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Abstract

The proliferation of edge computing has revolutionized data processing by enabling low-
latency, real-time analytics at the network periphery. However, this shift has introduced novel
cybersecurity challenges, particularly due to the limited computational resources and heightened
vulnerability of edge devices. Traditional security mechanisms often fall short in this context,
necessitating the development of lightweight and adaptive solutions. This explores the
integration of Atrtificial Intelligence (Al) in edge-based cybersecurity, with a focus on
lightweight neural models for anomaly detection. These models leverage the power of deep
learning while maintaining computational efficiency suitable for edge environments.
Lightweight neural networks such as MobileNets, SqueezeNet, and TinyML architectures are
specifically designed to operate under resource constraints, offering an optimal trade-off
between accuracy and inference speed. By embedding these models into edge nodes, systems
can detect anomalies in real time, enabling rapid response to threats such as intrusion attempts,
malware, and data exfiltration. The use of Al enhances detection precision by learning complex
patterns and temporal behaviors that traditional rule-based systems may miss. This presents a
systematic analysis of model architectures, training methodologies, and deployment strategies
that support secure, scalable, and energy-efficient anomaly detection at the edge. We also
address key challenges including model compression, adversarial robustness, and on-device
learning. Experimental results from edge-device testbeds demonstrate the viability of our
approach, achieving high detection accuracy with minimal latency and resource usage. The
findings contribute to the growing body of knowledge in Al-powered edge security and pave
the way for intelligent, autonomous threat detection frameworks. Ultimately, the fusion of
lightweight Al models and edge computing offers a promising avenue for building resilient and
responsive cybersecurity systems capable of operating in decentralized, bandwidth-sensitive
environments.

DOI: https://doi.org/10.54660/.1IIMRGE.2024.5.2.1130-1138

Keywords: Al-Powered, Cybersecurity, Edge Computing, Lightweight, Neural Models, Anomaly Detection

1. Introduction

Edge computing has emerged as a transformative paradigm in modern information systems, bringing data processing capabilities
closer to the source of data generation (Angel et al., 2021; Modupe et al., 2024). Unlike traditional cloud-centric architectures,
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edge computing distributes computational workloads across
decentralized devices such as sensors, gateways, and
embedded edge computing distributes computational
workloads across decentralized devices such as sensors,
gateways, and embedded systems. This decentralization
reduces latency, conserves bandwidth, and supports real-time
applications in domains like smart manufacturing,
autonomous vehicles, and remote healthcare (Jain et al.,
2021; Khalil et al., 2022). By enabling low-latency responses
and local decision-making, edge computing addresses critical
requirements in time-sensitive and  mission-critical
applications, making it an essential component of the next-
generation digital infrastructure (Gupta et al., 2021; Qiu et
al., 2022).

However, the adoption of edge computing introduces new
and complex cybersecurity challenges. The distributed nature
of edge devices increases the number of potential attack
vectors, making the network more susceptible to intrusions,
data tampering, device hijacking, and denial-of-service
attacks (Mohammed et al., 2020; Gyamfi and Jurcut, 2022).
Furthermore, edge nodes often operate in unsecured
environments, lack physical protection, and possess
heterogeneous configurations, all of which make them
attractive targets for malicious actors. The absence of
centralized oversight further complicates real-time threat
detection and mitigation, creating significant vulnerabilities
in edge-based ecosystems (Ferrag et al., 2023; Serddio et al.,
2023).

In this context, artificial intelligence (Al), particularly
machine learning (ML), has gained prominence as a
promising solution for proactive and adaptive cybersecurity.
Among Al techniques, anomaly detection using deep
learning models has demonstrated effectiveness in
identifying subtle, previously unseen, and complex attack
patterns. Al-powered anomaly detection surpasses traditional
signature-based and rule-based systems by learning from
dynamic behaviors and adapting to evolving threats
(Tanikonda et al., 2022; Tanikonda, 2023). This adaptability
is especially valuable in edge computing, where threat
landscapes are diverse and continuously changing.

Despite the promise of Al, the computational limitations of
edge devices such as limited processing power, memory, and
battery life necessitate the development of lightweight neural
network models (Chang et al., 2021; Shuvo et al., 2022).
These models, including architectures like MobileNets,
SqueezeNet, and TinyML frameworks, are optimized for
low-resource environments while maintaining high detection
performance. Lightweight models reduce latency, enable on-
device inference, and minimize the need for continuous
communication with central servers, thereby preserving
bandwidth and enhancing privacy. As a result, they form a
critical backbone for embedding intelligent anomaly
detection capabilities directly into edge systems (Eskandari
et al., 2021; Huang et al., 2021).

