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1. Introduction

Construction cost estimation is fundamental to project success, directly impacting budget allocation, resource planning, and
financial viability. Traditional estimation methods, including parametric, analogous, and bottom-up approaches, often rely on
historical data and expert judgment, leading to inconsistencies and potential inaccuracies ranging from 10-30% ™. The advent
of machine learning technologies presents opportunities to enhance estimation accuracy while reducing time requirements. The
construction industry generates vast amounts of data including project specifications, material costs, labor rates, and
environmental factors. ML algorithms can identify complex patterns within this data that traditional methods may overlook. This
research addresses the critical need for accurate, efficient cost estimation methods by systematically comparing ML approaches
and validating their effectiveness through real-world application.

2. Literature Review

Recent studies have explored various ML applications in construction cost estimation. Kim et al. 1 demonstrated neural
networks achieving 15% improvement over traditional methods for highway projects. Sonmez ! applied support vector
machines to building construction with promising results, while Cheng et al. [ utilized genetic algorithms for optimization.
Anderson and Martinez ! and Thompson et al. ! provide a comprehensive review of machine learning adoption in construction,
highlighting the industry's gradual shift toward data-driven approaches. Liu et al. [l demonstrated that ensemble learning
methods consistently outperform individual algorithms in construction applications, supporting our focus on Random Forest and
Gradient Boosting approaches. Garcia et al. [¥] emphasized the importance of big data analytics in modern construction project
management, validating our comprehensive dataset approach. However, gaps remain in comprehensive model comparison and
validation across diverse project types. Most studies focus on single algorithms or limited datasets, making it difficult to establish
best practices. This research addresses these limitations through systematic comparison of multiple ML approaches using a
substantial dataset.

3. Methodology
A. Data Collection and Preprocessing: The dataset obtained comprises 2,847 residential construction projects completed
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between 2019-2024, sourced from regional construction

databases and industry partners. Key features include:

e Project Characteristics: Floor area, number of stories,
building type

e Location Factors: Geographic region, urban/rural
classification

e Material Specifications:
materials, roofing systems

e Economic Indicators: Local labor costs, material price
indices

e Temporal Factors: Project start date, duration, seasonal
variations

Foundation type, wall

Data preprocessing involved outlier detection using the
Interquartile Range (IQR) method, missing value imputation
through multivariate techniques, and feature normalization
using standardization.

B. Feature Engineering This research developed 47

engineered features including:

e Composite Indices: Cost per square foot ratios,
complexity scores

e Interaction Terms: Material-location combinations,
size-type interactions

e Temporal Features: Seasonal adjustments, market
trend indicators

e Categorical Encodings:
categorical variables.

One-hot encoding for

Feature selection was guided by domain expertise and
statistical analysis, incorporating insights from Nakamura et
al. [ on sustainable construction factors.

C. Model Implementation Four ML algorithms were

implemented and compared:

e Random Forest (RF): Ensemble method combining
multiple decision trees, shown by Zhao et al. [° to excel
in civil engineering applications

Parameters:

n_estimators=200,

max_depth=15, min_samples_split=5

e Support Vector Regression (SVR): Kernel-based
regression with RBF kernel

Parameters: C=100,

Gamma=0.01,

Epsilon=0.1

e Gradient Boosting (GB): Sequential ensemble learning
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approach
Parameters:
n_estimators=150,
learning_rate=0.1,
max_depth=8

e Neural Network (NN): Multi-layer perceptron with

three hidden layers, architecture informed by Patel et al.
[11]

Architecture; [64.32 18]
Neurons, ReLU activation,
Dropout=0.2

D. Evaluation Metrics Model performance was assessed
using standard metrics recommended by O'Brien et al. [12:

e Mean Absolute Percentage Error (MAPE)

e Root Mean Square Error (RMSE)

e R-squared (R?)

e Mean Absolute Error (MAE)

Uncertainty quantification followed approaches outlined by
Petrov et al. 3, providing confidence intervals for all
predictions.

4. Case Study: Residential Construction Project

A. Project Description The primary case study involves a
2,400 sq ft two-story residential project in suburban Texas.
Project specifications included:

e Foundation: Concrete slab with perimeter beam

e Structure: Wood frame construction

e Exterior: Brick veneer with vinyl siding

e Roofing: Asphalt shingles

e Timeline: 8-month construction period

B. Traditional vs. ML Estimation Traditional parametric
estimation yielded $285,000 + 15% ($242,250 - $327,750).
ML models provided more precise estimates:

Random Forest: $278,450 + 6.2%

e Gradient Boosting: $281,200 * 7.1%

e SVR: $289,300 + 9.4%

e Neural Network: $283,750 + 8.8%

Actual project cost: $279,850

5. Results and Analysis
A. Model Performance Comparison: Random Forest: 8.7%
MAPE and Traditional: 18.5% MAPE.

Machine Learning Model Performance Comparison

MAPE (%]

Random Forest Gradient Boosting Neural Network SVR

Traditional Methods

Fig 1: Machine Learning Model Performance Comparison
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Table 1: Model Performance Metrics
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Model MAPE (%0) RMSE ($) R? MAE ($) Training Time (min)
Random Forest 8.7 12,450 0.923 9,230 3.2
Gradient Boosting 9.2 13,180 0.915 9,850 4.7
Neural Network 10.4 14,720 0.897 11,240 12.4
SVR 11.8 16,390 0.876 12,680 8.9
Traditional Methods 18.5 24,320 0.745 19,450 N/A

Feature Importance Analysis (Random Forest Model)

Floor Area
Location Index
Foundation Type
Material Quality
Labor Cost Index
Number of Stories
Seasonal Factor
Complexity Score
Roof Material

Site Conditions
Project Duration
Contractor Rating

Bullding Code

0.0 25 50 15 10.0 125 15.0 17.5
Impartance (%)

engineered features contribute 5.2% to model performance.

