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Abstract 
Construction cost estimation remains a critical challenge in project management, with 

traditional methods often lacking accuracy and efficiency. This paper presents a comprehensive 

analysis of machine learning (ML) approaches for construction cost estimation, comparing 

Random Forest, Support Vector Regression, Gradient Boosting, and Neural Network models. 

Through a case study of 2,847 residential construction projects, The research demonstrates that 

ensemble methods achieve superior performance with Random Forest attaining 92.3% accuracy 

and 8.7% MAPE. The findings indicate ML models significantly outperform traditional 

parametric estimation methods, offering improved accuracy and reduced estimation time from 

weeks to minutes. 
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1. Introduction 

Construction cost estimation is fundamental to project success, directly impacting budget allocation, resource planning, and 

financial viability. Traditional estimation methods, including parametric, analogous, and bottom-up approaches, often rely on 

historical data and expert judgment, leading to inconsistencies and potential inaccuracies ranging from 10-30% [1]. The advent 

of machine learning technologies presents opportunities to enhance estimation accuracy while reducing time requirements. The 

construction industry generates vast amounts of data including project specifications, material costs, labor rates, and 

environmental factors. ML algorithms can identify complex patterns within this data that traditional methods may overlook. This 

research addresses the critical need for accurate, efficient cost estimation methods by systematically comparing ML approaches 

and validating their effectiveness through real-world application. 

 

2. Literature Review 

Recent studies have explored various ML applications in construction cost estimation. Kim et al. [2] demonstrated neural 

networks achieving 15% improvement over traditional methods for highway projects. Sonmez [3] applied support vector 

machines to building construction with promising results, while Cheng et al. [4] utilized genetic algorithms for optimization. 

Anderson and Martinez [5] and Thompson et al. [6] provide a comprehensive review of machine learning adoption in construction, 

highlighting the industry's gradual shift toward data-driven approaches. Liu et al. [7] demonstrated that ensemble learning 

methods consistently outperform individual algorithms in construction applications, supporting our focus on Random Forest and 

Gradient Boosting approaches. Garcia et al. [8] emphasized the importance of big data analytics in modern construction project 

management, validating our comprehensive dataset approach. However, gaps remain in comprehensive model comparison and 

validation across diverse project types. Most studies focus on single algorithms or limited datasets, making it difficult to establish 

best practices. This research addresses these limitations through systematic comparison of multiple ML approaches using a 

substantial dataset. 

 

3. Methodology 

A. Data Collection and Preprocessing: The dataset obtained comprises 2,847 residential construction projects completed  

https://doi.org/10.54660/.IJMRGE.2025.6.2.1898-1905


International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    1899 | P a g e  

 

between 2019-2024, sourced from regional construction 

databases and industry partners. Key features include: 

● Project Characteristics: Floor area, number of stories, 

building type 

● Location Factors: Geographic region, urban/rural 

classification 

● Material Specifications: Foundation type, wall 

materials, roofing systems 

● Economic Indicators: Local labor costs, material price 

indices 

● Temporal Factors: Project start date, duration, seasonal 

variations 

 

Data preprocessing involved outlier detection using the 

Interquartile Range (IQR) method, missing value imputation 

through multivariate techniques, and feature normalization 

using standardization. 

 

B. Feature Engineering This research developed 47 

engineered features including: 

● Composite Indices: Cost per square foot ratios, 

complexity scores 

● Interaction Terms: Material-location combinations, 

size-type interactions 

● Temporal Features: Seasonal adjustments, market 

trend indicators 

● Categorical Encodings: One-hot encoding for 

categorical variables. 

 

Feature selection was guided by domain expertise and 

statistical analysis, incorporating insights from Nakamura et 

al. [9] on sustainable construction factors. 

