

International Journal of Multidisciplinary Research and Growth Evaluation.

Integration of Data into Commercial HEDIS Systems

Suhas Hanumanthaiah

Independent Research, USA

* Corresponding Author: Suhas Hanumanthaiah

Article Info

ISSN (online): 2582-7138

Volume: 06 Issue: 03

May - June 2025 Received: 25-04-2025 Accepted: 04-06-2025 Page No: 2012-2021

Abstract

This paper explores the integration of healthcare data into commercial Healthcare Effectiveness Data and Information Set (HEDIS) systems, emphasizing its critical role in improving healthcare quality, transparency, and accountability. HEDIS, maintained by National Committee for Quality Assurance (NCQA), offers a standardized framework to measure health plan performance across various domains such as preventive care, chronic disease management, and mental health. The paper reviews the structure and importance of HEDIS, evaluates commercial systems like Cozeva, Epic, TriZetto, and Waystar, and compares their capabilities in quality reporting, analytics, and interoperability. It delves into data integration challenges—including standardization, interoperability, data quality, and security—and presents technical solutions such as data warehousing, API use, ETL pipelines, and master data management. The study highlights the necessity of strong data governance, secure data exchange, and adherence to regulatory compliance like HIPAA. Additionally, it explores the transformative potential of emerging technologies like AI, machine learning, and predictive analytics in enhancing HEDIS reporting accuracy and efficiency. The paper concludes by presenting a practical roadmap for successful data integration into HEDIS systems, advocating for strategic planning, robust infrastructure, and innovative tools to enable data-driven decision-making and improved healthcare outcomes.

DOI: https://doi.org/10.54660/.IJMRGE.2025.6.3.2012-2021

Keywords: HEDIS, Data Integration, Electronic Health Record (EHR), HIPAA Compliance, Data Mapping, Data Warehousing

1. Introduction

The Healthcare Effectiveness Data and Information Set (HEDIS), maintained by the National Committee for Quality Assurance (NCQA). In conclusion, this paper has compared Microsoft SQL Server Analysis Services and Python for financial forecasting, considering factors such as ease of use, algorithm availability, performance, scalability, and cost. SSAS offers a user-friendly environment, particularly for those within the Microsoft ecosystem, but its capabilities are limited compared to Python's extensive libraries for machine learning and data analysis. Python provides greater flexibility for advanced modeling techniques and customization, although it demands more programming expertise and computational resources. The optimal choice depends on the specific forecasting task, data complexity, available resources, and the expertise of the team. Future research should focus on developing specialized financial forecasting algorithms, integrating diverse data sources, and improving the scalability and interpretability of complex models to enhance the accuracy and reliability of financial projections.

, serves as a vital performance measurement tool in the managed care sector ^[2]. It offers a standardized approach to evaluate healthcare quality and the services delivered by health plans. HEDIS encompasses a range of measures to assess performance in areas such as prevention, chronic disease management, and mental health ^[3]. Accurate and timely data within health information systems are crucial for resource allocation and the monitoring and evaluation of healthcare initiatives, particularly given the increasing global emphasis on accountability and transparency ^[4].

Health information systems are integral to enhancing the healthcare ecosystem. They facilitate improvements in disease surveillance, enable data-driven strategic decisionmaking, streamline patient and program administration, and improve care quality through more effective interventions [4]. The integration of electronic health records and health information exchange is essential for achieving these goals [2]. HIE enables the secure, electronic sharing of healthrelated data between different sources and users, promoting better coordination of care and improved patient outcomes [2]. Emerging information management technologies further enhance healthcare delivery through interactive websites, biometric devices, and care coordination programs [3]. These technologies support patient self-management, provide guideline-directed alerts, and facilitate the systematic collection of clinical and cost data for predictive modeling [3]. By leveraging these advancements, health plans can enhance their HEDIS reporting capabilities and improve overall healthcare quality.

2. Background on HEDIS

2.1. Overview of HEDIS

HEDIS comprises a comprehensive suite of performance measures designed to evaluate various aspects of healthcare delivery, serving as a valuable tool for comparing health plan performance and identifying areas for improvement [5]. HEDIS data is used by employers, consumers, and regulatory agencies to make informed decisions about healthcare coverage and to hold health plans accountable for the quality of care they provide. The measures cover a broad range of health topics, including preventive care, such as immunizations and screenings; chronic disease management, such as diabetes and heart disease care; and mental health and substance abuse services, thereby offering a holistic view of healthcare quality. HEDIS measures are continuously updated to reflect the latest clinical guidelines and advancements in healthcare, ensuring their relevance and accuracy over time. These measures have the potential for improving outcomes, performance, and quality in health [6].

2.2. Importance of HEDIS in Healthcare

HEDIS plays a critical role in driving quality improvement efforts in healthcare by providing a standardized framework for measuring and comparing health plan performance. By identifying areas where performance falls short of benchmarks, health plans can implement targeted interventions to improve care delivery and patient outcomes. Furthermore, HEDIS data facilitates transparency and accountability in healthcare, enabling consumers and purchasers to make informed decisions about their healthcare coverage. The emphasis on value-based systems is growing, and HEDIS measures are essential for assessing the quality and effectiveness of care delivered within these systems [7]. A well-functioning health information system is critical for achieving health-related Sustainable Development Goals, particularly 'SDG 3: Good Health and Well-being'.

