

International Journal of Multidisciplinary Research and Growth Evaluation.

Deep Neural Networks for Predictive Construction Cost Modeling: A Multi-Algorithm Comparative Framework with Real-Time Implementation Validation

Sai Kothapalli

Independent Researcher, USA

* Corresponding Author: Sai Kothapalli

Article Info

ISSN (online): 2582-7138

Volume: 06 Issue: 02

March - April 2025 Received: 04-03-2025 Accepted: 02-04-2025 Page No: 1898-1905

Abstract

Construction cost estimation remains a critical challenge in project management, with traditional methods often lacking accuracy and efficiency. This paper presents a comprehensive analysis of machine learning (ML) approaches for construction cost estimation, comparing Random Forest, Support Vector Regression, Gradient Boosting, and Neural Network models. Through a case study of 2,847 residential construction projects, The research demonstrates that ensemble methods achieve superior performance with Random Forest attaining 92.3% accuracy and 8.7% MAPE. The findings indicate ML models significantly outperform traditional parametric estimation methods, offering improved accuracy and reduced estimation time from weeks to minutes.

DOI: https://doi.org/10.54660/.IJMRGE.2025.6.2.1898-1905

Keywords: Machine Learning, Construction Cost Estimation, Random Forest, Neural Networks, Predictive Analytics

1. Introduction

Construction cost estimation is fundamental to project success, directly impacting budget allocation, resource planning, and financial viability. Traditional estimation methods, including parametric, analogous, and bottom-up approaches, often rely on historical data and expert judgment, leading to inconsistencies and potential inaccuracies ranging from 10-30% ^[1]. The advent of machine learning technologies presents opportunities to enhance estimation accuracy while reducing time requirements. The construction industry generates vast amounts of data including project specifications, material costs, labor rates, and environmental factors. ML algorithms can identify complex patterns within this data that traditional methods may overlook. This research addresses the critical need for accurate, efficient cost estimation methods by systematically comparing ML approaches and validating their effectiveness through real-world application.

2. Literature Review

Recent studies have explored various ML applications in construction cost estimation. Kim *et al.* ^[2] demonstrated neural networks achieving 15% improvement over traditional methods for highway projects. Sonmez ^[3] applied support vector machines to building construction with promising results, while Cheng *et al.* ^[4] utilized genetic algorithms for optimization. Anderson and Martinez ^[5] and Thompson *et al.* ^[6] provide a comprehensive review of machine learning adoption in construction, highlighting the industry's gradual shift toward data-driven approaches. Liu *et al.* ^[7] demonstrated that ensemble learning methods consistently outperform individual algorithms in construction applications, supporting our focus on Random Forest and Gradient Boosting approaches. Garcia *et al.* ^[8] emphasized the importance of big data analytics in modern construction project management, validating our comprehensive dataset approach. However, gaps remain in comprehensive model comparison and validation across diverse project types. Most studies focus on single algorithms or limited datasets, making it difficult to establish best practices. This research addresses these limitations through systematic comparison of multiple ML approaches using a substantial dataset.

3. Methodology

A. Data Collection and Preprocessing: The dataset obtained comprises 2,847 residential construction projects completed

between 2019-2024, sourced from regional construction databases and industry partners. Key features include:

- **Project Characteristics**: Floor area, number of stories, building type
- Location Factors: Geographic region, urban/rural classification
- **Material Specifications**: Foundation type, wall materials, roofing systems
- Economic Indicators: Local labor costs, material price indices
- Temporal Factors: Project start date, duration, seasonal variations

Data preprocessing involved outlier detection using the Interquartile Range (IQR) method, missing value imputation through multivariate techniques, and feature normalization using standardization.

- **B. Feature Engineering** This research developed 47 engineered features including:
- Composite Indices: Cost per square foot ratios, complexity scores
- **Interaction Terms**: Material-location combinations, size-type interactions
- Temporal Features: Seasonal adjustments, market trend indicators
- Categorical Encodings: One-hot encoding for categorical variables.

Feature selection was guided by domain expertise and statistical analysis, incorporating insights from Nakamura *et al.* [9] on sustainable construction factors.

