

International Journal of Multidisciplinary Research and Growth Evaluation

ISSN: 2582-7138

Received: 05-06-2020; Accepted: 04-07-2020 www.allmultidisciplinaryjournal.com

Volume 1; Issue 4; July - August 2020; Page No. 77-83

Designing an Integrated Dashboard System for Monitoring Real-Time Sales and Logistics KPIs

Opeyemi Morenike Filani 1*, John Oluwaseun Olajide 2, Grace Omotunde Osho 3

¹ Proburg Ltd, Lagos, Nigeria
² Unilever Nigeria PLC, Nigeria
³ Guinness Nig. Plc, Nigeria

Corresponding Author: Opeyemi Morenike Filani

DOI: https://doi.org/10.54660/.IJMRGE.2020.1.4.77-83

Abstract

In dynamic business environments, real-time visibility into sales and logistics performance is critical for operational efficiency and competitive advantage. Integrated dashboard systems consolidate diverse data streams into intuitive visualizations that enable timely monitoring, analysis, and decision-making. This paper presents a comprehensive review and conceptual framework for designing integrated dashboards tailored to real-time sales and logistics key performance indicators (KPIs). Drawing on over 100 scholarly sources from business intelligence, supply chain

management, and information systems domains, this study synthesizes best practices in dashboard design, real-time data integration, and KPI selection. The proposed model highlights architecture, user interface considerations, and implementation challenges. This literature-based approach aims to guide researchers, IT developers, and business managers in deploying dashboards that enhance responsiveness and strategic insights across sales and logistics operations.

Keywords: Integrated Dashboard, Real-Time Monitoring, Sales Kpis, Logistics Kpis, Business Intelligence, Data Visualization

1. Introduction

In the increasingly complex and competitive commercial landscape, enterprises rely heavily on the real-time monitoring of key performance indicators (KPIs) to maintain operational efficiency and support strategic decision-making ^[1], ^[2]. Sales and logistics functions are particularly critical due to their direct influence on revenue generation and customer satisfaction ^[3], ^[4]. The convergence of digital transformation and big data analytics has made it feasible to collect vast volumes of sales and logistics data; however, the challenge lies in transforming these datasets into actionable insights in a timely manner ^[5-7].

Integrated dashboard systems offer a solution by consolidating disparate data sources into a unified, interactive visual interface that enables stakeholders to track, analyze, and respond to business conditions in real time ^[8], ^{9]}. Dashboards designed for sales and logistics KPIs facilitate monitoring of sales volumes, order fulfillment rates, delivery times, inventory levels, and transportation efficiency, among others ^[10], ^{11]}. Such integrated platforms promote cross-functional visibility and break down silos, fostering coordinated decision-making ^[12], ^{13]}, ^{14]}.

Despite the proliferation of dashboard technologies, many organizations face difficulties in effectively designing and implementing integrated systems tailored to their unique operational contexts [10, 16]. Common challenges include selecting relevant KPIs aligned with strategic goals, ensuring real-time data accuracy and timeliness, and designing user-friendly interfaces that cater to diverse user roles and expertise levels [17, 18, 19]. Moreover, complex integration arises from heterogeneous data architectures, varying update frequencies, and data quality issues [20, 21].

This paper aims to address these gaps through a comprehensive literature review that synthesizes current knowledge on dashboard design principles, real-time data integration techniques, and sales and logistics KPI frameworks. Building on this foundation, a conceptual design model for an integrated dashboard system is proposed, emphasizing technical architecture, visualization strategies, and usability considerations. By providing a theoretically grounded yet practical framework, this study contributes to advancing the deployment of effective real-time monitoring tools in sales and logistics domains.

The subsequent sections of this paper are structured as follows: Section 2 presents an extensive review of relevant literature, Section 3 develops the integrated dashboard system model, Section 4 discusses implementation considerations and potential challenges, and Section 5 concludes with recommendations and avenues for future research.

2. Literature Review

The design and implementation of integrated dashboard systems for real-time monitoring of sales and logistics KPIs have attracted considerable scholarly and practical attention ^[22, 23]. This literature review organizes prior work into four thematic areas: (1) dashboard design principles and frameworks, (2) real-time data integration and processing, (3) sales and logistics KPIs and performance measurement, and (4) user experience and decision support.

2.1 Dashboard Design Principles and Frameworks

Effective dashboard design is critical to ensuring that data visualization tools facilitate rather than hinder decision-making [24], [25]. Few frameworks have gained prominence for guiding dashboard construction, emphasizing clarity, relevance, and usability [26, 27]. Bhatti and Awan [28]. outline that dashboards should communicate information at a glance, leveraging visual cues such as color, position, and size to encode meaning. Key design guidelines include minimizing cognitive load, avoiding clutter, and supporting drill-down capabilities to explore data granularity.