The integration of lightweight Al models into edge
cybersecurity frameworks represents a necessary evolution
toward decentralized, autonomous, and resilient security
systems (Molokomme et al., 2022; Biswas, A. and Wang,
2023). As edge computing becomes increasingly ubiquitous,
ensuring the safety and integrity of these distributed
environments through efficient, Al-powered mechanisms is
imperative. This calls for a concerted research effort to
design, implement, and evaluate neural models that align
with the stringent resource constraints and dynamic threat
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landscapes characteristic of edge computing environments
(Bommasani et al., 2021; Casper et al., 2023).

2. Methodology

This systematic review employed the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
methodology to identify, screen, and analyze relevant
literature addressing the integration of lightweight neural
models for anomaly detection within Al-powered
cybersecurity frameworks in edge computing environments.
A comprehensive literature search was conducted using
electronic databases including IEEE Xplore, ACM Digital
Library, ScienceDirect, SpringerLink, and Scopus.
Keywords used in the search strategy included combinations
of terms such as “edge computing,” “cybersecurity,”
“anomaly detection,” “lightweight neural networks,” “Al-
based security,” “resource-constrained devices,” and
“TinyML.” The search included publications from 2015 to
2025 to reflect the recent developments in edge Al
technologies and threat landscapes.

The inclusion criteria comprised peer-reviewed journal
articles, conference proceedings, and systematic reviews that
specifically addressed the design, development, or evaluation
of lightweight Al or deep learning models for security or
anomaly detection in edge computing environments.
Exclusion criteria involved articles not written in English,
those not involving edge or Al technologies, and papers that
focused solely on cloud-based or non-Al security solutions.

The initial search yielded 354 records. After removing 102
duplicates, 252 articles underwent title and abstract
screening. Of these, 148 articles were excluded based on
irrelevance to the core topic. The full texts of the remaining
104 studies were assessed for eligibility, resulting in 47
studies that met the inclusion criteria and were included in the
qualitative synthesis.

Data extraction from selected studies focused on research
objectives, model architecture (e.g., MobileNet, SqueezeNet,
LSTM), deployment platforms (e.g., Raspberry Pi, Jetson
Nano), datasets used, anomaly detection methods, and
performance metrics including accuracy, latency, and energy
efficiency. The final analysis synthesized the findings to
identify trends, gaps, and future directions in the use of
lightweight neural models for real-time anomaly detection in
edge computing security systems.

2.1 Background and Related Work

Traditional cybersecurity techniques have long served as the
foundational defense mechanisms in networked systems,
relying predominantly on signature-based detection, rule-
based engines, and perimeter-based security models such as
firewalls, intrusion detection systems (IDS), and antivirus
software (Zave and Rexford, 2020; Mogadem et al., 2022).
While effective in centralized and static environments, these
methods face significant limitations when applied to edge
computing. Signature-based methods, for instance, depend
on predefined attack patterns and fail to detect novel or
evolving threats (zero-day attacks). Furthermore, the
dynamic and decentralized nature of edge networks makes it
difficult to maintain up-to-date signature databases on each
device. The computational overhead associated with
traditional IDS, often designed for high-performance servers,
is impractical for resource-constrained edge devices.
Perimeter security models are also less effective in edge
environments, where data is generated and processed across

1130|Page



[ international Journal of Multidisciplinary Research and Growth Evaluation

distributed nodes, often bypassing centralized controls
entirely.

To address these shortcomings, anomaly detection has
emerged as a critical tool in modern cybersecurity
frameworks. Unlike signature-based methods, anomaly
detection focuses on identifying deviations from expected
behavior, enabling the discovery of unknown or emerging
threats. Anomaly detection approaches are broadly
categorized into statistical methods, rule-based systems, and
machine learning-based techniques. Statistical approaches
rely on probabilistic modeling and thresholds, while rule-
based systems use predefined logical patterns to flag
irregularities (Liu et al., 2021; Uszko et al., 2023). However,
these conventional methods often lack the adaptability
required for complex and evolving threat landscapes.
Machine learning-based anomaly detection offers greater
flexibility, as it can learn normal behavior patterns from data
and identify outliers with higher precision. Supervised
learning, unsupervised clustering, and time-series analysis
are commonly used techniques. In edge environments,
unsupervised and semi-supervised methods are particularly
valuable due to the scarcity of labeled data.

The integration of artificial intelligence (Al), especially deep
learning, has significantly advanced the field of
cybersecurity. Initially applied in data-rich environments
such as enterprise networks and cloud systems, Al has
demonstrated remarkable success in detecting complex attack
vectors, reducing false positives, and enabling predictive
security analytics. Neural networks, convolutional neural
networks (CNNs), recurrent neural networks (RNNSs), and
autoencoders have all been employed for various
cybersecurity tasks including malware classification,
intrusion detection, and user behavior analysis. Deep learning
models can extract hierarchical and non-linear patterns in
high-dimensional data, making them well-suited for
identifying subtle anomalies that traditional algorithms might
overlook (Pedro, 2023; Yang and Zhang, 2023).