2.3. Challenges in HEDIS Reporting

Despite its widespread adoption, HEDIS reporting presents several challenges for health plans. Data collection and validation can be complex and time-consuming, requiring significant resources and expertise ^[8]. Ensuring the accuracy and completeness of data is essential for generating reliable HEDIS scores, but it can be difficult to achieve, particularly

when data is fragmented across multiple systems and sources. Moreover, variations in data definitions and coding practices across different healthcare providers and organizations can further complicate HEDIS reporting. Therefore, to reach these goals, it is important not to limit HIS reviews to only data reported by service providers, instead, focus should be on all components, causes of success and failure, and challenges.

2.4. HEDIS Measures and Domains

HEDIS encompasses a variety of measures that assess various aspects of healthcare quality and outcomes. The measures are categorized into several domains, each focusing on a specific area of healthcare delivery. These domains include effectiveness of care, access/availability of care, experience of care, utilization and risk adjusted utilization, health plan descriptive information, and measures collected using electronic clinical data systems. Within each domain, there are specific measures that evaluate performance on key indicators, such as rates of childhood immunizations, breast cancer screening, and HbA1c control for patients with diabetes. The integration of electronic clinical data systems into HEDIS measurement represents a significant advancement, allowing for more efficient and accurate data collection.

3. Commercial HEDIS Systems: A Review

3.1. Overview of Available Systems

Several commercial HEDIS systems are available to assist health plans in collecting, analyzing, and reporting HEDIS data. These systems offer a range of functionalities, including data aggregation, data validation, measure calculation, and reporting capabilities. These systems are designed to streamline the HEDIS reporting process and improve the accuracy and efficiency of data submission. Many of these systems also incorporate features for data analytics and performance monitoring, enabling health plans to identify trends, track progress, and benchmark their performance against industry standards.

3.2. Key Features and Functionalities

Commercial HEDIS systems offer a wide array of features and functionalities to support health plans in their HEDIS reporting efforts.

These features include automated data extraction and transformation capabilities, which streamline the process of collecting data from various sources and converting it into a standardized format.

Data validation tools help ensure the accuracy and completeness of data by identifying errors, inconsistencies, and missing information.

Measure calculation engines automatically calculate HEDIS scores based on standardized algorithms and specifications. Reporting tools enable health plans to generate standardized HEDIS reports for submission to regulatory agencies and other stakeholders.

Advanced analytics capabilities allow health plans to analyze HEDIS data to identify trends, patterns, and areas for improvement.

Clinical decision support systems can be integrated to make sure physicians provide better healthcare [9].

These systems often support Electronic Health Records which enhance the efficiency and effectiveness of workflows, optimizing data collection, presentation, and communication to save time and costs for healthcare participants [10].

3.3. Popular HEDIS Systems in the Market

The healthcare industry offers multiple HEDIS systems, each distinguished by unique features, functionalities, and market positioning. Examples of widely used HEDIS systems include systems developed by NCQA, and other vendors specializing in healthcare data analytics and reporting. These systems cater to health plans of varying sizes and complexities, offering tailored solutions to meet specific needs and requirements. NCQA publishes list of vendors that have achieved certain milestones in the Healthcare Effectiveness Data and Information Set (HEDIS®) Compliance AuditTM process [11]. Here are Quality Management Focus of few vendors that have successfully completed the HEDIS Compliance AuditTM process:

• Cozeva: Appears to be heavily focused on quality

- reporting and population health management, with particular emphasis on HEDIS® reporting and driving performance on quality measures.
- **Epic:** Offers tools for quality improvement and outcome measurement, including support for tracking and analyzing patient data related to clinical quality.
- TriZetto: While mentioned as having a "Quality Management" product, specific details about its qualityfocused features are less detailed in the provided search results.
- Waystar: Focuses more on revenue cycle management (RCM) and enhancing claims processing efficiency. Quality of support and ease of use are also highlighted.

3.4. Comparative Analysis of HEDIS Systems **3.4.1.** Key Quality-Related Features:

Following chart compares key features of HEDIS Systems:

Table 1: Compares key features of HEDIS Systems

Feature	TriZetto	Waystar	Cozeva	Epic
Quality Reporting/Measurement	"Quality Management" product listed	"Meaningful Use Reporting" (high score)	NCQA-Certified for HEDIS® submissions. Year-round data collection and reporting. Real-time HEDIS® engine. Displays performance on clinical quality and risk measures. Support for custom measures. Automates AMP submissions.	Support for eCQMs (Electronic Clinical Quality Measures). Integrates with Press Ganey for nursing quality data reporting. Tools for tracking and analyzing patient outcomes. Supports compliance with quality measures.
Analytics & Data Insights	"Analytics and Reporting Solutions" for RCM KPIs.	Predictive analysis for eligibility verification.	AI-powered insights for member engagement and outcomes. Advanced analytics for cost, utilization, quality, and risk performance. AI for predicting member engagement, stratifying risk, and preventing high-cost events. Population health analytics.	Lumens leverages data for quality improvement. Provides advanced analytics and decision support tools. Reporting Workbench reports for data analysis. Aggregation of patient-reported outcome measures data for analysis.
Integration	Often integrates with EHRs and other healthcare IT systems.	"EHR Integration" (high score).	EHR Integration (CozevaConnect). Enables bidirectional data exchange. Integrates all data sources for payer/provider collaboration.	Integrated with Epic CIS (Clinical Information System). Native integration using Epic's questionnaire functionality.
Other Relevant Features	Claims management. Patient engagement.	Claims Data Automation. Workflow Management. Facility Compliance Management. Patient Data Security.	AI-powered risk adjustment. Point- of-care integration. Real-time gap closure within clinical workflows. Unified experience across provider organizations. Health equity insights. Care team well-being tools. CRM features.	Secure Chat. Telehealth integration. PDMP link. MyChart for patient access. Automatic scoring for outcome measures. Red-flag question triggers. Realtime notifications and guidance for patients. Endoscopy reporting (Lumens).

