
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 686 | P a g e

Defining Operability for Web Services: Principles, Metrics, and Practices

Nikhita Kataria

Independent Researcher Manager, Software Engineering, USA

* Corresponding Author: Nikhita Kataria

Article Info

ISSN (online): 2582-7138

Volume: 06

Issue: 04

July - August 2025

Received: 14-05-2025

Accepted: 15-06-2025

Published: 09-07-2025

Page No: 686-690

Abstract

This text addresses the important of production ready operability for web services

specifically for the ones running in cloud. It outlines key system metrics and Java

Virtual Machine (JVM) metrics that are essential for monitoring health and

performance of cloud services. It also outlines key upstream and downstream metrics

that are needed to ensure end to end monitoring is built before a service is said to be

production ready. In addition to the metrics, we highlight the importance of other

aspects such as centralized logging, distributed tracing that allows software engineers

and other personas to quickly debug incidents and perform effective root cause

analysis. We outline last mile aspects of what an effective incident response run book

should contain which can be deemed effective ad ready to be used by on call engineer’s

applications.

DOI: https://doi.org/10.54660/.IJMRGE.2025.6.4.686-690

Keywords: Operability, High Availability, System Metrics, JVM Metrics, Upstream/Downstream Monitoring, Centralized

Logging, Distributed Tracing, Incident Response Runbooks

Introduction
Operability in distributed systems is comprised of multiple facets with most important bein usability, serviceability, and
practicality. A system is considered highly operable when it reduces the time and effort required to detect issues, identify root
causes, and restore service reliability during unplanned incidents. To achieve this, systems must adhere to key operational
standards across four core domains:

 Monitoring and Reporting: Systems must expose real-time metrics at both infrastructure and application levels. Effective
monitoring, combined with alerting and visualization tools, enables early anomaly detection and rapid response.

 High Availability (HA): Resilience must be built into the architecture through redundancy, load balancing, and automated
failovers. High availability ensures minimal downtime and contributes directly to meeting SLOs

 Traceability: Centralized logging and distributed tracing are essential for understanding request flows and diagnosing
failures in complex, interconnected services. These tools improve visibility across system boundaries

 Documentation: Comprehensive, up-to-date documentation—covering runbooks, architecture, and escalation
procedures—empowers teams to respond efficiently, especially during critical incidents.

In the following sections we explore more details on recommended metrics that would help faster detection thus reducing Mean
Time to Detect (MTTD) and effective runbooks to reduce Mean Time to Recover (MTTR). Prioritizing operability leads to more
resilient systems and a convenient on-call.

Monitoring and Reporting
Understanding which metrics are needed for which service is a necessity in todays distributed stack. It ensures that system
regressions and outages can be diagnosed in timely manner and exact root causes are spotted faster. In this section we explore
metrics, their role, common aggregations to monitor along with thresholds studied from industry experience and local test. They
have proven to be instrumental in spotting the exact root cause faster to provide fast resolution of unplanned incidents.

https://doi.org/10.54660/.IJMRGE.2025.6.4.686-690

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 687 | P a g e

A. Service Availability and Degradation Indicators

To ensure continuous service reliability, it is essential to

implement comprehensive monitoring solutions that

reflect the real-time health and responsiveness of the

application.

1. Synthetic Monitoring: Tools like Nagios or other

external health-check frameworks should be employed

to continuously test the availability of core endpoints.

These tests must go beyond administrative endpoints

(e.g., /admin) and include well-formed requests to user-

facing or business-critical endpoints (e.g., RESTful GET

operations).

2. Service Reporting Dashboard (SRD) Integration:

Integrating with internal or external service dashboards

is critical to track and visualize key performance

indicators (KPIs). These dashboards should offer insight

into:

a) Availability: It should be an indicator of if the service is

running fine such as uptime and also if it is reliable as in

if its producing correct results.

b) Latency: Latency for various operations aggregated at

percentiles of P50, P90 as a quick check for client

experience.

c) Error Rate: Rate of errors segregated by different

operations such as get error rate is to be monitored

separately than the put error rate.

d) Throughput: Overall throughput to quickly detect peak

traffic.