As edge computing gains prominence, the need for Al models
that can operate under constrained conditions has driven the
development of lightweight neural architectures. Unlike
conventional deep learning models that require substantial
computational resources, lightweight models are designed to
function efficiently on devices with limited memory, power,
and processing capabilities. Examples include MobileNets,
which use depthwise separable convolutions to reduce model
complexity, and SqueezeNet, which achieves AlexNet-level
accuracy with significantly fewer parameters. TinyML, a
growing subfield of machine learning, focuses on deploying
inference models directly on microcontrollers and low-power
embedded systems (Schizas et al., 2022; Alajlan and Ibrahim,
2022). These models are optimized using techniques such as
model pruning, quantization, and knowledge distillation to
reduce size and improve efficiency without compromising
performance.

Numerous studies have demonstrated the effectiveness of
lightweight Al models in real-time anomaly detection on
edge devices. For instance, variants of MobileNet have been
used in intrusion detection systems deployed on Raspberry Pi
platforms, achieving high detection accuracy with minimal
latency. Similarly, compressed autoencoders have been
applied for unsupervised anomaly detection in industrial 10T
settings. These advancements underscore the growing
feasibility of embedding intelligent security features directly
into edge nodes, thereby enabling decentralized and
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responsive cybersecurity frameworks.

In summary, while traditional cybersecurity methods struggle
to adapt to the decentralized, heterogeneous, and resource-
constrained landscape of edge computing, Al-driven
anomaly detection particularly through lightweight neural
models offers a robust alternative. The evolution of such
models is crucial for building secure, scalable, and efficient
edge systems capable of defending against the increasingly
sophisticated threats targeting modern cyber-physical
infrastructures (Garg et al., 2021; Ometov et al., 2022).

2.2 Edge Computing Security Challenges

Edge computing has emerged as a pivotal technological
framework to support real-time, decentralized processing in
domains such as smart cities, autonomous vehicles,
telemedicine, and industrial automation as shown in figure 1.
Unlike traditional cloud models that centralize data and
computation in remote data centers, edge computing
processes data locally on devices such as gateways, sensors,
and embedded systems close to the source of data generation.
This architectural shift offers significant advantages in
latency reduction, bandwidth efficiency, and context-aware
decision-making (Islam et al., 2021; Cheng et al., 2021).
However, it also introduces a unique set of security
challenges that must be addressed to ensure the integrity,
confidentiality, and availability of systems and data operating
at the network’s edge.

Limited computational and
storage resources

-
Real-time data processing and
low-latency requirements

-
Increased attack surfaces (e.g.,
loT, mobile devices)

Heterogeneous and distributed
system architectures

Fig 1: Edge Computing Security Challenges

One of the most significant challenges in securing edge
computing systems is the limitation of computational and
storage resources. Edge devices, often deployed in compact
or embedded environments, typically possess far less
processing power, memory, and energy capacity than
centralized cloud servers. These constraints hinder the
implementation of conventional security measures, such as
complex encryption schemes, deep packet inspection, and
heavyweight anomaly detection algorithms. As a result,
developers are compelled to trade off between security
strength and computational feasibility, potentially exposing
edge nodes to cyber threats. The limited resources also
challenge the deployment of real-time threat mitigation
systems that require rapid, local inference and decision-
making.

Furthermore, edge computing applications often demand
real-time data processing and ultra-low latency, especially in

1131|Page



[ international Journal of Multidisciplinary Research and Growth Evaluation

time-sensitive systems like autonomous vehicles, robotic
control, and emergency response networks. These latency
requirements limit the extent to which edge devices can rely
on cloud-based security monitoring or decision-making.
Security operations, including authentication, anomaly
detection, and data validation, must occur locally to avoid
delay-induced risks. This decentralization of security
responsibilities increases the complexity of implementing
consistent  protection across a widely distributed
infrastructure and amplifies the need for lightweight yet
effective cybersecurity mechanisms.

The shift to edge computing also increases the attack surface
due to the proliferation of connected devices particularly
those in the Internet of Things (IoT) ecosystem. Each
connected sensor, actuator, or mobile device serves as a
potential point of vulnerability. These devices may lack
proper security configurations or firmware updates and are
often deployed in physically unsecured environments,
making them susceptible to physical tampering,
eavesdropping, or man-in-the-middle attacks. Moreover,
compromised edge nodes can act as gateways for lateral
movement across networks, threatening the security of not
only local operations but also upstream systems connected to
the broader architecture (Ali et al., 2021; Kowalski and
Mazurczyk, 2023).