3.4.2. Comparison Summary

- Cozeva stands out for its strong focus on quality reporting, HEDIS compliance, and leveraging AI for population health analytics. It offers tools for real-time quality gap closure and provider engagement in quality initiatives.
- Epic provides a broader suite of tools for quality improvement embedded within its EHR platform, including features for eCQM reporting, outcome measurement, and patient-reported outcomes. Its integrated nature with other clinical workflows is a key strength.
- Waystar primarily focuses on RCM and claims processing efficiency. While it offers some reporting

- capabilities and integrations, its core strength isn't specifically quality management compared to Cozeva and Epic.
- TriZetto has a "Quality Management" product, but the details in the search results are limited. It seems more focused on core administration tasks and RCM functionalities.

4. Deployment Considerations

HEDIS Systems can be deployed in fundamentally two ways:

1. On-Premise Deployment: HEDIS systems are installed on the organization's local servers and infrastructure [12]. Organizations have direct control over the hardware, software, and security aspects of the system.

2. Vendor managed Deployment: HEDIS systems are hosted and maintained by a third-party vendor

- 1. Cloud-Based Deployment: HEDIS systems are hosted on the vendor's cloud infrastructure and accessed remotely through the internet.
- 2. Software as a Service: HEDIS systems are offered as a subscription-based service, with the vendor managing all aspects of the system, including infrastructure, maintenance, and updates.

Choice of deployment model impacts the cost, scalability, maintenance, security, and compliance aspects. On-premise deployment involves significant upfront investment in hardware, software licenses, and IT infrastructure [13]. Requires dedicated IT staff for system maintenance, upgrades, and security management [14]. Cloud-based deployment reduces upfront costs and eliminates the need for local infrastructure and IT staff. HEDIS vendors provides ongoing maintenance, updates, and security patches.

Cloud-based deployment allows for easy scalability to accommodate changing data volumes and user needs [15]. Software as a service offers a pay-as-you-go model, which can be cost-effective for small to medium-sized organizations. The organizations use on premise for better control, and data-security [16].

5. Data Integration Challenges and Strategies

Integrating data into HEDIS systems is a complex undertaking that presents several challenges, including data standardization, interoperability, data quality, and security and privacy concerns. Successfully addressing these challenges is essential for ensuring the accuracy, reliability, and validity of HEDIS reporting.

5.1. Data Sources for HEDIS

To get an integrated view of patient care and health outcomes, HEDIS relies on data from multiple sources [17]. These include:

- Medical claims which provide information on services rendered, diagnoses, and procedures.
- Pharmacy claims which offer insight into medication use and adherence.
- Electronic Health Records which contain detailed clinical data, such as lab results, vital signs, and patient history.
- Supplemental data such as patient surveys and registries, which can fill gaps in the data available from other sources.
- Member Data which includes enrollment information, demographics, Gender, Date of Birth and other data points like SOGI (Sexual Orientation and Gender Identity) that is necessary for accurately measuring HEDIS performance.
- Provider Data which includes information about the provider, their specialties and their Hospital or Independent Provider Association (IPA) affiliations.
- Plan Data which is information on the patient's benefit plans which includes effective dates, co-pays, coverage type and other pertinent information.
- Patient-generated health data from wearable devices and mobile apps can provide additional insights into patient behavior and health status [18].

5.2. Data Integration Challenges

Data integration presents several key challenges [19]:

- 1. Data Standardization: Different data sources often use varying coding systems and terminologies, which makes it difficult to combine and analyze data ^[20].
- 2. Interoperability: Healthcare organizations may use different EHR systems and other IT platforms that do not easily communicate with each other [21].
- 3. Data Quality: Data from different sources may vary in terms of accuracy, completeness, and consistency.
- Data Errors: Data errors, missing information, and inconsistencies across different data sources can significantly affect the reliability of HEDIS reporting [22].
- Data Timeliness: The timeliness of data is another critical factor, as outdated information may not accurately reflect current patient status or care patterns
 [19]
- Data Heterogeneity: Combining data from various sources is challenging due to differences in data formats, coding systems, and terminologies, requiring robust data standardization efforts [23].
- Data Volume and Velocity: The increasing volume and velocity of healthcare data can overwhelm existing data integration infrastructure, requiring scalable and efficient solutions for data processing and analysis [19].

4. Security and Privacy: Protecting the privacy and security of patient data is essential, especially when integrating data from multiple sources [24].

- a. Privacy Regulations: Compliance with privacy regulations such as HIPAA and GDPR is crucial when handling sensitive patient data, requiring robust security measures and data governance policies [25].
- b. Data Breaches: The risk of data breaches and unauthorized access to patient information poses a significant threat, necessitating strong encryption, access controls, and security monitoring systems.
- 5. Organizational and Logistical hurdles, resistance to change, insufficient training, and a lack of clear governance structures can all hamper the implementation of data integration projects [26].