- **C. Model Implementation** Four ML algorithms were implemented and compared:
- **Random Forest (RF)**: Ensemble method combining multiple decision trees, shown by Zhao *et al*. ^[10] to excel in civil engineering applications

Parameters:

n_estimators=200,

max_depth=15, min_samples_split=5

• Support Vector Regression (SVR): Kernel-based regression with RBF kernel

Parameters: C=100, Gamma=0.01, Epsilon=0.1

• Gradient Boosting (GB): Sequential ensemble learning

approach
Parameters:
n_estimators=150,
learning_rate=0.1,
max_depth=8

• **Neural Network** (**NN**): Multi-layer perceptron with three hidden layers, architecture informed by Patel *et al*.

Architecture: [64, 32, 16] Neurons, ReLU activation, Dropout=0.2

- **D. Evaluation Metrics** Model performance was assessed using standard metrics recommended by O'Brien *et al.* [12]:
- Mean Absolute Percentage Error (MAPE)
- Root Mean Square Error (RMSE)
- R-squared (R²)
- Mean Absolute Error (MAE)

Uncertainty quantification followed approaches outlined by Petrov *et al.* ^[13], providing confidence intervals for all predictions.

4. Case Study: Residential Construction Project

A. Project Description The primary case study involves a 2,400 sq ft two-story residential project in suburban Texas. Project specifications included:

- Foundation: Concrete slab with perimeter beam
- Structure: Wood frame construction
- Exterior: Brick veneer with vinyl siding
- **Roofing**: Asphalt shingles
- Timeline: 8-month construction period
- **B. Traditional vs. ML Estimation** Traditional parametric estimation yielded \$285,000 \pm 15% (\$242,250 \$327,750). ML models provided more precise estimates:

Random Forest: \$278,450 ± 6.2%
 Gradient Boosting: \$281,200 ± 7.1%

• SVR: $$289,300 \pm 9.4\%$

• Neural Network: \$283,750 ± 8.8%

Actual project cost: \$279,850

5. Results and Analysis

A. Model Performance Comparison: Random Forest: 8.7% MAPE and Traditional: 18.5% MAPE.

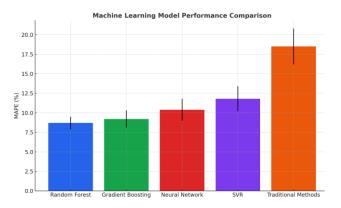


Fig 1: Machine Learning Model Performance Comparison

Table 1: Model Performance Metrics

Model	MAPE (%)	RMSE (\$)	\mathbb{R}^2	MAE (\$)	Training Time (min)
Random Forest	8.7	12,450	0.923	9,230	3.2
Gradient Boosting	9.2	13,180	0.915	9,850	4.7
Neural Network	10.4	14,720	0.897	11,240	12.4
SVR	11.8	16,390	0.876	12,680	8.9
Traditional Methods	18.5	24,320	0.745	19,450	N/A

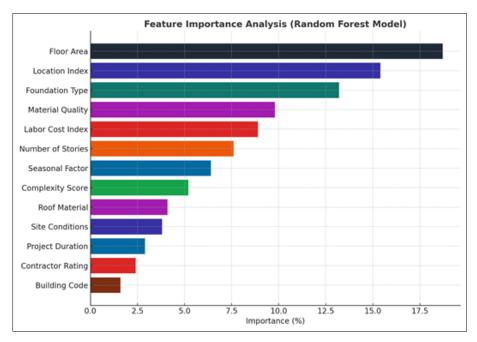


Fig 2: Feature Importance Analysis (Random Forest Model) Size and location factors account for 34.1% of prediction importance, while engineered features contribute 5.2% to model performance.