In addition, edge systems are characterized by heterogeneous
and distributed architectures, complicating the deployment
and enforcement of uniform security policies. Edge
environments typically integrate a diverse set of hardware
platforms, operating systems, communication protocols, and
vendor-specific components. This heterogeneity makes it
difficult to apply standardized security protocols or intrusion
detection schemes across all devices. The distributed nature
of edge computing also reduces central oversight, creating
blind spots in threat visibility and response coordination.
Furthermore, the dynamic topology of edge networks where
devices frequently join, leave, or move between networks
poses additional challenges for identity management, secure
communication, and trust establishment.

Collectively, these security challenges highlight the need for
tailored solutions that are adaptable, scalable, and resource-
efficient. Traditional, monolithic security architectures are
ill-suited for the edge paradigm. Instead, novel approaches
such as decentralized authentication, federated learning, and
lightweight Al-based anomaly detection are being explored
to safeguard edge computing environments. These
approaches must account for device constraints while
enabling robust detection of and response to evolving threats.
The growing complexity of edge computing systems
necessitates a rethinking of cybersecurity strategies to ensure
that they evolve in tandem with the architectural and
operational shifts defining the modern digital edge (Angel et
al., 2021; Judijanto et al., 2023).

2.3 Lightweight Neural Network Architectures

The rise of edge computing and the proliferation of resource-
constrained devices such as sensors, mobile phones, and
microcontrollers have driven the need for lightweight neural
network architectures capable of performing complex
machine learning tasks efficiently. These models must
deliver high performance while operating under strict
limitations on memory, computation, and power
consumption. To meet these demands, several innovative
neural network architectures and optimization techniques

www.allmultidisciplinaryjournal.com

have emerged, including MobileNets, SqueezeNet, and the
broader field of TinyML as shown in figure 2. These models
are supported by compression strategies such as pruning,
quantization, and knowledge distillation that further enhance
their deployability on edge and embedded systems (Kim et
al., 2021; Aghli and Ribeiro, 2021).

SqueezeNet
MobileNets 9

TinyML and
microcontroller-
based models

Fig 2: Lightweight Neural Network Architectures

MobileNets are a family of convolutional neural networks
(CNNs) specifically designed for mobile and embedded
vision applications. Introduced by Google, MobileNets
achieve computational efficiency by replacing standard
convolution  operations  with  depthwise  separable
convolutions, which split the convolution into two parts: a
depthwise convolution and a pointwise convolution. This
significantly reduces the number of parameters and floating-
point operations required without a substantial loss in
accuracy. Variants such as MobileNetV2 and MobileNetV3
further improve efficiency through techniques like inverted
residual blocks and neural architecture search. MobileNets
have been widely adopted for tasks including image
classification, object detection, and anomaly detection in
edge-based systems due to their excellent balance between
performance and computational cost.

SqueezeNet is another lightweight CNN architecture that
achieves comparable accuracy to larger networks such as
AlexNet while requiring 50 times fewer parameters. The core
idea behind SqueezeNet is the use of "fire modules," which
consist of a squeeze layer using 1x1 convolutions followed
by an expand layer with a mix of 1x1 and 3x3 convolutions.
This configuration drastically reduces the model size while
maintaining high representational power. SqueezeNet is
especially useful in environments where memory footprint
and model download size are critical constraints, making it a
preferred choice for deployment on low-power 10T devices
and embedded processors.

TinyML represents a burgeoning field that focuses on
deploying machine learning models on ultra-low-power
microcontrollers. TinyML models are designed to operate
within kilobytes of memory and milliwatts of power, making
them ideal for deeply embedded edge applications such as
real-time anomaly detection, gesture recognition, and speech
processing. These models are typically trained on more
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powerful machines and then compressed and optimized for
deployment. Microcontroller platforms such as ARM Cortex-
M, ESP32, and Arduino boards are commonly used for
TinyML applications. Frameworks like TensorFlow Lite for
Microcontrollers (TFLM) and Edge Impulse facilitate the
deployment of lightweight inference engines directly on these
constrained devices (Manor and Greenberg, 2022; Saha et al.,
2022).

To further enhance the efficiency of these architectures, a
range of model optimization techniques are employed.
Pruning involves removing redundant or non-critical weights
and neurons from the network, thus reducing model size and
inference time. Pruning can be structured (removing entire
filters or layers) or unstructured (removing individual
weights), and is often followed by fine-tuning to recover lost
accuracy. Quantization converts 32-bit floating-point
weights and activations into lower-precision formats such as
8-bit integers, substantially reducing memory usage and
computational overhead while maintaining acceptable
accuracy. This is particularly beneficial for running models
on hardware with limited support for floating-point
arithmetic. Knowledge distillation involves training a smaller
"student” model to mimic the behavior of a larger, more
accurate "teacher™ model. This approach enables the student
model to retain much of the performance of the teacher while
being significantly smaller and faster, making it well-suited
for edge deployment.