5.3. Data Quality Issues

Data quality is a critical concern in healthcare, impacting the accuracy and reliability of HEDIS reporting and clinical decision-making [27]. Several factors contribute to data quality issues:

- Inconsistent Data Entry: Variations in data entry practices across different healthcare providers and organizations can lead to inconsistencies and errors in the data [19].
- Lack of Standardized Terminology: The absence of standardized terminology and coding systems can result in ambiguity and misinterpretation of clinical information.
- Data Completeness: Missing or incomplete data can limit the ability to accurately assess healthcare quality and outcomes.
- Data Accuracy: Inaccurate or erroneous data can compromise the validity of HEDIS measures and lead to incorrect conclusions about healthcare performance.
- Data reliability depends on data normalization, data

- source reliability, and data production time [19].
- Lack of training, knowledge, and awareness on how to code and document patient service adversely influences data quality [28].

5.4. Data Integration Techniques

To address the challenges of data integration, healthcare organizations can use a variety of techniques:

- Data Warehousing: Creating a central repository for storing and managing data from multiple sources.
- A data warehouse provides a consolidated view of data, facilitating data analysis and reporting [29].
- Data warehouses involve extract, transform, and load processes to ensure data quality and consistency.
- 2. Data Federation: A virtual data integration approach that allows users to access and query data from multiple sources without physically moving the data.
- Data federation enables real-time access to data without the need for data replication.
- It is suitable for organizations with distributed data sources and complex data integration requirements.
- 3. Application Programming Interfaces: APIs enable different systems and applications to communicate and exchange data with each other.
- APIs facilitate data sharing and interoperability between healthcare organizations and IT vendors.
- APIs can be used to access data from EHRs, health information exchanges, and other data sources.
- 4. Master Data Management: Master data management establishes a single, consistent view of critical data elements, such as patients, providers, and payers.
- Master data management ensures data accuracy and consistency across different systems and applications.
- It involves data profiling, data cleansing, and data governance processes to maintain data quality.
- 5. Data Governance: Data governance frameworks, which include policies, procedures, and roles for managing data quality, security, and privacy, are crucial for successful data integration.
- Data quality can be improved with a focus on detailed inspection and fixing of data [30].
- Data governance guarantees that data is handled and maintained consistently throughout the company by defining the tasks, processes, and responsibilities for data management.

5.5. Interoperability Considerations

Interoperability, the ability of different systems to exchange and use information, is essential for effective data integration in healthcare. Several interoperability standards and initiatives have emerged to promote data sharing and exchange:

HL7 Standards: HL7 is a set of international standards for the exchange, integration, sharing, and retrieval of electronic health information.

- HL7 standards define the format and structure of healthcare data messages, enabling different systems to communicate and exchange data seamlessly.
- HL7 FHIR is a modern standard that leverages webbased technologies to facilitate data exchange and interoperability [31].

Integrating heterogeneous health information systems is a significant challenge, due to barriers to interoperability [32]. Interoperability is the key to digital innovations [33]. Lack of interoperability is a limiting factor for data sharing [34, 35, 36]. Interoperability and standardization techniques are crucial for enabling easy sharing and exchange of healthcare data between various levels in a healthcare facility [37].

DICOM: DICOM is a standard for handling, storing, printing, and transmitting medical imaging information.

Integrating data from disparate sources is essential for creating a comprehensive view of patient health. Data harmonization principles provide the foundational concepts for creating and putting into practice interventions to harmonize data across different platforms [38]. It is also vital to have data integrated, as it combines data from various sources like spreadsheets, databases, and external data streams into a single data collection [39]. This gives one version of the truth and saves time by removing the need to combine data manually.

Data synchronization guarantees data equality by considering data in various storage locations to be equivalent.

6. Integrating Data into Commercial HEDIS Systems: A Practical Approach

Integrating data into commercial HEDIS systems requires a strategic and well-planned approach to ensure data quality, accuracy, and compliance with HEDIS specifications. This section provides a practical framework for integrating data into commercial HEDIS systems, covering key steps and considerations.

6.1. Data Mapping and Transformation

The first step in integrating data into commercial HEDIS systems is to map and transform data from various sources into the format required by the HEDIS system. Data mapping involves identifying the corresponding data elements in the source systems and the HEDIS system. Data transformation involves converting data values, units of measure, and codes to match the HEDIS specifications. Careful consideration should be given to the data quality and completeness of data which are required for clinical decision-making. Most HEDIS systems provide required fields in the data template which must be populated to ensure successful HEDIS measure computation.

Data Mapping Process

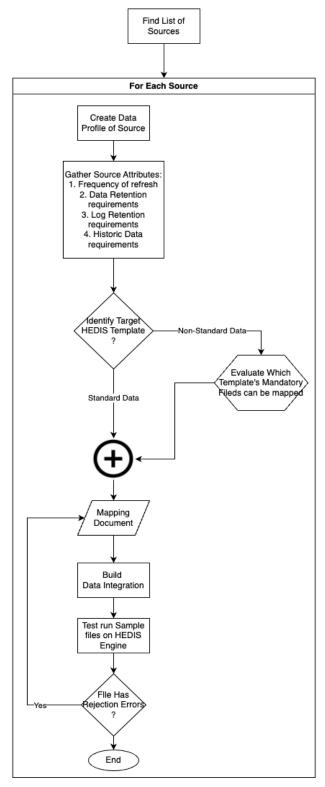


Fig 1: Data Mapping Process

- Identify List of Sources: Depending on health plan, a critical initial step involves a comprehensive enumeration of all potential source systems containing member or patient data, medical claim, pharmacy claim, lab claim, supplemental claim, provider, membership data.
- Data Profile: Profiling involves inspecting data from each source to understand the characteristics, quality, and format of the data. This is important as it will help in
- the mapping phase to understand which sources have the right data element and format that can be mapped to the specific HEDIS measure requirement.
- 3. Data Attributes: In addition to data profiling, we also need to gather further details about data sources:
- 1. Frequency of refresh How often are the source files refreshed, and how frequently is the source data updated? These transforms into how frequency we need to execute ETL jobs.