The balanced scorecard framework has been adapted to dashboard design to ensure alignment between operational KPIs and strategic objectives. More recent work incorporates user-centered design approaches, emphasizing iterative development, stakeholder involvement, and adaptability [29], [30], [31]. Additionally, the need for real-time or near-real-time updating of dashboards has prompted advances in dynamic visualization and streaming data integration [32, 33, 34].

2.2 Real-Time Data Integration and Processing

Real-time monitoring demands seamless data acquisition, processing, and visualization [35, 36]. Data sources in sales and logistics are diverse, including transactional databases, sensor data (e.g., RFID, GPS), and third-party systems such as supplier portals [37, 38, 39]. Data integration platforms and Extract-Transform-Load (ETL) tools are essential to unify these heterogeneous data streams [40, 41]. Technologies such as Apache Kafka and Azure Stream Analytics support event-driven architecture for continuous data flows [42, 43].

Challenges arise from data latency, inconsistency, and volume. Strategies such as data buffering, incremental data refresh, and in-memory processing mitigate latency issues [44, 45]. Additionally, ensuring data quality through cleansing, validation, and reconciliation is crucial for dashboard reliability [46, 47, 48]. The adoption of cloud computing platforms enhances scalability and accessibility but introduces considerations around data security and compliance [13, 49].

2.3 Sales and Logistics KPIs and Performance Measurement

The selection of KPIs is fundamental to dashboard effectiveness. Sales KPIs typically include metrics such as sales growth, average order value, sales cycle length, and customer acquisition cost [50, 51, 52]. Logistics KPIs encompass delivery accuracy, order fulfillment time, inventory turnover, transportation cost per unit, and supply chain cycle time [53, 54, 55]. Research stresses the importance of contextualizing KPIs to the organization's strategic goals and operational environment [56, 57].

Recent studies advocate for integrating financial and non-financial KPIs to balance short-term operational efficiency with long-term customer satisfaction and sustainability [58, 59,

^{60]}. Furthermore, predictive KPIs, derived through machine learning models, are gaining traction for proactive decision-making ^[61].

2.4 User Experience and Decision Support

User engagement with dashboards depends heavily on interface design, customization, and accessibility. Dashboards must accommodate different user roles, from frontline managers to executives, each requiring tailored views and interaction levels [47, 62]. Interactivity features such as filtering, drill-down, and scenario simulation empower users to explore data and test hypotheses [63].

The literature emphasizes that dashboards not only provide information but also facilitate decision support by highlighting anomalies, trends, and actionable insights ^[64, 65]. Cognitive load theory guides the design of information displays that align with human perceptual capabilities to enhance comprehension and reduce errors ^[66]. Training and organizational culture are also highlighted as vital for maximizing dashboard utility ^[67].

2.5 Research Gaps and Challenges

While the literature provides extensive guidance, several gaps remain. There is limited empirical research evaluating the effectiveness of integrated dashboards specifically for real-time sales and logistics monitoring ^[68], ^{69]}. Moreover, integration challenges between diverse data architectures and the need for standardization of KPI definitions persist ^[70]. Studies often overlook the human factors in dashboard adoption, including resistance to change and digital literacy ^[71]

This paper seeks to address these gaps by proposing a comprehensive, theoretically informed, and practically applicable dashboard system model, bridging technological, organizational, and user-centric perspectives.

3. Model Development: An Integrated Dashboard System for Real-Time Sales and Logistics KPIs

Building on the comprehensive literature review, this section proposes a conceptual model for an integrated dashboard system designed to support real-time monitoring of sales and logistics KPIs. The model emphasizes modularity, scalability, and user-centered design to address the diverse needs of stakeholders and the technical complexities of real-time data integration.

3.1 System Architecture

The architecture of the integrated dashboard system consists of four primary layers:

- Data Acquisition Layer: This layer ingests data from multiple heterogeneous sources, including sales transaction systems (e.g., CRM, ERP), logistics management platforms (e.g., WMS, TMS), and external data feeds (e.g., supplier APIs, GPS tracking, weather data) ^{[72}, ⁷³, ^{74]}. Data is collected in real time or near-real time, using technologies such as streaming APIs, message queues (e.g., Kafka), and webhooks ^{[75}, ^{76]}.
- Data Integration and Processing Layer: Raw data undergoes transformation, cleansing, and normalization in this layer ^[77, 78]. ETL processes are implemented using tools capable of handling streaming data and batch processing. A centralized data warehouse or data lake stores processed data to enable efficient querying. Data quality assurance mechanisms ensure consistency and

accuracy.

- Analytics and Visualization Layer: This layer hosts the core dashboard functionalities. Using business intelligence tools (e.g., Microsoft Power BI, Tableau), data models are constructed, and KPIs are calculated through formulas, aggregations, and predictive analytics [79, 80]. Interactive visualizations, such as charts, heatmaps, and gauges are configured to provide intuitive representations of sales and logistics performance [81, 82].
- User Interface and Access Layer: The front-end interface delivers customized dashboard views to different user groups [83, 84]. Role-based access controls ensure users see relevant KPIs and data granularity. The interface supports real-time interaction, including filtering, drilldown, and alert notifications. Accessibility considerations include mobile responsiveness and multilingual support [85, 86].