Lightweight neural network architectures such as
MobileNets, SqueezeNet, and TinyML models, combined
with advanced optimization techniques like pruning,
quantization, and knowledge distillation, provide a robust
foundation for deploying Al capabilities in edge computing
environments. These developments enable real-time,
intelligent decision-making on devices with constrained
resources, paving the way for more secure, efficient, and
scalable edge-based systems (Coito et al., 2021; Diraco et al.,
2023).

2.4 Anomaly Detection Methodologies

Anomaly detection is a critical component of cybersecurity
in edge computing environments, where early identification
of irregular behavior can prevent significant operational
disruptions or data breaches. Given the decentralized and
heterogeneous nature of edge systems, anomaly detection
techniques must be robust, adaptive, and capable of operating
in resource-constrained settings. Edge environments are
particularly wvulnerable to several types of anomalies,
including network intrusions, device malfunctions, and data
leakage. Network intrusions involve unauthorized access or
suspicious traffic patterns, such as port scanning or denial-of-
service attacks. Device malfunctions, often caused by
hardware degradation or firmware errors, can lead to
abnormal behavior in sensors or actuators (Gaddam et al.,
2020; Ayeb et al., 2020). Data leakage occurs when sensitive
data is accessed or transmitted without authorization,
potentially violating user privacy or exposing confidential
information.

To detect these diverse threat scenarios, machine learning-
based approaches have become prominent, particularly those
involving supervised and unsupervised learning. Supervised
learning techniques require labeled datasets with examples of
both normal and anomalous behavior. Algorithms such as
support vector machines (SVMs), decision trees, and
convolutional neural networks (CNNs) are trained to classify

www.allmultidisciplinaryjournal.com

input data into normal or anomalous categories. While
effective when labeled data is available, supervised methods
are often impractical for edge cybersecurity due to the
scarcity of labeled anomalies and the evolving nature of
threats. By contrast, unsupervised learning techniques do not
require labeled data and instead focus on learning patterns of
normal behavior. Anomalies are identified as deviations from
these learned patterns. Clustering algorithms (e.g., k-means,
DBSCAN), autoencoders, and isolation forests are frequently
employed in unsupervised anomaly detection. These methods
are particularly well-suited for edge environments, where
new and previously unseen anomalies may emerge, and
labeled datasets are limited or unavailable.

Among the more advanced techniques for anomaly detection
are time-series and sequence-based models, which are
designed to capture temporal dependencies in data. Long
Short-Term Memory (LSTM) networks and Gated Recurrent
Units (GRUSs) are popular architectures within this category.
LSTM and GRU models are capable of learning long-term
dependencies and trends from sequences of data, making
them ideal for identifying anomalies in streaming data such
as CPU usage, network traffic, and sensor readings over time.
For instance, an LSTM model can be trained to predict
expected values in a time-series, and significant deviations
from predictions can be flagged as anomalies. These models
are especially useful in edge computing scenarios where real-
time monitoring of behavior patterns is essential, such as
detecting abrupt changes in energy consumption in a smart
grid or identifying irregular telemetry data in autonomous
vehicles (Qiu et al., 2020; Wu et al., 2021).

Effective anomaly detection at the edge also depends heavily
on data collection and preprocessing. Edge devices generate
large volumes of heterogeneous data, often in real time.
Efficient data acquisition frameworks must be in place to
ensure data quality while minimizing latency and power
consumption. Preprocessing steps such as data normalization,
noise reduction, feature extraction, and dimensionality
reduction are crucial for enhancing model performance and
reducing computational load. For example, converting raw
network traffic into meaningful features like packet size,
duration, and protocol type can improve the accuracy of
anomaly detection models. In resource-constrained
environments, feature selection is vital to ensure only the
most informative data is retained for model input, reducing
the burden on edge hardware.

Moreover, privacy and bandwidth considerations often
necessitate local data processing and on-device inference.
This creates an additional challenge: ensuring that
preprocessing and detection pipelines are lightweight and
optimized for edge execution. Techniques like federated
learning can complement local detection by enabling
collaborative model training across multiple edge nodes
without sharing raw data, thus preserving privacy while
improving detection capabilities (Qayyum et al., 2022; Bao
and Guo, 2022).