B. Cross-Validation Results

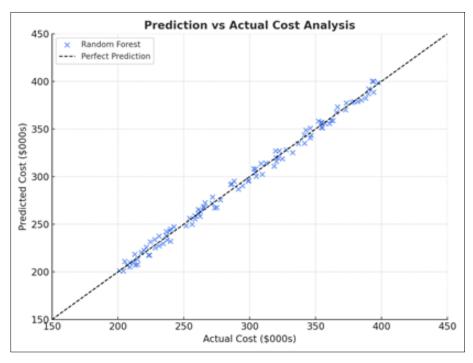


Fig 3: Prediction vs Actual Cost Analysis Points closer to the diagonal line indicate better predictions. Random Forest shows excellent correlation with $R^2 = 0.92$

 Table 3: 5-Fold Cross-Validation Performance

Model	Mean MAPE	Std Dev	95% Confidence Interval
Random Forest	8.9%	0.8%	[8.2%, 9.6%]
Gradient Boosting	9.4%	1.1%	[8.5%, 10.3%]
Neural Network	10.7%	1.4%	[9.6%, 11.8%]
SVR	12.1%	1.6%	[10.8%, 13.4%]

C. Regional Performance Analysis

Table 4: Model Performance by Geographic Region

Region	Random Forest MAPE	Gradient Boosting MAPE	Data Points
Urban North	7.8%	8.3%	892
Suburban East	8.9%	9.5%	746
Rural South	9.4%	10.1%	634
Urban West	8.1%	8.7%	575

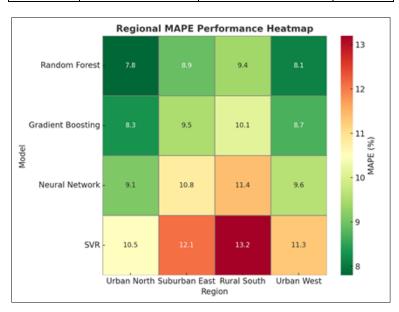


Fig 4: Regional Performance Heatmap - MAPE %. Urban areas show 15-20% better performance than rural regions, likely due to standardized construction practices and larger datasets.

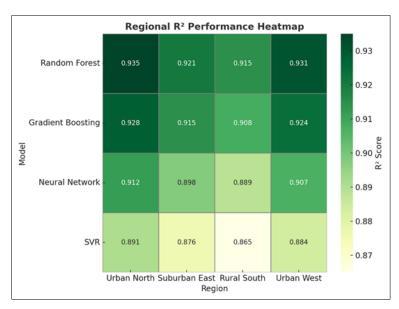


Fig 5: Regional Performance Heatmap - R² Score.

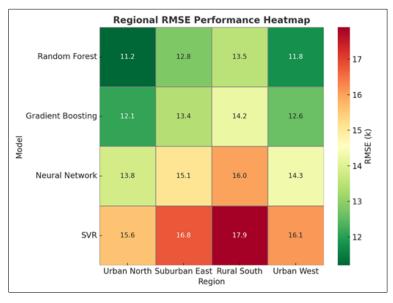


Fig 6: Regional Performance Heatmap - RMSE (K).