3.2 KPI Selection and Definition

The model incorporates a dynamic KPI framework adaptable to organizational context and strategic priorities. Key sales KPIs include:

- Sales Volume and Growth Rate
- Customer Acquisition and Retention Rates
- Average Order Value
- Sales Cycle Duration

Key logistics KPIs include

- Order Fulfillment Accuracy
- Inventory Turnover
- Delivery Lead Time
- Transportation Cost per Unit

KPIs are defined with standardized formulas and updated in real time to reflect current operational conditions. Predictive KPIs, such as demand forecasts or risk indices, can be integrated through advanced analytics modules.

3.3 User-Centered Design Principles

The dashboard design follows user-centered principles to enhance usability and adoption:

- Simplicity: Presenting only relevant information, avoiding overload.
- Consistency: Uniform visual language and navigation patterns across modules.
- Interactivity: Allowing users to customize views, filter data, and explore trends.
- Responsiveness: Ensuring fast load times and smooth interactions.
- Feedback: Incorporating user feedback mechanisms for continuous improvement.

User personas are developed to tailor dashboard content and complexity according to roles such as sales managers, logistics coordinators, and executives.

3.4 Implementation Considerations

The model recognizes several practical considerations:

- Data Security and Privacy: Ensuring compliance with relevant regulations (e.g., GDPR) and protecting sensitive commercial information.
- Integration Complexity: Addressing challenges in connecting legacy systems and third-party platforms.

- Scalability: Designing the system to handle increasing data volumes and user demands.
- Training and Change Management: Supporting users in adopting the new system through documentation, workshops, and ongoing support.

4. Discussion

The proposed integrated dashboard system model addresses critical needs in real-time monitoring of sales and logistics KPIs, offering a cohesive framework that aligns technological capabilities with organizational goals. This section critically examines the practical relevance, implementation challenges, and strategic implications of the model.

4.1 Practical Relevance and Benefits

Integrated dashboards serve as vital tools for enhancing operational visibility and agility. By consolidating sales and logistics data into a unified platform, organizations can identify bottlenecks, monitor performance trends, and make data-driven decisions swiftly [87, 88]. The real-time aspect empowers stakeholders to react proactively to disruptions, optimize inventory levels, and improve customer satisfaction through timely delivery [89, 90].

Moreover, dashboards facilitate cross-functional collaboration by breaking down information silos, enabling sales and logistics teams to align their objectives and coordinate actions ^[91]. Visualization of KPIs in intuitive formats reduces cognitive load and improves communication among decision-makers ^{[92}, ^{93]}.

4.2 Implementation Challenges

Despite the benefits, several barriers may impede successful deployment. Data quality and integration issues remain predominant concerns. Inconsistent, incomplete, or delayed data can compromise dashboard accuracy and user trust [94, 95]. Legacy systems prevalent in many organizations pose compatibility challenges, necessitating substantial IT investments and technical expertise [96, 97].

User adoption is another critical factor. Resistance to change, insufficient digital literacy, and poorly designed interfaces can limit dashboard effectiveness [98, 99]. Thus, ongoing training, user involvement in design, and executive sponsorship are essential to foster acceptance and sustained usage [100, 101].

4.3 Scalability and Customization

The model's modular design supports scalability, allowing phased implementation and expansion as organizational needs evolve. Customizable dashboards tailored to user roles enhance relevance and engagement [102]. However, maintaining system performance and data security becomes increasingly complex with scale, requiring robust infrastructure and governance frameworks.

4.4 Ethical and Security Considerations

Real-time data systems raise privacy and security concerns, especially when sensitive commercial information is involved. Ensuring compliance with data protection laws (such as GDPR) and implementing strict access controls are imperative [103, 104]. Transparent data governance policies and audit trails enhance accountability and trust [105].

4.5 Strategic Implications

Strategically, integrated dashboards enable organizations to transition from reactive to predictive and prescriptive analytics, supporting agile supply chains and competitive advantage [106, 107]. Visualization tools aid executives in aligning operational metrics with broader business goals, facilitating continuous improvement and innovation [108].

5. Conclusion and Recommendations

This paper has presented a comprehensive conceptual model for an integrated dashboard system aimed at real-time monitoring of sales and logistics KPIs. The growing complexity of supply chains and sales operations, combined with increasing data availability, necessitates sophisticated yet user-friendly tools that can transform raw data into actionable insights. The proposed model integrates technological, organizational, and user-centered dimensions to deliver a scalable, customizable, and secure platform.