Anomaly detection in edge computing requires a combination
of versatile learning approaches, temporal modeling, and
efficient data handling. The integration of LSTM/GRU
models, unsupervised learning algorithms, and intelligent
preprocessing pipelines enables effective identification of
cyber threats and system faults in real-time, even in the face
of constrained resources and dynamic environments. These
methodologies form the foundation of resilient, autonomous
edge cybersecurity systems.
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2.5 Model Deployment on Edge Devices

Deploying machine learning models on edge devices
represents a critical step toward achieving real-time,
intelligent cybersecurity and anomaly detection in distributed
computing environments as shown in figure 3. Unlike
traditional cloud-based Al systems that rely on centralized
processing, edge-based deployment enables local inference,
allowing data to be analyzed and acted upon directly at or
near the source (Duan et al., 2022; Solanke, 2023). This
architectural shift supports applications with strict latency
requirements and limited connectivity while enhancing
privacy and reducing bandwidth usage. The two dominant
deployment strategies in edge Al are on-device deployment
and edge-server deployment, each with distinct advantages
and trade-offs.

On-device deployment refers to running the trained Al model
directly on the edge device, such as a sensor, gateway, or
microcontroller. This approach minimizes latency and
supports real-time decision-making without relying on cloud
services. It also offers enhanced data privacy, as sensitive
information remains on the device. However, it requires
models to be highly optimized due to limited computational,
memory, and energy resources. In contrast, edge-server
deployment involves running models on more powerful, local
edge servers that aggregate and process data from multiple
devices. While this setup offers greater computational
capabilities and flexibility in model complexity, it introduces
communication latency and potential network dependencies.
Selecting the appropriate deployment method depends on
application-specific requirements for response time, power
consumption, and data privacy.

On-device vs edge-
server deployment

Training approaches:
centralized,
federated, and
transfer learning

Real-time inference
and latency
considerations

| Hardware platforms: P
Raspberry Pi, NVIDIA

Jetson,
microcontrollers

Fig 3: Model Deployment on Edge Devices

Training Al models for edge deployment can follow several
paradigms, including centralized, federated, and transfer
learning. In centralized learning, all training data is collected
and processed in a central server or cloud environment, where
a global model is developed and later deployed to edge
devices. While effective, this method raises concerns about
data privacy and communication overhead. Federated
learning offers a privacy-preserving alternative by training
models locally on multiple edge devices. The devices
compute model updates based on local data and share only
these updates (not raw data) with a central coordinator to

www.allmultidisciplinaryjournal.com

construct a global model (zZhang et al., 2021; Shen et al.,
2022). This approach enables collaboration without
compromising user data privacy and reduces the risks of data
breaches during transmission. Transfer learning involves
adapting a pre-trained model to a specific edge environment
or task using a small amount of local data. This is particularly
beneficial in scenarios where edge devices have limited
training data and computational power. It allows edge
applications to benefit from large-scale models trained on
generic datasets while customizing them for local anomaly
detection needs.

Real-time inference is a primary driver for edge Al
deployment, and latency considerations play a pivotal role in
model selection and optimization. Cybersecurity applications
often require immediate response to detected threats, such as
halting malicious processes or sending alerts. Any delay in
inference can reduce the effectiveness of the response. On-
device inference eliminates network latency entirely, whereas
edge-server deployment introduces some communication
delay. To minimize inference time, models must be compact
and computationally efficient. Techniques such as model
pruning, quantization, and optimized runtime engines (e.g.,
TensorFlow Lite, ONNX Runtime, TensorRT) are frequently
used to accelerate performance.

A range of hardware platforms supports model deployment at
the edge, with varying capabilities. Raspberry Pi devices are
popular due to their affordability, Linux compatibility, and
moderate computational power, making them suitable for
lightweight models like MobileNet or SqueezeNet in
applications such as home security or smart monitoring.
NVIDIA Jetson platforms, including Jetson Nano and Xavier,
provide GPU-accelerated computing for more complex
models, offering higher performance for applications like
video surveillance or autonomous navigation. These devices
support advanced deep learning frameworks and enable real-
time inference for more demanding Al tasks. At the smallest
scale, microcontrollers such as ARM Cortex-M series and
ESP32 are used for ultra-low-power TinyML applications
(Abadade et al., 2023; Ray, 2022). These platforms operate
within strict memory and energy budgets, yet they are
capable of running quantized neural networks for tasks like
sensor anomaly detection or keyword spotting.

The deployment of Al models on edge devices requires
careful consideration of architectural strategies, training
methodologies, latency constraints, and hardware
capabilities. Combining efficient model design with the right
deployment framework ensures robust and responsive
anomaly detection systems that meet the unique demands of
edge computing environments (Martins et al., 2022; Ullah
and Mahmoud, 2022).

2.6 Performance Evaluation

Evaluating the performance of lightweight neural models
deployed in edge computing environments is essential to
ensure their effectiveness in real-world cybersecurity
applications. These evaluations must consider not only the
predictive performance of the model but also the operational
constraints inherent to edge devices, such as energy
consumption, latency, and hardware limitations. Key metrics
typically used to assess model performance include accuracy,
precision, recall, latency, and energy consumption (Vakili et
al., 2020; Naidu et al., 2023).