When services are instrumented with these metrics,

engineering teams can spot issues faster and trace them back

to specific infrastructure events or changes in the code. This

is key to handling incidents effectively and building long-

term reliability.

B. System Level Metrics

For applications with single instances i.e. single-tenant

applications where these instances can be deployed on a

dedicated virtual machine or probably on a single host in a data

center due to security reasons, it is important to monitor the

system level metrics at per instance granularity. These metrics

include various resource utilization metrics for CPU, memory,

disk and even network. For instance, if a service is the only

service on a host these metrics can be attributed directly

otherwise a correlation is needed with noisy neighbors if present.

In use cases where multiple instances and mostly different web

services run on a single virtual machine or even a host with local

containers i.e., metrics need to be tracked at group level so that

an observer can get clear attribution as to which metric is related

to which service. It becomes necessary in such cases to monitor

system metrics on container level granularity. This approach

prevents noisy-neighbor effects and enables more accurate

capacity planning and incident debugging.

Table 1 breaks down the core infrastructure metrics every team

should be tracking. It shows what to measure, how granular your

data should be, and what “healthy” looks like—based on lessons

learned from real production environments at scale.

Table 1: System Metrics for tracking

Title Purpose Granularity Threshold

Disk Utilization Track disk usage P99, P95, P50, Average P99 < 99%, P95 < 70%, P50 < 50%

Disk Performance (iowait) Track disk performance P99, P95, P50, Average P99 < 20%, P95 < 10%, P50 < 5%

CPU Utilization Track CPU usage P99, P95, P50, Average P99 < 99%, P95 < 70%, P50 < 50%

CPU steal time
Track CPU contention due to

hypervisor stealing
P99, P95, P50, Average P99 < 5%, P95 < 2%, P50 < 1%

Memory Utilization Track memory usage P99, P95, P50, Average P99 < 99%, P95 < 70%, P50 < 50%

Memory + Swap Utilization Track memory w/ swap usage P99, P95, P50, Average P99 < 99%, P95 < 70%, P50 < 50%

Network interface utilization Track network utilization P99, P95, P50, Average P99 < 99%, P95 < 70%, P50 < 50%

OOM Killer (groups Metrics)
Track how often the process is being

killed by the OOM killer.
Rate over time interval Rate ≤ 0.1% per hour

C. JVM Metrics (applicable only for java services)

Monitoring JVM metrics is critical for ensuring the health

and performance of Java web services in production

environments. These metrics provide insights into resource

utilization, garbage collection behavior, and thread activity,

all of which directly impact application responsiveness and

stability. Table 2 presents is a detailed overview of essential

JVM metrics to consider, including their monitoring

granularity and suggested thresholds.

Table 2: JVM Metrics for Web Services

Title Purpose Granularity Threshold

Thread count Track number of JVM threads Average Depends on size of heap memory

Heap Memory (Free,

Used, Max, Total)
Track heap memory usage. Average

Free memory > 15%

Used memory <= 85%

Non heap committed

memory

Track non-heap committed memory that is allocated for use

but has not been used yet.
Average

Should remain stable; significant increases

may indicate leaks

GC Count Number of GC events over the last minute
Average (per

minute)

Ideally < 10 per minute; frequent spikes may

indicate pressure

GC Duration Average, Max, 90Pct of GC durations over the last minute
Average, Max,

90pct

Average < 200 ms, Max < 1 s, 90th percentile

< 500 ms

Last Garbage

collection duration

Track if garbage collection is happening often to reclaim

memory
Average < 5 seconds

Collection Count Number of GC events since the JVM started Average No fixed threshold; use for trend analysis

Collection Time Cumulative duration of GC events since the JVM started Average Ideally < 5% of total uptime

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 688 | P a g e

D. Upstream/Downstream Metrics

This section outlines critical metrics for monitoring both

upstream and downstream applications that interact with your

service. Understanding the performance and reliability of

these dependencies is essential for diagnosing issues,

managing SLAs, and maintaining overall system stability.