 

C. Model Implementation Four ML algorithms were 

implemented and compared: 

● Random Forest (RF): Ensemble method combining 

multiple decision trees, shown by Zhao et al. [10] to excel 

in civil engineering applications 

Parameters:  

n_estimators=200,  

max_depth=15, min_samples_split=5 

 

● Support Vector Regression (SVR): Kernel-based 

regression with RBF kernel 

Parameters: C=100, 

Gamma=0.01,  

Epsilon=0.1 

 

● Gradient Boosting (GB): Sequential ensemble learning 

approach 

Parameters:  

n_estimators=150,  

learning_rate=0.1, 

max_depth=8 

 

● Neural Network (NN): Multi-layer perceptron with 

three hidden layers, architecture informed by Patel et al. 
[11] 

 

Architecture: [64, 32, 16]  

Neurons, ReLU activation,  

Dropout=0.2 

 

D. Evaluation Metrics Model performance was assessed 

using standard metrics recommended by O'Brien et al. [12]: 

● Mean Absolute Percentage Error (MAPE) 

● Root Mean Square Error (RMSE) 

● R-squared (R²) 

● Mean Absolute Error (MAE) 

 

Uncertainty quantification followed approaches outlined by 

Petrov et al. [13], providing confidence intervals for all 

predictions. 

 

4. Case Study: Residential Construction Project 

A. Project Description The primary case study involves a 

2,400 sq ft two-story residential project in suburban Texas. 

Project specifications included: 

● Foundation: Concrete slab with perimeter beam 

● Structure: Wood frame construction 

● Exterior: Brick veneer with vinyl siding 

● Roofing: Asphalt shingles 

● Timeline: 8-month construction period 

 

B. Traditional vs. ML Estimation Traditional parametric 

estimation yielded $285,000 ± 15% ($242,250 - $327,750). 

ML models provided more precise estimates: 

● Random Forest: $278,450 ± 6.2% 

● Gradient Boosting: $281,200 ± 7.1% 

● SVR: $289,300 ± 9.4% 

● Neural Network: $283,750 ± 8.8% 

 

Actual project cost: $279,850 

 

5. Results and Analysis 

A. Model Performance Comparison: Random Forest: 8.7% 

MAPE and Traditional: 18.5% MAPE. 

 

 
 

Fig 1: Machine Learning Model Performance Comparison 
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Table 1: Model Performance Metrics 
 

Model MAPE (%) RMSE ($) R² MAE ($) Training Time (min) 

Random Forest 8.7 12,450 0.923 9,230 3.2 

Gradient Boosting 9.2 13,180 0.915 9,850 4.7 

Neural Network 10.4 14,720 0.897 11,240 12.4 

SVR 11.8 16,390 0.876 12,680 8.9 

Traditional Methods 18.5 24,320 0.745 19,450 N/A 

 

 
 

Fig 2: Feature Importance Analysis (Random Forest Model) Size and location factors account for 34.1% of prediction importance, while 

engineered features contribute 5.2% to model performance. 

 

B. Cross-Validation Results 

 

 
 

Fig 3: Prediction vs Actual Cost Analysis Points closer to the diagonal line indicate better predictions. Random Forest shows excellent 

correlation with R² = 0.92 
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Table 3: 5-Fold Cross-Validation Performance 
 

Model Mean MAPE Std Dev 95% Confidence Interval 

Random Forest 8.9% 0.8% [8.2%, 9.6%] 

Gradient Boosting 9.4% 1.1% [8.5%, 10.3%] 

Neural Network 10.7% 1.4% [9.6%, 11.8%] 

SVR 12.1% 1.6% [10.8%, 13.4%] 

 

C. Regional Performance Analysis  

 

Table 4: Model Performance by Geographic Region 
 

Region Random Forest MAPE Gradient Boosting MAPE Data Points 

Urban North 7.8% 8.3% 892 

Suburban East 8.9% 9.5% 746 

Rural South 9.4% 10.1% 634 

Urban West 8.1% 8.7% 575 

 

 
 

Fig 4: Regional Performance Heatmap - MAPE %. Urban areas show 15-20% better performance than rural regions, likely due to 

standardized construction practices and larger datasets. 

 

 
 

Fig 5: Regional Performance Heatmap - R2 Score. 
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Fig 6: Regional Performance Heatmap - RMSE (K). 

