣∣ 𝐺𝛽 −  𝛽 ∣∣ ≤ ∣∣ 𝐹𝛽 −  𝛽 ∣∣ <

1

𝑛
 and ∣ 𝐹𝛼 −  𝐺𝛼 ∣∣ 

 

≤ ∣∣ 𝐹𝛼 −  𝛼 ∣∣ + ∣∣ 𝐺𝛼 −  𝛼 ∣∣ ≤
2

𝑛
 so, ≤

2

𝑛
 + 𝑥 . ∣∣ 𝛼 − 𝛽 ∣∣  + 𝑦 . {∣∣ 𝐹𝛼 − 𝛼 ∣∣ + ∣∣ 𝐺𝛽 − 𝛽 ∣∣} + 𝑧 . {∣∣ 𝐹𝛼 − 𝛼 ∣∣ + ∣∣ 𝛼 −

𝛽 ∣∣ + ∣∣ 𝐺𝛽 − 𝛽 ∣∣ + ∣∣ 𝛼 − 𝛽 ∣∣} 

 

≤
2

𝑛
 + (𝑥 + 2𝑧) . ∣∣ 𝛼 − 𝛽 ∣∣  + 

(2𝑦+2𝑧)

𝑛
 + 

2𝑡

𝑛
 

 

∣∣ 𝛼 −  𝛽 ∣∣=
(3 − 𝑥)

𝑛
 + (1 − 2𝑦) . ∣∣ 𝛼 − 𝛽 ∣∣  

 

By equation (3) ∣∣  𝐺𝛽 − 𝛽 ∣∣ ≤ ∣∣ 𝐹𝛽 − 𝛽 ∣∣ ≤  
1

𝑛
 . By above inequality (12)  

𝑑𝑖𝑎𝑚 ℍ𝑛 = 𝑑𝑖𝑎𝑚 ℍ𝑛 and clearly it follows from (11) that 

 

ℍ1 ⊇ ℍ2 ⊇ . . . . . ⊇ ℍ𝑛 ⊇ . . . ..  
 

The series 𝑑𝑖𝑎𝑚 ℍ𝑛 converges to zero as 𝑛 →  ∞ by (12), indicating that {ℍ𝑛} is a decreasing sequence of non-empty subsets 

of 𝑀. Cantor's intersection theorem states that since 𝑋 and 𝑀 are complete, there is a point 𝑤 in 𝑀 such that  
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𝑤 ∈ ⋂ ℍ𝑛

∞

𝑛=1
. 

 

Accordingly, ∣∣  𝐹𝑤 −  𝑤 ∣∣ ≤  
1

𝑛
 for any 𝑛 =  1, 2, … …, and so 𝐹𝑤 =  𝑤, By using (3), we have 𝐺𝑤 =  𝑤. Then, 𝑤 is a fixed 

point that both 𝐹 and 𝐺 share. Assume that 𝑤’ is an additional fixed point of 𝐹. With (2) applied to 𝛼 = 𝑤 𝑎𝑛𝑑 𝛽 = 𝑤’ we 

obtain that  

 

∣∣ 𝑤’ −  𝑤 ∣∣ = ∣∣ 𝐹𝑤’ − 𝐺𝑤 ∣∣≤  𝑥 . ∣∣ 𝑤’ − 𝑤 ∣∣  + 𝑧 . {∣∣ 𝑤’ − 𝑤 ∣∣ + ∣∣ 𝑤 −  𝑤’ ∣∣} +t ∣∣ 𝐹𝑤 −  𝐺𝑤 ∣∣ 
 

=  (𝑥 +  2𝑧) . ∣∣ 𝑤’ −  𝑤 ∣∣.  
 

This implies that 𝑤’ =  𝑤 since 𝑥 +  2𝑧 < 1. 

 

(1 -x- 2z) ∣∣ 𝑤 −  𝑤’ ∣∣ ≤ 0 = ∣∣ 𝑤 −  𝑤’ ∣∣ = 0 = w = 𝑤’ 
 

 Therefore 𝑤 is the unique fixed point of 𝐹 and similarly it is shown that 𝑤 is the unique fixed point of 𝐺. This completes the 

proof. 

 

Remark 

Theorem 5.3.1 becomes theorem 1 if 𝐹 =  𝐺 and 𝑧 =  0 are assumed.  