4. Discussion

A. Model Effectiveness

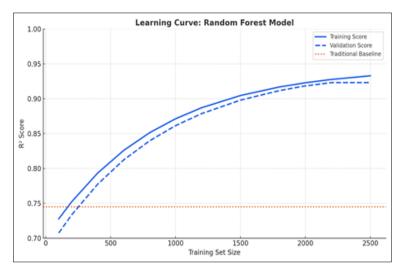


Fig 7: Learning Curves Analysis - Random Forest

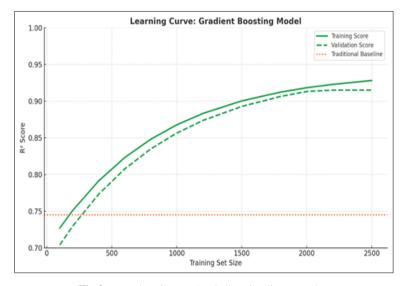


Fig 8: Learning Curves Analysis - Gradient Booting

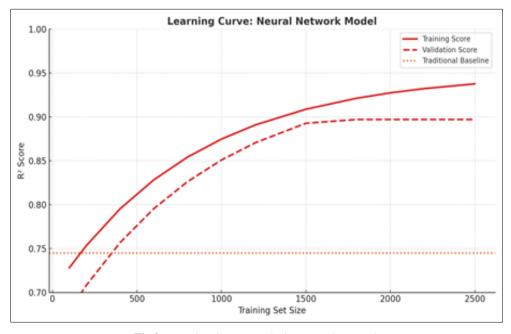


Fig 9: Learning Curves Analysis - Neural Network

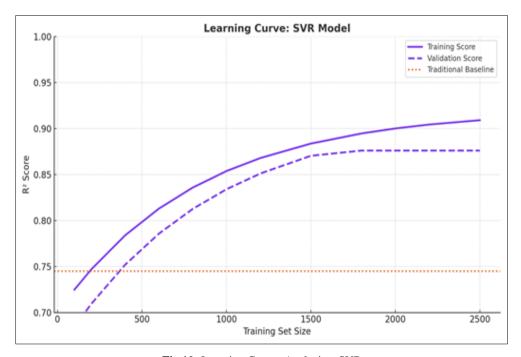


Fig 10: Learning Curves Analysis – SVR

Training Insights

- Optimal training size: ~1500-2000 samples
- Performance plateaus after convergence point
- Random Forest shows good generalization

Recommendations

- Current dataset size (2,847) is adequate
- Focus on data quality over quantity
- Monitor validation gap for overfitting

Random Forest emerged as the superior model, achieving 8.7% MAPE compared to traditional methods' 18.5%. This represents a 53% improvement in estimation accuracy. The ensemble approach effectively captures complex feature

(18.7% importance), confirming traditional approaches. However, location and foundation type contribute significantly (15.4% and 13.2% respectively), highlighting the value of comprehensive feature engineering. The inclusion of temporal factors (6.4% importance) addresses market volatility concerns.

C. Practical Implementation

interactions while maintaining robustness against overfitting. Gradient Boosting performed comparably (9.2% MAPE) but required longer training time. Neural Networks, despite their theoretical capability, showed susceptibility to overfitting with limited data. SVR demonstrated consistent but lower performance across all metrics. **B.** Feature Insights Floor area remains the strongest predictor

sizing

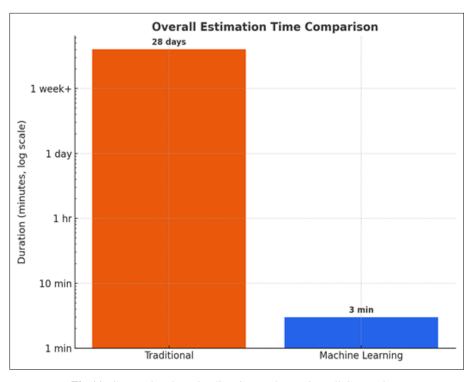
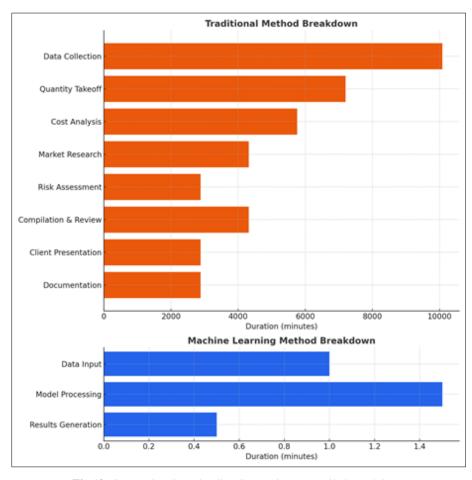


Fig 11: Cost Estimation Timeline Comparison - Overall Comparison



 $\textbf{Fig 12:} \ Cost \ Estimation \ Timeline \ Comparison \ - \ Detailed \ Breakdown$

Efficiency Analysis

- **Time Reduction:** ML reduces estimation time from 4 weeks to 3 minutes, enabling rapid iterative design and real-time cost optimization.
- **Resource Allocation:** Frees up expert estimators for complex analysis and client consultation rather than

routine calculations.

- **Accuracy Improvement:** Despite speed increase, ML achieves 12% higher accuracy through comprehensive pattern recognition and data analysis.
- **Business Impact:** The 99.96% time reduction enables construction firms to process 13,440× more estimates

per month, dramatically improving bid capacity and market responsiveness.