- Data Retention requirements captures how long we need to keep historic data. This is useful for debugging data in case of enquiry on member's HEDIS Measure compliance by auditor.
- 3. Log Retention requirements ensuring
- 4. Historic Data requirements: Some HEDIS measures need 10 years of historic claim data to determine compliance while other HEDIS measures need 2 years of historic data. These determine time range of data that is required from each source.

4. Identify Target HEDIS Template

- Standard Sources like EHR provide defined encounter claim, provider, member, member enrollment, pharmacy claim and lab result files with field-level details that align directly with HEDIS measures and reporting requirements.
- Non-Standard Sources frequently demand substantial data cleaning and transformation to align with HEDIS specifications.

5. Mapping Document

This mapping process should be meticulously documented and validated to ensure data accuracy and consistency. Ensure to map complexities such as variations in coding systems, units of measurement, or data formats across different data sources, and address these differences with appropriate transformation rules.

- 1. Start mapping with Mandatory Fields
- Followed by Conditional Fields like hospital admission data and discharge details or encounter diagnostic code which will have data for in patient claims and no data for out patient claims.
- Followed by Optional Fields like race, ethnicity and social determinants of health which are not mandatory but good to capture to provide a comprehensive report.

6. Develop data integration pipelines

Use data integration tools or ETL processes to automate the extraction, transformation, and loading of data from source systems into the HEDIS system. The choice of tools and technologies will depend on the volume, velocity, and variety of data, as well as the available resources and expertise.

Different HEDIS vendors negotiate of different file delivery mechanism that is in compliance with HIPAA and HITRUST that is agreed upon. Some HEDIS vendors have secure portals to receive and process data while others require a secure data transfer via SFTP or cloud storage options.

HEDIS File Validation: Once the sample files are generated by data integration in staging environment, these files are sent over to HEDIS Vendor for test loading the file and generating validation reports. These reports bring out any data integrity or validation issues. If any issue exists, we go back to mapping stage to fix the mapping

6.2. ETL Processes for HEDIS Data

ETL processes play a crucial role in preparing data for HEDIS reporting, involving extracting data from diverse sources, transforming it to meet HEDIS standards, and loading it into the HEDIS system [40]. The extraction phase gathers data from various systems, while the transformation phase cleans, standardizes, and converts data to align with HEDIS specifications [41]. Finally, the loading phase populates the HEDIS system with the transformed data, ensuring accurate and compliant reporting. The Extract, Transform, Load process is a critical component of data integration for HEDIS reporting, involving the extraction of data from disparate sources, transformation of data to conform to HEDIS standards, and loading of data into the HEDIS system. The ETL process should be efficient, scalable, and auditable, with appropriate error handling and data quality checks.

Developing consistent delta loads for large sources is critical in maintaining the HEDIS process. Incremental ETL development enhances efficiency by only processing new or modified data, thereby minimizing processing time and resource consumption. This approach reduces the time and resources required for data processing, especially when dealing with large datasets [42].

Depending on deployment model, migrating the data to HEDIS engine either on-premis or vendor managed infrastructure, data migration needs testing and validation of network end points in addition to ETL extracts. Here is a typical illustration of data flow for loading data into HEDIS Engine.

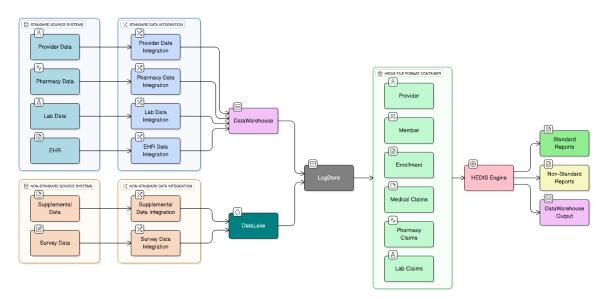


Fig 2: Illustration of Typical Data Flow diagram for ETL Processes for HEDIS Data

6.3. Data Governance and Security

Establishing robust data governance and security measures is essential for protecting patient data and maintaining compliance with regulations such as HIPAA. Data governance defines policies, procedures, and responsibilities for managing data quality, integrity, and security, while security measures safeguard data against unauthorized access, use, or disclosure. Data governance includes data quality checks, data validation procedures, and data monitoring processes to ensure accuracy and completeness [18]

Appropriate security policies and procedures must be implemented to protect patient data during the data transformation and storage phases [43]. Data security measures include encryption, access controls, audit trails, and data loss prevention techniques [44]. Data governance provides a framework for managing health information, encompassing the monitoring and enforcement of security policies and procedures to protect electronic data [45].

7. Future Trends and Opportunities

7.1. Emerging Technologies in HEDIS

HEDIS Engines are increasingly using modern technologies like AI, Machine Learning and RPA. With more services on cloud receiving HIPAA compliance, HEDIS tools are built as native cloud applications. This helps in dynamic scaling and effective management of big data. These modern technologies can help streamline various aspects of data integration and reporting, enhancing efficiency, accuracy, and insights [46]. Using AI and ML to create trend and projection reports helps health plans to proactively manage risk adjustment and quality improvement programs.