 

The following outcome is obtained by enunciating theorem 5.3.1 for certain iterates of 𝐹 and 𝐺.  

 

1.4 Theorem 

Let F and G be self maps on a non empty closed convex subset M of a Banach space (𝑋, || . ||). Assume there exist constant 

𝑥, 𝑦, 𝑧, 𝑡 ≥  0 satisfying 𝑥 + 2𝑦 + 2𝑧 + 2𝑡 < 1, and integers 𝑢, 𝑣 ∈ 𝑁 such that for all 𝛼, 𝛽 ∈ 𝑀, the inequality holds: 

 

∣∣ 𝐹𝑢𝛼 −  𝐺𝑣𝛽 ∣∣ ≤  𝑥 ∣∣ 𝛼 − 𝛽 ∣∣ + 𝑦 (∣∣ 𝐹𝑢𝛼 − 𝛼 ∣∣ + ∣∣ 𝐺𝑣𝛽 −  𝛽 ∣∣) + 𝑧 (∣∣ 𝐹𝑢𝛼 − 𝛽 ∣∣ + ∣∣ 𝐺𝑣𝛽 − 𝛼 ∣∣)  +  𝑡 ∣
∣ 𝐹𝑢𝛼 − 𝐺𝑣𝛼 ∣∣.  

 

Assume also that: 

 

∣∣ 𝐺𝑣𝛽 − 𝛼 ∣∣ ≤ ∣∣ 𝐹𝑢𝛼 − 𝛼 ∣∣ ∀ 𝛼 ∈ 𝑀. 
 

Then F and G have a unique common fixed point 𝑤 ∈ 𝑀. 
 

Proof:  

Let 

 

𝐹̃(𝛼): = 𝐹𝑢𝛼, 𝐺̃(𝛼): = 𝐺𝑣𝛼.  
 

Then the contractive inequality becomes 

 

∣∣ 𝐹̃(𝛼) − 𝐺̃(𝛽) ∣∣ ≤  𝑥 ∣∣ 𝛼 − 𝛽 ∣∣ + 𝑦 (∣∣ 𝐹̃(𝛼) − 𝛼 ∣∣ + ∣∣ 𝐺̃(𝛽)  −  𝛽 ∣∣) + 𝑧 (∣∣ 𝐹̃(𝛼) − 𝛽 ∣∣ + ∣∣ 𝐺̃(𝛽)  − 𝛼 ∣∣)  +  𝑡 ∣
∣ 𝐹̃(𝛼) − 𝐺̃(𝛼) ∣∣.  

 

Also, the assumption becomes 

 

∣∣ 𝐺̃(𝛽)  − 𝛼 ∣∣ ≤ ∣∣ 𝐹̃(𝛼) − 𝛼 ∣∣  ∀ 𝛼 ∈ 𝑀. 
 

Since all the assumptions of the earlier theorem (which included the term 𝑡 ∣∣ 𝐹̃(𝛼) − 𝐺̃(𝛼) ∣∣) are satisfied: 

M is closed and convex in a Banach space. The inequality is satisfied with constants 𝑥, 𝑦, 𝑧, 𝑡 such that 𝑥 + 2𝑦 + 2𝑧 + 2𝑡 < 1, 
The dominance condition ∣∣ 𝐺̃(𝛽)  − 𝛼 ∣∣ ≤ ∣∣ 𝐹̃(𝛼) − 𝛼 ∣∣ holds; 

 

we conclude from that theorem that there exists a unique point 𝑤 ∈ 𝑀 such that: 

 

𝐹̃(𝑤) = 𝑤 = 𝐺̃(𝑤). 
 

So, 

 

𝐹𝑢(𝑤) =  𝑤 = 𝐺𝑣(𝑤) 
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We will prove that w is also a fixed point of F and G  

From 𝐹𝑢(𝑤) =  𝑤, apply 𝐹 repeatedly: 

 

𝐹𝑢(𝑤) = 𝐹𝑢−1(𝐹(𝑤)) = 𝑤 ⟹ 𝐹(𝑤) = 𝐹𝑢(𝑤) = 𝑤. 
 

Similarly, 𝐺(𝑤) = 𝐺𝑣(𝑤) = 𝑤. 
So, 𝑤 is a fixed point of 𝐹 and 𝐺. 