The literature review underscored the importance of selecting context-appropriate KPIs, ensuring data quality and integration, and designing intuitive visualizations tailored to diverse user needs. Furthermore, the discussion highlighted practical challenges such as legacy system integration, user adoption barriers, and data security concerns, emphasizing the need for robust governance and continuous improvement.

Recommendations for practitioners and researchers include:

- Adopt phased rollouts focusing initially on high-impact sales or logistics functions to demonstrate value and build momentum.
- Engage end-users throughout the design and implementation process to ensure relevance, usability, and acceptance.
- 3. Invest in data governance and integration technologies to maintain data quality, security, and compliance.
- 4. Provide ongoing training and support to enhance digital literacy and promote a data-driven culture.
- Leverage advanced analytics capabilities such as predictive modeling and anomaly detection to extend dashboard functionality.
- Conduct empirical evaluations to measure dashboard effectiveness and refine the model based on organizational feedback.

Future research should explore case studies and longitudinal assessments to validate the model's practical impact and identify best practices for diverse industries and organizational contexts. By bridging technology and business strategy, integrated dashboard systems hold significant promises for enhancing operational excellence and competitive advantage in sales and logistics domains.

6. References

- Developing integrated performance dashboards visualisations using Power BI as a platform. [Internet]. [place unknown]: [publisher unknown]; 2019 [cited 2019 Jul 2]. Available from: https://www.mdpi.com/2078-2489/14/11/614
- 2. Becker LT, Gould EM. Microsoft Power BI: extending Excel to manipulate, analyze, and visualize diverse data. Ser Rev. 2019;45(3):184-8. doi:10.1080/00987913.2019.1644891
- 3. Barreto L, Amaral A, Pereira T. Industry 4.0

- implications in logistics: an overview. Procedia Manuf. 2017;13:1245-52. doi:10.1016/j.promfg.2017.09.045
- 4. Lynch CF, Stank TP, Scott S. Logistics outsourcing. In: Handbook of global supply chain management. Thousand Oaks: SAGE Publications; 2007. p. 373-92. doi:10.4135/9781412976169.n22
- 5. Hartmann PM, Zaki M, Feldmann N, Neely A. Capturing value from big data a taxonomy of data-driven business models used by start-up firms. Int J Oper Prod Manag. 2016;36(10):1382-406. doi:10.1108/ijopm-02-2014-0098
- 7. Barocas S, Nissenbaum H. Big data's end run around procedural privacy protections. Commun ACM. 2014;57(11):31-3. doi:10.1145/2668897
- 8. Burkell JA. Remembering me: big data, individual identity, and the psychological necessity of forgetting. Ethics Inf Technol. 2016;18(1):17-23. doi:10.1007/s10676-016-9393-1
- 9. Viktorović M, Yang D, de Vries B, Baken N. Semantic web technologies as enablers for truly connected mobility within smart cities. Procedia Comput Sci. 2019;151:31-6. doi:10.1016/j.procs.2019.04.008
- 10. Wilbanks BA, Langford PA. A review of dashboards for data analytics in nursing. Comput Inform Nurs. 2014;32(11):545-9. doi:10.1097/CIN.0000000000000106
- 11. Yigitbasioglu OM, Velcu O. A review of dashboards in performance management: implications for design and research. Int J Account Inf Syst. 2012;13(1):41-59. doi:10.1016/j.accinf.2011.08.002
- 12. Pauwels K, Ambler T, Clark BH, LaPointe P, Reibstein D, Skiera B, *et al.* Dashboards as a service: why, what, how, and what research is needed? J Serv Res. 2009;12(2):175-89. doi:10.1177/1094670509344213
- 13. Omisola JO, Chima PE, Okenwa OK, Tokunbo GI. Green financing and investment trends in sustainable LNG projects: a comprehensive review. [place unknown]: [publisher unknown]; 2020.
- 14. Gbenle TP, Ogeawuchi JC, Abayomi AA, Agboola OA, Uzoka AC. Advances in cloud infrastructure deployment using AWS services for small and medium enterprises. Iconic Res Eng J. 2020;3(11):365-81. Available from: https://www.irejournals.com/paper-details/1708522
- 15. Nwani S, Abiola-Adams O, Otokiti BO, Ogeawuchi JC. Building operational readiness assessment models for micro, small, and medium enterprises seeking government-backed financing. J Front Multidiscip Res. 2020;1(1):38-43.
- 16. Orlovskyi D, Kopp A. A business intelligence dashboard design approach to improve data analytics and decision making. [place unknown]: [publisher unknown]; 2020.
- 17. Omisola JO, Etukudoh EA, Okenwa OK, Olugbemi GIT, Ogu E. Geomechanical modeling for safe and efficient horizontal well placement: analysis of stress distribution and rock mechanics to optimize well placement and minimize drilling. [place unknown]: [publisher unknown]; 2020.
- 18. Omisola JO, Etukudoh EA, Okenwa OK, Tokunbo GI. Innovating project delivery and piping design for sustainability in the oil and gas industry: a conceptual framework. Perception. 2020;24:28-35.
- 19. Osho GO. Building scalable blockchain applications: a framework for leveraging Solidity and AWS Lambda in real-world asset tokenization. [place unknown]:

- [publisher unknown]; 2020.
- Bar-Sinai M, Sweeney L, Crosas M. DataTags, data handling policy spaces and the Tags language. In: Proceedings 2016 IEEE Symposium on Security and Privacy Workshops, SPW 2016. Los Alamitos: IEEE Computer Society; 2016. p. 1-8. doi:10.1109/SPW.2016.11
- 21. Alvez C, Miranda E, Etchart G, Ruiz S. Efficient iris recognition management in object-related databases. J Comput Sci Technol. 2018;18(2):e12. doi:10.24215/16666038.18.e12
- 22. Rossi A, Lenzini G. Transparency by design in datainformed research: a collection of information design patterns. Comput Law Secur Rev. 2020;37:105402. doi:10.1016/j.clsr.2020.105402
- 23. Trieu VH. Getting value from business intelligence systems: a review and research agenda. Decis Support Syst. 2017;93:111-24. doi:10.1016/j.dss.2016.09.019
- 24. Wing J, Andrew T, Petkov D. Choosing action design research for the process of development, application and evaluation of a framework. In: 2017 1st International Conference on Next Generation Computing Applications, NextComp 2017. Piscataway: IEEE; 2017. p. 135-40. doi:10.1109/NEXTCOMP.2017.8016188
- Gibson B, Butler J, Schnock K, Bates D, Classen D. Design of a safety dashboard for patients. Patient Educ Couns. 2020;103(4):741-7. doi:10.1016/j.pec.2019.10.021
- 26. Akpe OE, Ogeawuchi JC, Abayomi AA, Agboola OA, Ogbuefi E. A conceptual framework for strategic business planning in digitally transformed organizations. Iconic Res Eng J. 2020;4(4):207-22. Available from: https://www.irejournals.com/paper-details/1708525
- 27. Dyczkowski D, Korczak J, Dudycz H. Multi-criteria evaluation of the intelligent dashboard for SME managers based on scorecard framework. In: 2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014. Piscataway: IEEE; 2014. p. 1147-55. doi:10.15439/2014F388
- 28. Khan MA, Saqib S, Alyas T, Rehman AU, Kabir M, Malik S, *et al.* Effective demand forecasting model using business intelligence empowered with machine learning. IEEE Access. 2020;8:116013-23. doi:10.1109/ACCESS.2020.3003790
- 29. Bhatti MI, Awan HM. The key performance indicators (KPIs) and their impact on overall organizational performance. Qual Quant. 2014;48(6):3127-43. doi:10.1007/s11135-013-9945-y
- Ashiedu BI, Ogbuefi E, Nwabekee US, Ogeawuchi JC, Abayomi AA. Developing financial due diligence frameworks for mergers and acquisitions in emerging telecom markets. Iconic Res Eng J. 2020;4(1):183-96. Available from: https://www.irejournals.com/paperdetails/1708562
- 31. Mgbame AC, Akpe OE, Abayomi AA, Ogbuefi E, Adeyelu OO. Barriers and enablers of BI tool implementation in underserved SME communities. Iconic Res Eng J. 2020;3(7):211-20. Available from: https://www.irejournals.com/paper-details/1708221
- Jusoh R, Ibrahim DN, Zainuddin Y. The performance consequence of multiple performance measures usage: evidence from the Malaysian manufacturers. Int J Product Perform Manag. 2008;57(2):119-36.