The ability to collect large amounts of information via EHRs and the Internet of Things has created a demand for big data analytics and AI integration in healthcare [47, 48].

7.2. Predictive Analytics and HEDIS

By integrating predictive analytics into HEDIS, healthcare organizations can gain valuable insights into patient outcomes and identify opportunities for targeted interventions. Predictive models can analyze historical data to forecast future health risks, enabling proactive care management and improved population health outcomes [49]. Predictive analytics facilitates the identification of patients at high risk for specific conditions, enabling timely interventions and personalized care plans. Data-driven healthcare can be used to predict current trends and future occurrences because information is essential for better organization and new advancements [50, 51]. Integrating machine learning and deep learning algorithms into healthcare allows for the analysis of vast medical datasets, extracting meaningful insights that drive data-driven healthcare practices [52].

7.3. The Role of AI in HEDIS

The application of AI in data management revolutionizes handling extensive healthcare information, as AI algorithms are adept at organizing and analyzing Electronic Health Records, ensuring rapid access to pertinent patient data ^[53]. AI algorithms can analyze vast datasets to identify patterns and predict outcomes, enabling proactive interventions and personalized care ^[48, 54]. AI enables the creation of focused preventative strategies and therapies, revolutionizing our understanding of the human body and illnesses while

improving diagnostic accuracy and speed ^[55]. It is beginning to integrate in healthcare, is ushering in a transformative era, impacting diagnostics, altering personalized treatment, and significantly improving operational efficiency ^[56, 57]. Using AI prompt medical insights and provide data-driven recommendations through the identification of patterns, trends, and correlations that helps to improve fast and enhanced decision-making toward patient healthcare ^[58]. In healthcare, AI enhances diagnostic precision, treatment efficacy, and operational effectiveness through advanced technologies like machine learning and natural language processing ^[59, 60].

8. Conclusion

Data integration and HEDIS systems are critical components of modern healthcare, playing a vital role in quality measurement, performance improvement, and value-based care. By leveraging data integration strategies and HEDIS systems effectively, healthcare organizations can enhance the quality of care, improve patient outcomes, and drive greater value in the healthcare system [61, 62]. Data accuracy is critical for producing reliable HEDIS reports and actionable insights, necessitating rigorous data validation and quality control processes.

The healthcare industry needs to digitize medical records, agree on standardization of the data infrastructure, and create a system to protect the confidentiality and handle consent of data from patients ^[63]. As technology continues to evolve, healthcare organizations must embrace innovation and adapt their strategies to meet the changing needs of the industry.

9. References

- 1. Noumeir R. Integrating the healthcare enterprise process. International Journal of Healthcare Technology and Management. 2008;9(2):167. doi:10.1504/ijhtm.2008.017371.
- 2. McCarthy D, Propp K, Cohen A, Sabharwal R, Schachter A, Rein A. Learning from health information exchange technical architecture and implementation in seven beacon communities. eGEMs (Generating Evidence & Methods to improve patient outcomes). 2014;2(1):6. doi:10.13063/2327-9214.1060.
- 3. Nobel J, Norman GK. Emerging information management technologies and the future of disease management. Disease Management. 2003;6(4):219. doi:10.1089/109350703322682531.
- 4. Moucheraud C, *et al.* Sustainability of health information systems: a three-country qualitative study in southern Africa. BMC Health Services Research. 2017;17(1). doi:10.1186/s12913-016-1971-8.
- 6. Çınaroğlu S, Başer O. Understanding the relationship between effectiveness and outcome indicators to improve quality in healthcare. Total Quality Management & Business Excellence. 2016;29:1294. doi:10.1080/14783363.2016.1253467.
- 7. Aldosari B. Information technology and value-based healthcare systems: a strategy and framework. Cureus. 2024 Feb. doi:10.7759/cureus.53760.
- 8. Cohen DJ, et al. Primary care practices' abilities and