Table 3 presents upstream and downstream metrics a web

service should ideally track for being production ready.

Table 3: Upstream and Downstream Metrics.

Title Purpose Granularity Threshold

Downstream

Latency/Response Time
Track latency for any downstream applications. P95, P99, Average

Depends on the SLA with

downstream application.

Downstream Error Rate Track error rate for any downstream applications. P95, P99, Average
P99 < 1%, P95 < 0.05%, P50 <

0.01%

Downstream Availability Monitor availability of downstream P95, P99, Average P99 > 99.9%

Upstream Error Rate
Track error rate for any upstream applications that are

tightly coupled with your application.
P95, P99, Average

P99 < 1%, P95 < 0.05%, P50 <

0.01%

Upstream Availability
Monitor availability of upstream as an application

might see fluctuating load in case an upstream is flaky.
P95, P99, Average P99 > 99.9%

E. Database Metrics

This section details important metrics for monitoring

database connectivity and performance, focusing on MySQL

and CosmosDB databases. These metrics provide insights

into connection usage, latency, replication health, and

connection pool status, all of which are critical for

maintaining database responsiveness and reliability in

production environments.

Table 4

Title Purpose Granularity Threshold

Mysql Connection Count Track Parallel Connection Counts P99, P95, P50, Average
< 80-90% of max allowed

connections

Mysql Connection Latency - Read Track Overall connection latency for reads P99, P95, P50, Average P99 < 0.1s, P95 < 0.05s, P50 < 0.01s

Mysql Connection Latency - Write Track Overall connection latency for writes P99, P95, P50, Average < 1s

Mysql Connection pool thread count Track Mysql connection pool usage P99, P95, P50, Average Typically < 100 threads

Mysql Master Slave Replication Lag Track Replication lag Average P99 < 10s, P95 < 5s, P50 < 1s

CosmosDB Connection Count Track Parallel Connection Counts P99, P95, P50, Average
< 80-90% of max allowed

connections

CosmosDB Connection Latency - Reads Overall database latency for reads P99, P95, P50, Average P99 < 0.1s, P95 < 0.05s, P50 < 0.01s

CosmosDB Connection Latency - Writes Overall database latency for writes P99, P95, P50, Average P99 < 10s, P95 < 5s, P50 < 1s

CosmosDB Connection pool thread count Database connection pool usage P99, P95, P50, Average typically < 100 threads

CosmosDB Replication lag Replication lag Average P99 < 0.1s, P95 < 0.05s, P50 < 0.01s

Table 5:

Symptom Causes

Overall P99 Latency > 1 minute High CPU, High Disk, Service Throttling, DB connection timeout

Throughput < X number of queries Connection timeouts, High thread count

Error Rate > 10% Code issues, Service timeouts (5xx)

F. Alerting

A. Cause and Symptom Relationship

Metrics can be effectively categorized into causes and

symptoms. Symptoms represent the observable behaviors or

issues a service exhibit as a result of various internal or

external factors, which are the causes. For instance, elevated

disk or CPU utilization (cause) can lead to performance

degradation, such as reduced throughput or increased latency

(symptom). Here are some examples illustrating the mapping

between symptoms and their potential causes

In use cases where a new service is being developed or being

refactored, it is important to follow the below stated

practices:

1. Alert on Symptoms First: Focus alerting on symptoms

that directly impact the service’s behavior or user

experience.

2. Use Metrics to Identify Causes: Utilize cause metrics

to diagnose and pinpoint the underlying issues driving

the symptoms.

3. Document Symptom-to-Cause Mapping: Clearly

define and document the relationship between symptoms

and their causes within the alert metadata, such as the

notes or incident tracking URL fields. This helps

responders quickly understand potential root causes

when an alert fires.

A. Alert Categorizations

Every web service should organize alerts into various

severity levels which should be well understand and have a

clear incident response plan which is understandable by each

engineer in the team. Industry standard is to follow priority-

based alerting to ensure the impact and urgency of the issue.