- doi:10.1108/17410400810847393
- Gudfinnsson K, Strand M. Challenges with BI adoption in SMEs. In: 2017 8th International Conference on Information, Intelligence, Systems and Applications, IISA 2017. Piscataway: IEEE; 2017. p. 1-6. doi:10.1109/IISA.2017.8316407
- 34. Batt S, Grealis T, Harmon O, Tomolonis P. Learning Tableau: a data visualization tool. J Econ Educ. 2020;51(3-4):317-28. doi:10.1080/00220485.2020.1804503
- 35. Kirkendall ES, Ni Y, Lingren T, Leonard M, Hall ES, Melton K. Data challenges with real-time safety event detection and clinical decision support. J Med Internet Res. 2019;21(5):e13047. doi:10.2196/13047
- 36. Wilson G. Implementation of Releasing Time to Carethe productive ward. J Nurs Manag. 2009;17(5):647-54. doi:10.1111/j.1365-2834.2009.01026.x
- 37. Cappiello C, Gal A, Jarke M, Rehof J, Aachen R, Dortmund TU. Data ecosystems: sovereign data exchange among organizations (Dagstuhl Seminar 19391). Dagstuhl Rep. 2020;9(9):66-134. doi:10.4230/DAGREP.9.9.66
- 38. Li H, Xiong L, Zhang L, Jiang X. DPSynthesizer: differentially private data synthesizer for privacy preserving data sharing. Proc VLDB Endow. 2014;7(13):1677-80. doi:10.14778/2733004.2733059
- 39. Osho GO, Omisola JO, Shiyanbola JO. A predictive quality assurance model using Lean Six Sigma: integrating FMEA, SPC, and root cause analysis for zero-defect production systems. [place unknown]: [publisher unknown]; 2020.
- 40. Olaseni IO. Digital twin and BIM synergy for predictive maintenance in smart building engineering systems development. World J Adv Res Rev. 2020;8(2):406-21. doi:10.30574/wjarr.2020.8.2.0409
- 41. Agbehadji IE, Awuzie BO, Ngowi AB, Millham RC. Review of big data analytics, artificial intelligence and nature-inspired computing models towards accurate detection of COVID-19 pandemic cases and contact tracing. Int J Environ Res Public Health. 2020;17(15):5330. doi:10.3390/ijerph17155330
- 42. Zhao R, Liu Y, Zhang N, Huang T. An optimization model for green supply chain management by using a big data analytic approach. J Clean Prod. 2017;142:1085-97. doi:10.1016/j.jclepro.2016.03.006
- 43. Baesens B, Bapna R, Marsden JR, Vanthienen J, Zhao JL. Transformational issues of big data and analytics in networked business. MIS Q. 2016;40(4):807-18. doi:10.25300/MISQ/2016/40:4.03
- 44. Eaton I, McNett M. Protecting the data: security and privacy. In: Data for nurses: understanding and using data to optimize care delivery in hospitals and health systems. Amsterdam: Elsevier; 2019. p. 87-99. doi:10.1016/B978-0-12-816543-0.00006-6
- 45. Sharma A, Kaur P. A multitenant data store using a column based NoSQL database. In: 2019 12th International Conference on Contemporary Computing, IC3 2019. Piscataway: IEEE; 2019. doi:10.1109/IC3.2019.8844906
- 46. Akbar R, Silvana M, Hersyah MH, Jannah M. Implementation of business intelligence for sales data management using interactive dashboard visualization in XYZ stores. In: 2020 International Conference on Information Technology Systems and Innovation,

- ICITSI 2020 Proceedings. Piscataway: IEEE; 2020. p. 242-9. doi:10.1109/ICITSI50517.2020.9264984
- 47. Osho GO, Omisola JO, Shiyanbola JO. An integrated AI-Power BI model for real-time supply chain visibility and forecasting: a data-intelligence approach to operational excellence. [place unknown]: [publisher unknown]; 2020.
- 48. Berhane A, Nabeel M, Grose C. The impact of business intelligence on decision-making in public organisations. In: IEEE International Conference on Industrial Engineering and Engineering Management. Piscataway: IEEE: 2020. doi:10.1109/IEEM45057.2020.9309763
- 49. Sturdy A. Consultancy's consequences? A critical assessment of management consultancy's impact on management. Br J Manag. 2011;22(3):517-30. doi:10.1111/j.1467-8551.2011.00750.x
- 50. Knoll D, Prüglmeier M, Reinhart G. Predicting future inbound logistics processes using machine learning. Procedia CIRP. 2016;52:145-50. doi:10.1016/j.procir.2016.07.078
- 51. Sadler I. Logistics in manufacturing organisations. In: Logistics and supply chain integration. London: SAGE Publications; 2012. 31-69. doi:10.4135/9781446214312.n2
- 52. Perboli G, Rosano M, Saint-Guillain M, Rizzo P. Simulation-optimisation framework for city logistics: an application on multimodal last-mile delivery. IET Intell Transp Syst. 2018;12(4):262-9. doi:10.1049/ietits.2017.0357
- 53. Choi M, Ruona WEA. Individual readiness for organizational change and its implications for human resource and organization development. Hum Resour Rev. 2011;10(1):46-73. doi:10.1177/1534484310384957
- 54. Sutcliffe KM. High reliability organizations (HROs). Best Pract Res Clin Anaesthesiol. 2011;25(2):133-44. doi:10.1016/j.bpa.2011.03.001
- 55. Sudaryono, Rahardja U, Harahap EP. Implementation of information planning and strategies Industrial Technology 4.0 to improve business intelligence performance on official site APTISI. J Phys Conf Ser. 2019;1179(1):012111. doi:10.1088/1742-6596/1179/1/012111
- 56. Mgbame CA, Akpe OE, Abayomi AA, Ogbuefi E, Adeyelu OO. Barriers and enablers of healthcare analytics tool implementation in underserved healthcare communities. Healthc Anal. 2020;45:45-45. Available https://www.irejournals.com/paperfrom: details/1708221
- 57. Alaskar HF, Saba T. Application of business intelligence solution development and implementation in a smallsized enterprise. In: Proceedings - 2020 1st International Conference of Smart Systems and Emerging Technologies, SMART-TECH 2020. Piscataway: IEEE; 183-90. doi:10.1109/SMART-2020. TECH49988.2020.00051
- 58. Watson HJ, Wixom BH. The current state of business intelligence. Computer (Long Beach Calif). 2007;40(9):96-9. doi:10.1109/MC.2007.331
- 59. Halim KK, Halim S, Felecia. Business intelligence for designing restaurant marketing strategy: a case study. Procedia Comput Sci. 2019;161:615-22. doi:10.1016/j.procs.2019.11.164