- challenges in using electronic health record data for quality improvement. Health Affairs. 2018;37(4):635. doi:10.1377/hlthaff.2017.1254.
- 9. Aldosari B. Patients' safety in the era of EMR/EHR automation. Informatics in Medicine Unlocked. 2017;9:230. doi:10.1016/j.imu.2017.10.001.
- Alvandi M. Optimizing the effect of electronic health records for healthcare professionals and consumers. The American Journal of Managed Care. 2015;3. Available from:
 - https://www.ajmc.com/journals/AJAC/2015/2015-vol3-n3/Optimizing-the-Effect-of-Electronic-Health-
- Records-for-Healthcare-Professionals-and-Consumers 11. Abdelhalim H, *et al.* Artificial intelligence, healthcare,
- 11. Abdelhalim H, *et al.* Artificial intelligence, healthcare, clinical genomics, and pharmacogenomics approaches in precision medicine. Frontiers in Genetics. 2022;13. doi:10.3389/fgene.2022.929736.
- 12. Salleh MIM, Abdullah R, Zakaria N. Evaluating the effects of electronic health records system adoption on the performance of Malaysian health care providers. BMC Medical Informatics and Decision Making. 2021;21(1). doi:10.1186/s12911-021-01447-4.
- Saghaeiannejad-Isfahani S, Saeedbakhsh S, Jahanbakhsh M, Habibi M. Analysis of the quality of hospital information systems in Isfahan teaching hospitals based on the DeLone and McLean model. Journal of Education and Health Promotion. 2015;4(1):5. doi:10.4103/2277-9531.151883.
- 14. Johnson RJ. A comprehensive review of an electronic health record system soon to assume market ascendancy: EPIC®. Journal of Healthcare Communications. 2016;1(4). doi:10.4172/2472-1654.100036.
- 15. Palvia P, Thambusamy R. Electronic medical records application development: perspectives of the service provider. Journal of Information Technology Case and Application Research. 2013;15(2):11. doi:10.1080/15228053.2013.11082801.
- Calvo-Amodio J, Patterson P, Smith ML, Burns JR. Application of transition-phase management model for an electronic health record system implementation: a case study. Engineering Management Journal. 2015;27(3):131. doi:10.1080/10429247.2015.1064662.
- Coppersmith NA, Sarkar IN, Chen E. Quality informatics: the convergence of healthcare data, analytics, and clinical excellence. Applied Clinical Informatics. 2019;10(2):272. doi:10.1055/s-0039-1685221.
- 18. Abuhalimeh A. Improving data quality in clinical research informatics tools. Frontiers in Big Data. 2022;5. doi:10.3389/fdata.2022.871897.
- 19. Cai L, Zhu Y. The challenges of data quality and data quality assessment in the big data era. Data Science Journal. 2015;14:2. doi:10.5334/dsj-2015-002.
- Ranade-Kharkar P, Pollock SE, Mann DK, Thornton SN. Improving clinical data integrity by using data adjudication techniques for data received through a health information exchange (HIE). PubMed. 2014;2014:1894. Available from: https://pubmed.ncbi.nlm.nih.gov/25954462
- 21. Holmgren AJ, Esdar M, Hüsers J, Coutinho-Almeida J. Health information exchange: understanding the policy landscape and future of data interoperability. Yearbook of Medical Informatics. 2023;32(1):184. doi:10.1055/s-0043-1768719.

- Hoffman S. Medical big data and big data quality problems. SSRN Electronic Journal. 2014. doi:10.2139/ssrn.2464299.
- 23. Kim MK, Rouphael C, McMichael J, Welch N, Dasarathy S. Challenges in and opportunities for electronic health record-based data analysis and interpretation. Gut and Liver. 2023;18(2):201. doi:10.5009/gnl230272.
- 24. Cheng H, Qu Y, Liu W, Gao L, Zhu T. Decentralized federated learning for private smart healthcare: a survey. Mathematics. 2025;13(8):1296. doi:10.3390/math13081296.
- 25. Li F, Zou X, Liu P, Chen JY. New threats to health data privacy. BMC Bioinformatics. 2011;12. doi:10.1186/1471-2105-12-s12-s7.
- 26. Alawiye TR. The impact of digital technology on healthcare delivery and patient outcomes. E-Health Telecommunication Systems and Networks. 2024;13(2):13. doi:10.4236/etsn.2024.132002.
- 27. Shin J, Kim J. Customized quality assessment of healthcare data. Annals of Laboratory Medicine. 2024;44(6):472. doi:10.3343/alm.2024.0084.
- 28. Tolera A, Firdisa D, Roba HS, Motuma A, Kitesa M, Abaerei AA. Barriers to healthcare data quality and recommendations in public health facilities in Dire Dawa city administration, eastern Ethiopia: a qualitative study. Frontiers in Digital Health. 2024;6. doi:10.3389/fdgth.2024.1261031.
- 29. Banas C, Erskine A, Sun SS, Retchin SM. Phased implementation of electronic health records through an office of clinical transformation. Journal of the American Medical Informatics Association. 2011;18(5):721. doi:10.1136/amiajnl-2011-000165.
- 30. Ambasht A. Real-time data integration and analytics: empowering data-driven decision making. International Journal of Computer Trends and Technology. 2023;71(7):8. doi:10.14445/22312803/ijctt-v71i7p102.
- 31. Thompson MP, Graetz I. Hospital adoption of interoperability functions. Healthcare. 2018;7(3):100347. doi:10.1016/j.hjdsi.2018.12.001.
- 32. Torab-Miandoab A, Samad-Soltani T, Jodati A, Rezaei-Hachesu P. Interoperability of heterogeneous health information systems: a systematic literature review. BMC Medical Informatics and Decision Making. 2023;23(1). doi:10.1186/s12911-023-02115-5.
- 33. Lehne M, Saß J, Essenwanger A, Schepers J, Thun S. Why digital medicine depends on interoperability. npj Digital Medicine. 2019;2(1). doi:10.1038/s41746-019-0158-1.
- 34. Hammond WE, Bailey C, Boucher P, Spohr M, Whitaker P. Connecting information to improve health. Health Affairs. 2010;29(2):284. doi:10.1377/hlthaff.2009.0903.
- 35. Jardim S. The electronic health record and its contribution to healthcare information systems interoperability. Procedia Technology. 2013;9:940. doi:10.1016/j.protcy.2013.12.105.
- 36. Gupta V, *et al.* Current state of community-driven radiological AI deployment in medical imaging. arXiv. 2022. doi:10.48550/arxiv.2212.14177.
- 37. Pai MMM, Ganiga R, Pai RM, Sinha RK. Standard electronic health record (EHR) framework for Indian healthcare system. Health Services and Outcomes Research Methodology. 2021;21(3):339. doi:10.1007/s10742-020-00238-0.

- 38. Hosseini SAT, Kazemzadeh R, Foster BJ, Arpalı E, Süsal C. New tools for data harmonization and their potential applications in organ transplantation.