B. Cross-Validation Results

Prediction vs Actual Cost Analysis
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Fig 2: Feature Importance Analysis (Random Forest Model) Size and location factors account for 34.1% of prediction importance, while

Fig 3: Prediction vs Actual Cost Analysis Points closer to the diagonal line indicate better predictions. Random Forest shows excellent
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Table 3: 5-Fold Cross-Validation Performance

Model Mean MAPE Std Dev 95% Confidence Interval
Random Forest 8.9% 0.8% [8.2%, 9.6%]
Gradient Boosting 9.4% 1.1% [8.5%, 10.3%]
Neural Network 10.7% 1.4% [9.6%, 11.8%]
SVR 12.1% 1.6% [10.8%, 13.4%]

C. Regional Performance Analysis

Table 4: Model Performance by Geographic Region

Region  |Random Forest MAPE|Gradient Boosting MAPE|Data Points|
Urban North 7.8% 8.3% 892
Suburban East 8.9% 9.5% 746
Rural South 9.4% 10.1% 634
Urban West 8.1% 8.7% 575

Regional MAPE Performance Heatmap
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Fig 4: Regional Performance Heatmap - MAPE %. Urban areas show 15-20% better performance than rural regions, likely due to
standardized construction practices and larger datasets.
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Fig 5: Regional Performance Heatmap - R? Score.
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Regional RMSE Performance Heatmap
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Fig 6: Regional Performance Heatmap - RMSE (K).
4. Discussion
A. Model Effectiveness
100 Learning Curve: Random Forest Model
} T
== Validtion Seore
o Trnditional Baseling
g
o
&
>
g 500 1000 1500 000 2500
Training Set Size
Fig 7: Learning Curves Analysis - Random Forest
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Fig 8: Learning Curves Analysis - Gradient Booting
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Fig 9: Learning Curves Analysis - Neural Network
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Fig 10: Learning Curves Analysis — SVR

Training Insights

e Optimal training size: ~1500-2000 samples

e Performance plateaus after convergence point
e Random Forest shows good generalization

Recommendations

e Current dataset size (2,847) is adequate
e Focus on data quality over quantity

e  Monitor validation gap for overfitting

Random Forest emerged as the superior model, achieving
8.7% MAPE compared to traditional methods' 18.5%. This
represents a 53% improvement in estimation accuracy. The
ensemble approach effectively captures complex feature

C. Practical Implementation

interactions while maintaining robustness against overfitting.
Gradient Boosting performed comparably (9.2% MAPE) but
required longer training time. Neural Networks, despite their
theoretical capability, showed susceptibility to overfitting
with limited data. SVR demonstrated consistent but lower
performance across all metrics.

B. Feature Insights Floor area remains the strongest predictor
(18.7% importance), confirming traditional  sizing
approaches. However, location and foundation type
contribute significantly (15.4% and 13.2% respectively),
highlighting the value of comprehensive feature engineering.
The inclusion of temporal factors (6.4% importance)
addresses market volatility concerns.
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Fig 11: Cost Estimation Timeline Comparison - Overall Comparison
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Fig 12: Cost Estimation Timeline Comparison - Detailed Breakdown

Efficiency Analysis

e Time Reduction: ML reduces estimation time from 4 °

weeks to 3 minutes, enabling rapid iterative design and
real-time cost optimization.

e Resource Allocation: Frees up expert estimators for °

complex analysis and client consultation rather than

routine calculations.

Accuracy Improvement: Despite speed increase, ML
achieves 12% higher accuracy through comprehensive
pattern recognition and data analysis.

Business Impact: The 99.96% time reduction enables
construction firms to process 13,440x more estimates
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per month, dramatically improving bid capacity and
market responsiveness.

ML models reduce estimation time from 2-3 weeks to

minutes while improving accuracy. The integration with

Building Information Modeling (BIM) systems, as

demonstrated by Olsson et al. 1, further enhances practical

implementation. However, implementation requires:

e Data Quality: Consistent, comprehensive
collection protocols

e Model Maintenance: Regular retraining with new
project data

e Expert Integration: Combining ML predictions with
domain expertise

e Uncertainty Quantification:
intervals for estimates

data

Providing confidence

D. Limitations and Future Work Current limitations
include:

e Dataset bias toward residential projects

e Limited international applicability

e Difficulty handling novel project types

e Requirement for substantial historical data

Future research should explore:

e Deep learning architectures for complex projects

e Transfer learning across project types

e Real-time cost adjustment mechanisms

e Integration with Building Information Modeling (BIM)
7. Conclusion

This research demonstrates the significant potential of

machine learning in construction cost estimation. Random

Forest achieved 92.3% accuracy (R? = 0.923) with 8.7%

MAPE, substantially outperforming traditional methods. The

case study validation confirms practical applicability with

actual project costs falling within ML prediction ranges.

Key findings include:

e ML models provide 40-60% improvement in estimation
accuracy

e Ensemble methods (Random Forest, Gradient Boosting)
outperform individual algorithms

e [Feature engineering significantly
performance

e Geographic and temporal
consideration

impacts model

factors require careful

Successful  implementation  requires  organizational
commitment to data collection, model maintenance, and staff
training. However, the demonstrated improvements in
accuracy and efficiency justify the investment for
construction firms seeking competitive advantage. The
construction industry stands to benefit significantly from ML
adoption, potentially reducing cost overruns, improving
project viability assessment, and enhancing overall project
success rates. As data availability increases and algorithms
improve, ML-based cost estimation will likely become
industry standard.
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