A sample classification is:

1. Priority 0 (P0): Critical Alerts: An engineer would

typically wake up for these alerts if they are off business

hours as it indicates severe incidents such as a service is

unavailable on more than 50% of the hosts causing a

significant capacity shortage. These alerts need to be

catered to as soon as possible to prevent client errors.

2. Priority 1 (P1): High Priority Alerts: These alerts are

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 689 | P a g e

important however might not be as critical as a service

being down. The response time for P1’s is generally in

hours while P0’s are generally minutes. An example in

this category is a CPU spike that might happen during

peak traffic. In this scenario an engineer needs to be

aware of the load and vigilant however an immediate

action might not be necessary. These alerts if unattended

may (and should) result into a P0 alert being triggered if

not resolved within a certain time period.

3. Priority 2 (P2): Informational and Low Priority

Alerts: This category includes all other alerts that do not

pose an immediate threat to service availability or

performance. P2 alerts serve as early warnings or

informational signals that can be addressed during

routine maintenance or as part of ongoing service

improvements.

By defining clear severity levels and corresponding response

plans, teams can prioritize their efforts effectively, ensuring

critical incidents receive immediate attention while less

urgent issues are tracked and resolved in due course.

C. Alert Coverage

Alerts should focus on key areas to ensure timely detection

of issues to ensure comprehensive coverage while reducing

noise and focusing on impactful issues.

1) Application Metrics (Symptoms): Alert on symptoms

of failure like high latency, error rates, or low

throughput, as detailed in the Monitoring and Reporting

section. Avoid alerting on all causes; focus on symptoms

that impact service behavior.

2) System Metrics: Monitor and alert on critical system-

level metrics such as CPU, memory, disk usage, and

network performance to catch resource issues before

they affect the application.

3) Upstream and Downstream Dependencies: Track

latency, error rates, and availability of upstream and

downstream services. Early alerts on these dependencies

help prevent cascading failures.

D. ITR (Incident Response) standards

Every alert added to a monitoring system and include a clear

and detailed incident response plan covering the following

elements:

1) Alert Description: A precise explanation of what

triggers the alert. For example: "This alert fires when the

number of 5xx errors returned by Service X remains high

for ‘m’ consecutive minutes. These errors typically occur

when the service is overloaded (e.g., returning 502

errors) or experiencing internal crashes."

2) Source Code Location: Identify the specific code path

or module where the alert originates.

3) Debugging Instructions: Steps to investigate the issue,

including:

a) Relevant logs to review

b) Key metrics to check for confirming symptoms and

identifying causes

c) Upstream and downstream metrics to examine

4) Escalation Guidelines: Clear criteria for escalating the

issue if it remains unresolved after ‘x’ minutes, including

who to notify and how.

G. High Availability

High Availability (HA) is a critical requirement for all

services deploying on the cloud. The overall deployment

strategy leverages services configured for fault tolerance

across multiple cloud fault domains. Services onboarding to

the cloud should prioritize building resiliency into their code.

From an operational perspective, HA involves several key

aspects:

A. Automated Recovery and Restarts: The system should

automatically recover from unplanned issues such as

crashes or disk exhaustion without manual intervention.

B. Seamless Traffic Failover: Traffic should automatically

and transparently switch to healthy instances if any

instance starts returning errors. (Note: Validation is

needed to confirm if services support this capability

fully.)

C. Staged Rollouts: Deployments should be rolled out

incrementally to reduce risk. Services support rolling

upgrades by updating a limited percentage of instances

at a time (e.g., 20% of instances per batch), preventing

complete downtime during deployment.

D. Over-Provisioned Capacity: Services should allocate at

least 20% more capacity than the estimated requirement

to handle unexpected spikes or failures. For services

written in Python or Java, performance testing should

cover:

1. Load/Stress Tests: Identify service limits, such as the

maximum queries per second it can handle at acceptable

resource usage.

2. Longevity Tests: Detect regressions like memory leaks

or performance degradation over time.

3. Capacity Estimation: Use test results to guide capacity

planning.

E. Load Balancer Integration: Deploy services behind a

load balancer that routes traffic to healthy instances.