 

4. Discussion 

A. Model Effectiveness 

 

  
 

Fig 7: Learning Curves Analysis - Random Forest 

 

 
 

Fig 8: Learning Curves Analysis - Gradient Booting 
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Fig 9: Learning Curves Analysis - Neural Network 

 

 
 

Fig 10: Learning Curves Analysis – SVR 

 

Training Insights 

● Optimal training size: ~1500-2000 samples 

● Performance plateaus after convergence point 

● Random Forest shows good generalization 

 

Recommendations 

● Current dataset size (2,847) is adequate 

● Focus on data quality over quantity 

● Monitor validation gap for overfitting 

 

Random Forest emerged as the superior model, achieving 

8.7% MAPE compared to traditional methods' 18.5%. This 

represents a 53% improvement in estimation accuracy. The 

ensemble approach effectively captures complex feature 

interactions while maintaining robustness against overfitting. 

Gradient Boosting performed comparably (9.2% MAPE) but 

required longer training time. Neural Networks, despite their 

theoretical capability, showed susceptibility to overfitting 

with limited data. SVR demonstrated consistent but lower 

performance across all metrics. 

B. Feature Insights Floor area remains the strongest predictor 

(18.7% importance), confirming traditional sizing 

approaches. However, location and foundation type 

contribute significantly (15.4% and 13.2% respectively), 

highlighting the value of comprehensive feature engineering. 

The inclusion of temporal factors (6.4% importance) 

addresses market volatility concerns. 

 

C. Practical Implementation 
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Fig 11: Cost Estimation Timeline Comparison - Overall Comparison 

 

 
 

Fig 12: Cost Estimation Timeline Comparison - Detailed Breakdown 

 

Efficiency Analysis 

● Time Reduction: ML reduces estimation time from 4 

weeks to 3 minutes, enabling rapid iterative design and 

real-time cost optimization. 

● Resource Allocation: Frees up expert estimators for 

complex analysis and client consultation rather than 

routine calculations. 

● Accuracy Improvement: Despite speed increase, ML 

achieves 12% higher accuracy through comprehensive 

pattern recognition and data analysis. 

● Business Impact: The 99.96% time reduction enables 

construction firms to process 13,440× more estimates 
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per month, dramatically improving bid capacity and 

market responsiveness. 

 

ML models reduce estimation time from 2-3 weeks to 

minutes while improving accuracy. The integration with 

Building Information Modeling (BIM) systems, as 

demonstrated by Olsson et al. [14], further enhances practical 

implementation. However, implementation requires: 

● Data Quality: Consistent, comprehensive data 

collection protocols 

● Model Maintenance: Regular retraining with new 

project data 

● Expert Integration: Combining ML predictions with 

domain expertise 

● Uncertainty Quantification: Providing confidence 

intervals for estimates 

 

D. Limitations and Future Work Current limitations 

include: 

● Dataset bias toward residential projects 

● Limited international applicability 

● Difficulty handling novel project types 

● Requirement for substantial historical data 

 

Future research should explore: 

● Deep learning architectures for complex projects 

● Transfer learning across project types 

● Real-time cost adjustment mechanisms 

● Integration with Building Information Modeling (BIM) 

 

7. Conclusion 

This research demonstrates the significant potential of 

machine learning in construction cost estimation. Random 

Forest achieved 92.3% accuracy (R² = 0.923) with 8.7% 

MAPE, substantially outperforming traditional methods. The 

case study validation confirms practical applicability with 

actual project costs falling within ML prediction ranges. 

Key findings include: 

● ML models provide 40-60% improvement in estimation 

accuracy 

● Ensemble methods (Random Forest, Gradient Boosting) 

outperform individual algorithms 

● Feature engineering significantly impacts model 

performance 

● Geographic and temporal factors require careful 

consideration 

 

Successful implementation requires organizational 

commitment to data collection, model maintenance, and staff 

training. However, the demonstrated improvements in 

accuracy and efficiency justify the investment for 

construction firms seeking competitive advantage. The 

construction industry stands to benefit significantly from ML 

adoption, potentially reducing cost overruns, improving 

project viability assessment, and enhancing overall project 

success rates. As data availability increases and algorithms 

improve, ML-based cost estimation will likely become 

industry standard. 
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