 Transplantation. 2024;108(12):2306. doi:10.1097/tp.0000000000005048.
- 39. Adesina AA, Iyelolu TV, Paul PO. Leveraging predictive analytics for strategic decision-making: enhancing business performance through data-driven insights. World Journal of Advanced Research and Reviews. 2024;22(3):1927. doi:10.30574/wjarr.2024.22.3.1961.
- Naumann F, Herschel M. An introduction to duplicate detection. Synthesis lectures on data management. 2010;2(1):1. doi:10.2200/s00262ed1v01y201003dtm003.
- 41. Vyas S, Vaishnav P. A comparative study of various ETL process and their testing techniques in data warehouse. Journal of Statistics and Management Systems. 2017;20(4):753. doi:10.1080/09720510.2017.1395194.
- 42. Catapang JK. A collection of database industrial techniques and optimization approaches of database operations. arXiv. 2018. doi:10.48550/arxiv.1809.03445.
- 43. Abouelmehdi K, Beni-Hessane A, Khaloufi H. Big healthcare data: preserving security and privacy. Journal of Big Data. 2018;5(1). doi:10.1186/s40537-017-0110-7
- 44. Liaw S, *et al.* Ethical use of electronic health record data and artificial intelligence: recommendations of the primary care informatics working group of the international medical informatics association. Yearbook of Medical Informatics. 2020;29(1):51. doi:10.1055/s-0040-1701980.
- 45. Ndlovu K, Mauco KL, Chibemba S, Wanyee S, Oluoch T. Assessment of stakeholder perceptions and attitudes toward health data governance principles in Botswana: web-based survey. JMIR Formative Research. 2022;7. doi:10.2196/41408.
- 46. Mohammadzadeh N, Katigari MR, Hosseini R, Pahlevanynejad S. Evaluation methods in clinical health technologies: a systematic review. Iranian Journal of Public Health. 2023. doi:10.18502/ijph.v52i5.12708.
- 47. Thilagaraj M, *et al.* A novel intelligent hybrid optimized analytics and streaming engine for medical big data. Computational and Mathematical Methods in Medicine. 2022;2022:1. doi:10.1155/2022/7120983.
- 48. Yu K, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nature Biomedical Engineering. 2018;2(10):719. doi:10.1038/s41551-018-0305-z.
- 49. Pham Q, Nguyen DC, Huynh-The T, Hwang W, Pathirana PN. Artificial intelligence (AI) and big data for coronavirus (COVID-19) pandemic: a survey on the state-of-the-arts. IEEE Access. 2020;8:130820. doi:10.1109/access.2020.3009328.
- 50. Dash S, Shakyawar SK, Sharma L, Kaushik S. Big data in healthcare: management, analysis and future prospects. Journal of Big Data. 2019;6(1). doi:10.1186/s40537-019-0217-0.
- 51. Kandati DR, Gadekallu TR. A comprehensive survey on federated learning techniques for healthcare informatics. Computational Intelligence and Neuroscience. 2023;2023(1). doi:10.1155/2023/8393990.
- 52. Rahman A, et al. Machine learning and deep learning-

- based approach in smart healthcare: recent advances, applications, challenges and opportunities. AIMS Public Health. 2024;11(1):58. doi:10.3934/publichealth.2024004.
- 53. Bhagat SV, Kanyal D. Navigating the future: the transformative impact of artificial intelligence on hospital management- a comprehensive review. Cureus. 2024 Feb 20. doi:10.7759/cureus.54518.
- 54. Ahuja AS. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ. 2019;7. doi:10.7717/peerj.7702.
- 55. Tariq Z. Integrating artificial intelligence and humanities in healthcare. arXiv. 2023. doi:10.48550/arxiv.2302.07081.
- 56. Jiang F, *et al.* Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology. 2017;2(4):230. doi:10.1136/svn-2017-000101.
- 57. Faiyazuddin Md, *et al.* The impact of artificial intelligence on healthcare: a comprehensive review of advancements in diagnostics, treatment, and operational efficiency. Health Science Reports. 2025;8(1). doi:10.1002/hsr2.70312.
- 58. Akinrinmade AO, *et al.* Artificial intelligence in healthcare: perception and reality. Cureus. 2023 Sep 20. doi:10.7759/cureus.45594.
- 59. Bekbolatova M, Mayer J, Ong CW, Toma M. Transformative potential of AI in healthcare: definitions, applications, and navigating the ethical landscape and public perspectives. Healthcare. 2024;12(2):125. doi:10.3390/healthcare12020125.
- 60. Charow R, *et al.* Artificial intelligence education programs for health care professionals: scoping review. JMIR Medical Education. 2021;7(4). doi:10.2196/31043.
- 61. Li Y-H, Li Y, Wei M-Y, Li G. Innovation and challenges of artificial intelligence technology in personalized healthcare. Scientific Reports. 2024;14(1). doi:10.1038/s41598-024-70073-7.
- 62. Mohammed AM, *et al*. Enhancing antimicrobial resistance strategies: leveraging artificial intelligence for improved outcomes. South African Journal of Chemical Engineering. 2024 Dec. doi:10.1016/j.sajce.2024.12.005.
- 63. Basu K, Sinha R, Ong A, Basu T. Artificial intelligence: how is it changing medical sciences and its future? Indian Journal of Dermatology. 2020;65(5):365. doi:10.4103/ijd.ijd_421_20.