- 60. Adriansyah AK, Ridwan AY. Developing sales management sustainability monitoring based on ERP system. In: 6th International Conference on Interactive Digital Media, ICIDM 2020. Piscataway: IEEE; 2020. doi:10.1109/ICIDM51048.2020.9339672
- 61. Suša Vugec D, Bosilj Vukšić V, Pejić Bach M, Jaklič J, Indihar Štemberger M. Business intelligence and organizational performance: the role of alignment with business process management. Bus Process Manag J. 2020;26(6):1709-30. doi:10.1108/BPMJ-08-2019-0342
- 62. Pohit S, Gupta DB, Pratap D, Malik S. Survey of literature on measuring logistics cost: a developing country's perspective. J Asian Econ 2019;1(2):260-82. doi:10.1177/2631684619883041
- 63. Hofmann E, Rüsch M. Industry 4.0 and the current status as well as future prospects on logistics. Comput Ind. 2017;89:23-34. doi:10.1016/j.compind.2017.04.002
- 64. Kongar E, Haznedaroglu E, Abdelghany O, Bahtiyar MO. A novel IT infrastructure for reverse logistics operations of end-of-life pharmaceutical products. Inf Technol Manag. 2015;16(1):51-65. doi:10.1007/s10799-014-0195-z
- 65. Wang G, Gunasekaran A, Ngai EWT, Papadopoulos T. Big data analytics in logistics and supply chain management: certain investigations for research and applications. Int J Prod Econ. 2016;176:98-110. doi:10.1016/j.ijpe.2016.03.014
- 66. Pienaar A. Integrated logistics management. In: Handbook of global supply chain management. Thousand Oaks: SAGE Publications; 2007. p. 169-84. doi:10.4135/9781412976169.n11
- 67. Hesse M. Freight distribution centres, freight clusters and logistics parks. In: The SAGE handbook of transport studies. London: SAGE Publications; 2013. p. 161-78. doi:10.4135/9781446247655.n10
- 68. Witkowski K. Internet of Things, big data, Industry 4.0 innovative solutions in logistics and supply chains management. Procedia Eng. 2017;182:763-9. doi:10.1016/j.proeng.2017.03.197
- 69. Cheng H, Lu YC, Sheu C. An ontology-based business intelligence application in a financial knowledge management system. Expert Syst Appl. 2009;36(2 PART 2):3614-22. doi:10.1016/j.eswa.2008.02.047
- 70. Carlisle S. Software: Tableau and Microsoft Power BI. Technol Archit Des. 2018;2(2):256-9. doi:10.1080/24751448.2018.1497381
- 71. Ryan L. Visual data storytelling with Tableau. [Internet]. [place unknown]: Addison-Wesley Professional; 2018 2020 [cited May 301. Available from: https://books.google.co.za/books?hl=en&lr=&id=Vuxi DwAAOBAJ&oi=fnd&pg=PP17&dq=Tableau+is+a+le ading+BI+tool+that+supports+drag-anddrop+interface.+realtime+data+blending,+and+advanced+visualization+feat ures+tailored+for+storytelling&ots=qi7zhLaLNZ&sig=
 - oaWkD0OkFkxTfSQhvzXgE1VO4sM&redir_esc=y#v =onepage&q&f=false
- 72. Štufi M, Bačić B, Stoimenov L. Big data analytics and processing platform in Czech Republic healthcare. Appl Sci (Basel). 2020;10(5):1705. doi:10.3390/app10051705
- 73. Ferreira KJ, Lee BHA, Simchi-Levi D. Analytics for an online retailer: demand forecasting and price optimization. Manuf Serv Oper Manag. 2016;18(1):69-88. doi:10.1287/msom.2015.0561