For uniqueness of fixed point Suppose 𝑤′ ∈ 𝑀 is another point such that 𝐹(𝑤′) = 𝑤′, 𝐺(𝑤′) = 𝑤′. 
Then: 

 

𝐹𝑢(𝑤′) = 𝑤′, 𝐺𝑣(𝑤) = 𝑤′. 
 

Apply the contractive inequality with 𝛼 = 𝑤, 𝛽 = 𝑤′ 

 

∣∣ 𝑤 − 𝑤′ ∣∣ = ∣∣ 𝐹𝑢(𝑤) −  𝐺𝑣(𝑤′) ∣∣ ≤  𝑥 ∣∣ 𝑤 − 𝑤′ ∣∣ + 𝑦 (0 + 0) + 𝑧 (∣∣ 𝑤 − 𝑤′ ∣∣ + ∣∣ 𝑤′  − 𝑤 ∣∣)  +  𝑡 ∣
∣ 𝐹𝑢(𝑤)  −  𝐺𝑣(𝑤) ∣∣. 

 

But since 𝑤 and 𝑤’ are fixed points 

 

𝐹𝑢(𝑤) = 𝐺𝑣(𝑤) = 𝑤, 𝐹𝑢(𝑤′) = 𝐺𝑣(𝑤′) = 𝑤′,  
 

so ∣∣ 𝐹𝑢(𝑤) −  𝐺𝑣(𝑤) ∣∣ = 0, and the inequality becomes 

 

∣∣ 𝑤 −  𝑤′ ∣∣ ≤ (𝑥 + 2𝑧) (∣∣ 𝑤 −  𝑤′ ∣∣. 
 

Since 𝑥 + 2𝑧 < 1 (as implied by 𝑥 + 2𝑦 + 2𝑧 + 2𝑡 < 1), it follows that 

 

(1 − 𝑥 − 2𝑧) ∣∣ 𝑤 − 𝑤′ ∣∣ ≤ 0 ⟹  (∣∣ 𝑤 − 𝑤′ ∣∣ = 0 ⟹ 𝑤 =  𝑤′. 
 

So the fixed point is unique. Under the given assumptions, the mappings F and G have a unique common fixed point 𝑤 ∈ 𝑀, 
and 𝐹(𝑤) = 𝑤 =  𝐺(𝑤). The following example shows the stronger generality of theorem 5.3.3 over theorem 5.3.2. 

 

Example 

Let 𝑋 be the Banach space of reals with Euclidean norm and 𝑀 =  [0,2]. We define 𝐹 and 𝐺 by putting 𝐹𝛼 =  0 𝑖𝑓 0 ≤  𝛼 <

1, 𝐹𝛼 =  
3

5
 𝑖𝑓 1 ≤  𝛼 ≤  2, 𝐺𝛼 = 0 𝑖𝑓 0 ≤  𝛼 < 2 𝑎𝑛𝑑 𝐺𝛼 =  

9

5
 Then the condition (2) of theorem 5.2.1does not hold, 

otherwise, we should have for 𝛼 = 1 and 𝛽 = 2  

 
6

5
 = ∣∣ 𝐹1 − 𝐺2 ∣∣ ≤  𝑥. ∣∣ 2 −  1 ∣∣ + 𝑦. {∣∣ 1 − 

3

5
∣∣ + ∣∣ 2 − 

9

5
∣∣}  +  𝑧. {∣∣  

9

5
 − 1 ∣∣  + ∣∣ 2 −  

3

5
∣∣}  

 

=  𝑥 + 
3𝑦

5
 +  

11𝑧

5
 

 

 = 1 − 2𝑦 − 2𝑧 + 
3𝑦

5
 +  

11𝑧

5
 

 

Which implies 
1

5
+

7𝑦

5
≤  

𝑧

5
, 𝑖. 𝑒, 1 +  7𝑦 ≤  𝑧, a contradiction. However, the conditions of theorem 5.3.3 are trivially satisfied 

for 𝑢 =  𝑣 =  2 since 𝐹2𝛼 = 𝐺2𝛼 = 0 for all 𝛼 in 𝑀. 

Although the contradictive condition used in this chapter is more general than (2), we explicitly note that the results for 𝐹 =  𝐺 

are not comparable to the results where the additional assumptions on the coefficients and the uniform convexity of 𝑋 neither 

imply nor are implied by the assumptions of theorem 5.3.2. 
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