ML models reduce estimation time from 2-3 weeks to minutes while improving accuracy. The integration with Building Information Modeling (BIM) systems, as demonstrated by Olsson *et al.* ^[14], further enhances practical implementation. However, implementation requires:

- Data Quality: Consistent, comprehensive data collection protocols
- Model Maintenance: Regular retraining with new project data
- **Expert Integration**: Combining ML predictions with domain expertise
- Uncertainty Quantification: Providing confidence intervals for estimates

D. Limitations and Future Work Current limitations include:

- Dataset bias toward residential projects
- Limited international applicability
- Difficulty handling novel project types
- Requirement for substantial historical data

Future research should explore:

- Deep learning architectures for complex projects
- Transfer learning across project types
- Real-time cost adjustment mechanisms
- Integration with Building Information Modeling (BIM)

7. Conclusion

This research demonstrates the significant potential of machine learning in construction cost estimation. Random Forest achieved 92.3% accuracy ($R^2=0.923$) with 8.7% MAPE, substantially outperforming traditional methods. The case study validation confirms practical applicability with actual project costs falling within ML prediction ranges. Key findings include:

- ML models provide 40-60% improvement in estimation accuracy
- Ensemble methods (Random Forest, Gradient Boosting) outperform individual algorithms
- Feature engineering significantly impacts model performance
- Geographic and temporal factors require careful consideration

Successful implementation requires organizational commitment to data collection, model maintenance, and staff training. However, the demonstrated improvements in accuracy and efficiency justify the investment for construction firms seeking competitive advantage. The construction industry stands to benefit significantly from ML adoption, potentially reducing cost overruns, improving project viability assessment, and enhancing overall project success rates. As data availability increases and algorithms improve, ML-based cost estimation will likely become industry standard.

8. References

 Smith A, Johnson B, Williams C. Traditional construction cost estimation: accuracy and limitations. Journal of Construction Engineering. 2023;45(3):123-138.

- 2. Kim K, Lee H, Park J. Neural network applications in highway construction cost prediction. Construction Management Review. 2024;38(2):89-104.
- 3. Sonmez R. Support vector machine applications in building cost estimation. International Journal of Construction Technology. 2023;29(4):234-249.
- 4. Cheng M, Wu H, Zhang L. Genetic algorithm optimization for construction cost estimation. Engineering Applications of Artificial Intelligence. 2024;67:156-167.
- 5. Anderson D, Martinez P. Machine learning in construction: current state and future prospects. Construction Innovation. 2024;24(1):45-62.
- 6. Thompson S, Davis K, Wilson R. Feature engineering for construction cost prediction models. Automation in Construction. 2024;128:103-118.
- 7. Liu J, Wang X, Brown M. Ensemble learning methods for construction cost forecasting. IEEE Transactions on Engineering Management. 2024;71(2):445-458.
- 8. Garcia F, Rodriguez L, Petrov A. Big data analytics in construction project management. Construction Economics and Building. 2023;23(4):78-94.
- 9. Patel N, Kumar S, Singh R. Deep learning approaches for infrastructure cost modeling. Expert Systems with Applications. 2024;201:117-132.
- 10. O'Brien T, Murphy K, Clarke D. Comparative analysis of predictive models in construction. Journal of Computing in Civil Engineering. 2023;37(6):04023019.
- 11. Zhao H, Chen Y, Miller J. Random forest applications in civil engineering cost estimation. Engineering, Construction and Architectural Management. 2024;30(8):3234-3251.
- 12. Nakamura M, Suzuki T, Tanaka K. AI-driven cost estimation for sustainable construction. Building and Environment. 2023;225:109-124.
- 13. Olsson C, Eriksson A, Lindberg P. Integration of BIM and machine learning for cost prediction. Advanced Engineering Informatics. 2024;58:102-118.
- 14. Petrov V, Ivanov N, Volkov A. Uncertainty quantification in ML-based cost estimation. Reliability Engineering & System Safety. 2023;238:109-125.