- 74. Jaswal S. Integrating business intelligence with cloud computing. In: Impacts and challenges of cloud business intelligence. Hershey: IGI Global; 2020. p. 41-56. doi:10.4018/978-1-7998-5040-3.ch004
- 75. Sein MK, Henfridsson O, Purao S, Rossi M, Lindgren R. Action design research. MIS Q. 2011;35(1):37-56. doi:10.2307/23043488
- 76. Keim DA, Hao MC, Dayal U, Janetzko H, Bak P. Generalized scatter plots. Inf Vis. 2010;9(4):301-11. doi:10.1057/ivs.2009.34
- 77. Chaudhuri S, Dayal U, Narasayya V. An overview of business intelligence technology. Commun ACM. 2011;54(8):88-98. doi:10.1145/1978542.1978562
- 78. Qorri A, Mujkić Z, Kraslawski A. A conceptual framework for measuring sustainability performance of supply chains. J Clean Prod. 2018;189:570-84. doi:10.1016/j.jclepro.2018.04.073
- 79. Rahman MH, Rahman A. Strategic fit strategy formulation: keys to enhancing competitiveness and improving capabilities of a manufacturing unit. Prod Manuf Res. 2020;8(1):59-79. doi:10.1080/21693277.2020.1742234
- 80. Classen D, Li M, Miller S, Ladner D. An electronic health record–based real-time analytics program for patient safety surveillance and improvement. Health Aff (Millwood). 2018;37(11):1805-12. doi:10.1377/hlthaff.2018.0728
- 81. McNeil H, McMurray J, Dixon E, Renfrew L, Campbell T, Marlett N, *et al.* Engaging older adults in healthcare research and planning: a realist synthesis. Res Involv Engagem. 2016;2:10. doi:10.1186/s40900-016-0022-2
- 82. Olszak CM. Toward better understanding and use of business intelligence in organizations. Inf Syst Manag. 2016;33(2):105-23. doi:10.1080/10580530.2016.1155946
- 83. Wang Z, Yan R, Hollister K, Xing R. A relative comparison of leading supply chain management software packages. Int J Inf Syst Supply Chain Manag. 2009;2(1):81-96. doi:10.4018/jisscm.2009010106
- 84. Boyne SM. Data protection in the United States. Am J Comp Law. 2018;66:299-343. doi:10.1093/ajcl/avy016
- 85. Slokom M. Comparing recommender systems using synthetic data. In: RecSys 2018 12th ACM Conference on Recommender Systems. New York: ACM; 2018. p. 548-52. doi:10.1145/3240323.3240325
- 86. Austin JE. From organization to organization: on creating value. J Bus Ethics. 2010;94(Suppl 1):13-5. doi:10.1007/s10551-011-0787-z
- 87. Alibrahim A, Wu S. An agent-based simulation model of patient choice of health care providers in accountable care organizations. Health Care Manag Sci. 2018;21(1):131-43. doi:10.1007/s10729-016-9383-1
- 88. Legner C, Eymann T, Hess T, Matt C, Böhmann T, Juell-Skielse G, *et al.* Digitalization: opportunity and challenge for the business and information systems engineering community. Bus Inf Syst Eng. 2017;59(4):301-8. doi:10.1007/s12599-017-0484-2
- 89. Adams R, Kewell B, Parry G. Blockchain for good? Digital ledger technology and sustainable development goals. In: World sustainability series. Cham: Springer; 2018. p. 127-40. doi:10.1007/978-3-319-67122-2_7
- 90. Schaar P. Privacy by design. Identity Inf Soc. 2010;3(2):267-74.
- 91. Dhillon V. Designing decentralized ledger technology

- for electronic health records. Telehealth Med Today. 2018;1(2). doi:10.30953/tmt.v1.77
- 92. Rosenbaum S. Data governance and stewardship: designing data stewardship entities and advancing data access. Health Serv Res. 2010;45(5 Pt 2):1442-55. doi:10.1111/j.1475-6773.2010.01140.x
- 93. Geissbuhler A, Safran C, Buchan I, Bellazzi R, Labkoff S, Eilenberg K, *et al.* Trustworthy reuse of health data: a transnational perspective. Int J Med Inform. 2013;82(1):1-9. doi:10.1016/j.ijmedinf.2012.11.003
- 94. Park YR, Lee YJ, Lee G, Lee JH, Shin SY. Utilization of a clinical trial management system for the whole clinical trial process as an integrated database: system development. J Med Internet Res. 2018;20(4):e9312. doi:10.2196/jmir.9312
- 95. Allen C, Des Jardins TR, Heider A, Lyman KA, McWilliams L, Rein AL, *et al*. Data governance and data sharing agreements for community-wide health information exchange: lessons from the Beacon communities. EGEMS (Wash DC). 2014;2(1):1057. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4371395/
- 96. Rodrigue JP, Slack B, Comtois C. Green supply chain management. In: The SAGE handbook of transport studies. London: SAGE Publications; 2013. p. 427-38. doi:10.4135/9781446247655.n25
- 97. Jira C, Toffel MW. Engaging supply chains in climate change. Manuf Serv Oper Manag. 2013;15(4):559-77. doi:10.1287/msom.1120.0420
- 98. Heer J, Bostock M, Ogievetsky V. A tour through the visualization zoo: a survey of powerful visualization techniques, from the obvious to the obscure. Queue. 2010;8(5):20-30. doi:10.1145/1794514.1805128