Accuracy indicates the overall correctness of the model’s
predictions, while precision and recall offer more nuanced
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insights. Precision reflects the proportion of true positive
predictions among all predicted positives, and is especially
important in minimizing false alarms in anomaly detection.
Recall measures the ability to identify all relevant anomalies,
crucial for avoiding missed threats in cybersecurity scenarios.
In edge computing, latency the time taken to process and infer
from a single data point is a critical performance indicator,
particularly in real-time applications like intrusion detection.
Energy consumption is also a key consideration, as many
edge devices operate on battery power or energy-harvesting
mechanisms. Models that deliver high accuracy but demand
excessive energy may be impractical for long-term or mobile
deployments.

To comprehensively evaluate  lightweight  neural
architectures, researchers often use real-world edge datasets
as benchmarks. These datasets simulate practical edge
scenarios, such as the UNSW-NB15 and NSL-KDD for
network intrusion detection, and SWaT (Secure Water
Treatment) for industrial loT anomaly detection.
Benchmarks based on actual telemetry from edge devices
provide realistic conditions under which to assess both
detection efficacy and operational efficiency (Varghese et al.,
2021; Yang et al., 2022). These datasets include diverse
patterns, temporal behaviors, and noisy signals, offering a
robust testing ground for evaluating a model’s ability to
distinguish between normal and anomalous behavior.

A comparative study of different lightweight models such as
MobileNets, SqueezeNet, and  TinyML-optimized
autoencoders demonstrates varied performance profiles
across tasks and environments. For instance, in anomaly
detection tasks involving time-series data, LSTM-based
models outperform CNNSs in recall due to their capacity to
capture temporal dependencies. However, they often suffer
from higher latency and energy use. MobileNets, with their
depthwise separable convolutions, tend to offer a good
balance between speed and accuracy, making them ideal for
real-time intrusion detection on Raspberry Pi platforms.
SqueezeNet achieves significant parameter reduction but
may trade off some predictive accuracy in more complex
detection tasks. TinyML-optimized models, such as
quantized autoencoders or shallow MLPs (multilayer
perceptrons), perform well in microcontroller environments
where memory and power constraints are severe, though with
limited adaptability to complex anomalies.

Use cases across domains illustrate the practical relevance of
these models in edge-based anomaly detection. In smart
homes, lightweight CNN models deployed on Raspberry Pi
devices monitor Wi-Fi traffic or device behavior to detect
unauthorized access or unusual activity patterns. The models
must respond in real-time, prioritize user privacy, and operate
on low-power hardware. In industrial 10T environments,
models like GRUs and LSTMs are deployed on edge
gateways to monitor sensor streams from machinery,
enabling early fault detection and predictive maintenance
(Ray et al., 2021; Vermesan et al., 2022). The performance
of these models is evaluated not only on accuracy but also on
their ability to operate continuously in harsh, bandwidth-
limited settings. In healthcare monitoring, wearable devices
use TinyML models to track physiological signals such as
heart rate variability or gait patterns. These models detect
anomalies that may signal health deterioration or emergency
conditions. Their evaluation emphasizes energy efficiency
and latency, ensuring that critical alerts are triggered without
delay or frequent battery recharge.
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Performance evaluation of lightweight neural models for
edge anomaly detection must incorporate a multi-
dimensional framework that goes beyond conventional
accuracy metrics (Luo et al., 2021; Kumar, R. and Agrawal,
2023). Latency, energy efficiency, and contextual relevance
to real-world applications are equally important. Through
comparative studies and deployment in use cases like smart
homes, industrial 10T, and healthcare monitoring, researchers
and developers can refine these models to meet the unique
challenges posed by edge computing environments. The
continual evolution of benchmarks and evaluation strategies
will be crucial for guiding future innovations in secure,
efficient, and intelligent edge-based anomaly detection.

2.7 Challenges and Future Directions

As Al-powered anomaly detection becomes increasingly
integrated into edge computing environments, a range of
pressing challenges must be addressed to ensure security,
adaptability, and long-term effectiveness (Gill et al., 2022;
Abimannan et al., 2023). While lightweight neural models
offer a promising solution for real-time threat detection on
resource-constrained edge devices, the evolving complexity
of threats and operational environments demands ongoing
research and innovation. Key areas of concern include
adversarial robustness, privacy-preserving learning, adaptive
model updates, and the scalability of edge Al systems.

One of the most critical challenges in deploying machine
learning at the edge is the susceptibility of models to
adversarial attacks. These attacks involve subtly crafted
inputs that are designed to deceive the model into making
incorrect predictions. In cybersecurity contexts, adversarial
examples could allow malicious activities to go undetected
by the anomaly detection system. Lightweight models, by
nature of their reduced complexity and representational
capacity, are particularly vulnerable to such manipulation.
Enhancing model robustness against  adversarial
perturbations is essential. Strategies such as adversarial
training, input sanitization, and model ensembling have been
proposed, but many remain computationally intensive and
thus difficult to implement on constrained edge devices.
Future research must develop efficient robustness techniques
that can be embedded in lightweight architectures without
compromising their operational feasibility.