Although the current setup may be limited to a single

availability zone, properly configured services ensure

fault tolerance across multiple fault domains.

Runbook standards

To ensure consistent and effective incident management,

every service deployed on the cloud must maintain a

comprehensive runbook detailing the resolution procedures

for any alerts triggered. Operational runbooks and incident

response plans (IRPs) should be precise, actionable, and

adhere to a standardized structure as outlined below.

1. Service Architecture and Overview: A succinct

description of the service, its objectives, and high-level

design, providing essential context for responders

2. Service Ecosystem: Documentation of upstream and

downstream dependencies that may influence or be

influenced by the service’s health.

3. Monitoring and Alerting Links: Direct references to

relevant dashboards and monitoring tools to facilitate

rapid diagnosis.

4. Service Checklist: A summary of key service attributes

including: Service name, Runbook hyperlink, Primary

purpose and functionality

5. Issue-to-Resolution Mapping: For each alert, at

minimum include Description, Resolution and Point of

Contact.

6. Escalation Procedures: Defined criteria and steps for

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 690 | P a g e

escalating unresolved issues, including escalation points

and timeframes.

7. Communication and Reporting Channels: Establish

communication protocols such as email aliases or

ticketing queues to streamline issue reporting and

tracking.

Centralized Logging

Every cloud service should provide centralized access to its

access, application, and error logs. This can be achieved

through:

1. Centralized Log Aggregation: Multiple companies

generally would either develop propriatory logging

framwork or complire frameworks such as Splunk or

Elasticserach for their workloads. It is improtant to

create logs in such as way that they have standard

metadata like application name, log line, log file, a

request id for effective debugging and searching

2. Distributed Tracing: Tracing is an easy and a hard

approach at the same time because it is easy to use a

tracing solution like Jaeger, or OpenTelemetry however

the logs should have metadata assocaiated with unique

identifies for tracking specific operations and requests as

they flow from service to service.

3. Structured Logging: Use structured logs with metadata

(e.g., request IDs, timestamps) to enable quick

correlation and troubleshooting.

4. Access Control and Retention: Protect log data with

proper permissions and set retention policies based on

compliance and cost.

Conclusion

This paper has outlined a comprehensive framework for

defining and enhancing operability in web services, focusing

on principles, metrics, and best practices critical to achieving

high availability and robust disaster recovery. By identifying

key system-level and JVM-specific metrics, alongside

upstream and downstream dependency monitoring, the

framework enables timely detection and diagnosis of service

degradations. The integration of centralized logging and

distributed tracing strengthens visibility and root cause

analysis capabilities across distributed services. We outline

the importance of having exhaustive and standard runbooks.

Together, these practices support resilient, scalable, and

highly available web services, ultimately reducing Mean

Time to Detect (MTTD) and Mean Time to Recover (MTTR)

and improving overall service reliability and operability in

cloud environments.

References

1. Beyer C, Jones J, Petoff J, Murphy NR. Site Reliability

Engineering: How Google Runs Production Systems.

O'Reilly Media; 2016. Available from:

https://sre.google/sre-book/service-level-objectives/

[Accessed 2025 May 18].

2. Nygard MT. Release It!: Design and Deploy Production-

Ready Software. Pragmatic Bookshelf; 2007.

3. Richardson C. Microservices Patterns: With Examples in

Java. Manning Publications; 2018.

4. OpenTelemetry Contributors. OpenTelemetry:

Observability for Cloud-Native Software [Internet].

Available from: https://opentelemetry.io/ [Accessed

2025 May 18].

5. DigitalOcean. Cloud Metrics: The 8 Most Important

Metrics to Monitor [Internet]. DigitalOcean; 2022 Oct

20. Available from:

https://www.digitalocean.com/resources/articles/cloud-

metrics.

6. Breyter M, Rojas C. Reliability Engineering in the

Cloud: Strategies and Practices for AI-Powered Cloud-

Based Systems. 1st ed. Hoboken, NJ: Addison-Wesley

Professional; 2025