Another critical area is the implementation of privacy-
preserving Al, particularly through federated learning. In
traditional centralized training, data from edge devices must
be uploaded to a central server, raising significant privacy
and security concerns especially in domains like healthcare
and finance. Federated learning allows models to be trained
locally on devices, with only model updates being shared.
This preserves data privacy and reduces bandwidth usage.
However, federated learning introduces its own challenges,
such as communication overhead, model heterogeneity, and
vulnerability to poisoning attacks, where malicious devices
can corrupt the global model (Xia et al., 2023; Almutairi and
Barnawi, 2023). Future advancements must focus on robust
aggregation methods, efficient update protocols, and secure
communication channels to make federated learning more
scalable and resilient in large, heterogeneous edge networks.
The dynamic nature of edge environments also necessitates
support for lifelong and online learning, where models can
continuously adapt to new data without requiring full
retraining. Anomaly detection systems must be able to
recognize previously unseen patterns, evolving threats, and
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concept drift—the gradual change in data distribution over
time (Seraj and Ahmed, 2020; Pillai, 2022). Implementing
online learning at the edge poses significant computational
and memory challenges. Lightweight, incremental learning
algorithms and memory-efficient neural architectures are
needed to allow real-time updates with minimal resource
overhead. Additionally, mechanisms for model validation
and drift detection must be developed to ensure that updates
do not degrade performance or introduce instability.
Scalability and maintainability are further challenges in real-
world edge Al deployments. As edge systems expand across
numerous devices and environments, ensuring consistent
model performance and manageability becomes increasingly
complex. Each device may differ in hardware capabilities,
data characteristics, and threat exposure, requiring models to
be customized or fine-tuned accordingly. This heterogeneity
complicates large-scale deployment, version control, and
remote maintenance. Solutions such as modular Al pipelines,
automated  deployment  tools, and cloud-assisted
orchestration frameworks can help manage and update edge
Al systems at scale (Goethals et al., 2021; Mungoli, 2023).
However, there remains a need for standardized APIs,
lightweight model update protocols, and fault-tolerant
deployment strategies that can seamlessly integrate with
diverse edge infrastructures.

While lightweight neural models for anomaly detection offer
considerable promise for enhancing cybersecurity in edge
computing, realizing their full potential requires addressing
key technical challenges. Robustness against adversarial
threats, privacy-preserving learning mechanisms, continual
adaptation through lifelong learning, and scalable system
maintenance are all crucial for the long-term viability of edge
Al. Future research must strive to develop integrated
frameworks that balance performance, security, and resource
efficiency, enabling intelligent, resilient, and privacy-
conscious edge computing systems to meet the demands of
next-generation applications (Chen et al., 2021; Nimsarkar et
al., 2023; Gami et al., 2023).

Conclusion

This has explored the integration of lightweight neural
network architectures for anomaly detection in Al-powered
cybersecurity systems within edge computing environments.
The review highlights the pressing need for adaptive, real-
time security solutions capable of operating under resource
constraints, given the increasing vulnerability of
decentralized and heterogeneous edge networks. Lightweight
models such as MobileNets, SqueezeNet, and TinyML
frameworks offer a promising balance between
computational efficiency and detection performance,
enabling effective on-device inference with minimal latency
and energy consumption. Additionally, techniques like
pruning, quantization, and knowledge distillation further
enhance the deployability of Al models in constrained edge
settings.

The findings emphasize that while traditional security
approaches are insufficient for edge systems, Al-driven
anomaly detection especially when informed by time-series
models like LSTM and GRU provides superior adaptability
and accuracy. Furthermore, deployment strategies such as
federated learning and transfer learning offer privacy-
preserving and scalable pathways for training and updating
models across distributed edge nodes. Real-world use cases
in smart homes, industrial 10T, and healthcare demonstrate

www.allmultidisciplinaryjournal.com

the practical impact of these methods.

The implications of this work suggest a transformative role
for Al in securing the edge, making it possible to detect and
respond to cyber threats autonomously and efficiently.
However, several challenges remain, particularly in ensuring
model robustness against adversarial attacks, supporting
lifelong learning, and maintaining system scalability.
Therefore, continued interdisciplinary research is essential to
develop more resilient, efficient, and secure Al models
tailored for the edge. Future advancements must address the
balance between performance and resource consumption
while reinforcing data privacy and system adaptability,
ultimately contributing to the evolution of secure, intelligent
edge computing infrastructures.
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