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Abstract 
The proliferation of edge computing has revolutionized data processing by enabling low-

latency, real-time analytics at the network periphery. However, this shift has introduced novel 

cybersecurity challenges, particularly due to the limited computational resources and heightened 

vulnerability of edge devices. Traditional security mechanisms often fall short in this context, 

necessitating the development of lightweight and adaptive solutions. This explores the 

integration of Artificial Intelligence (AI) in edge-based cybersecurity, with a focus on 

lightweight neural models for anomaly detection. These models leverage the power of deep 

learning while maintaining computational efficiency suitable for edge environments. 

Lightweight neural networks such as MobileNets, SqueezeNet, and TinyML architectures are 

specifically designed to operate under resource constraints, offering an optimal trade-off 

between accuracy and inference speed. By embedding these models into edge nodes, systems 

can detect anomalies in real time, enabling rapid response to threats such as intrusion attempts, 

malware, and data exfiltration. The use of AI enhances detection precision by learning complex 

patterns and temporal behaviors that traditional rule-based systems may miss. This presents a 

systematic analysis of model architectures, training methodologies, and deployment strategies 

that support secure, scalable, and energy-efficient anomaly detection at the edge. We also 

address key challenges including model compression, adversarial robustness, and on-device 

learning. Experimental results from edge-device testbeds demonstrate the viability of our 

approach, achieving high detection accuracy with minimal latency and resource usage. The 

findings contribute to the growing body of knowledge in AI-powered edge security and pave 

the way for intelligent, autonomous threat detection frameworks. Ultimately, the fusion of 

lightweight AI models and edge computing offers a promising avenue for building resilient and 

responsive cybersecurity systems capable of operating in decentralized, bandwidth-sensitive 

environments. 
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1. Introduction 

Edge computing has emerged as a transformative paradigm in modern information systems, bringing data processing capabilities 

closer to the source of data generation (Angel et al., 2021; Modupe et al., 2024). Unlike traditional cloud-centric architectures,  
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edge computing distributes computational workloads across 

decentralized devices such as sensors, gateways, and 

embedded edge computing distributes computational 

workloads across decentralized devices such as sensors, 

gateways, and embedded systems. This decentralization 

reduces latency, conserves bandwidth, and supports real-time 

applications in domains like smart manufacturing, 

autonomous vehicles, and remote healthcare (Jain et al., 

2021; Khalil et al., 2022). By enabling low-latency responses 

and local decision-making, edge computing addresses critical 

requirements in time-sensitive and mission-critical 

applications, making it an essential component of the next-

generation digital infrastructure (Gupta et al., 2021; Qiu et 

al., 2022). 

However, the adoption of edge computing introduces new 

and complex cybersecurity challenges. The distributed nature 

of edge devices increases the number of potential attack 

vectors, making the network more susceptible to intrusions, 

data tampering, device hijacking, and denial-of-service 

attacks (Mohammed et al., 2020; Gyamfi and Jurcut, 2022). 

Furthermore, edge nodes often operate in unsecured 

environments, lack physical protection, and possess 

heterogeneous configurations, all of which make them 

attractive targets for malicious actors. The absence of 

centralized oversight further complicates real-time threat 

detection and mitigation, creating significant vulnerabilities 

in edge-based ecosystems (Ferrag et al., 2023; Serôdio et al., 

2023). 

In this context, artificial intelligence (AI), particularly 

machine learning (ML), has gained prominence as a 

promising solution for proactive and adaptive cybersecurity. 

Among AI techniques, anomaly detection using deep 

learning models has demonstrated effectiveness in 

identifying subtle, previously unseen, and complex attack 

patterns. AI-powered anomaly detection surpasses traditional 

signature-based and rule-based systems by learning from 

dynamic behaviors and adapting to evolving threats 

(Tanikonda et al., 2022; Tanikonda, 2023). This adaptability 

is especially valuable in edge computing, where threat 

landscapes are diverse and continuously changing. 

Despite the promise of AI, the computational limitations of 

edge devices such as limited processing power, memory, and 

battery life necessitate the development of lightweight neural 

network models (Chang et al., 2021; Shuvo et al., 2022). 

These models, including architectures like MobileNets, 

SqueezeNet, and TinyML frameworks, are optimized for 

low-resource environments while maintaining high detection 

performance. Lightweight models reduce latency, enable on-

device inference, and minimize the need for continuous 

communication with central servers, thereby preserving 

bandwidth and enhancing privacy. As a result, they form a 

critical backbone for embedding intelligent anomaly 

detection capabilities directly into edge systems (Eskandari 

et al., 2021; Huang et al., 2021). 

The integration of lightweight AI models into edge 

cybersecurity frameworks represents a necessary evolution 

toward decentralized, autonomous, and resilient security 

systems (Molokomme et al., 2022; Biswas, A. and Wang, 

2023). As edge computing becomes increasingly ubiquitous, 

ensuring the safety and integrity of these distributed 

environments through efficient, AI-powered mechanisms is 

imperative. This calls for a concerted research effort to 

design, implement, and evaluate neural models that align 

with the stringent resource constraints and dynamic threat 

landscapes characteristic of edge computing environments 

(Bommasani et al., 2021; Casper et al., 2023). 

 

2. Methodology 

This systematic review employed the PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses) 

methodology to identify, screen, and analyze relevant 

literature addressing the integration of lightweight neural 

models for anomaly detection within AI-powered 

cybersecurity frameworks in edge computing environments. 

A comprehensive literature search was conducted using 

electronic databases including IEEE Xplore, ACM Digital 

Library, ScienceDirect, SpringerLink, and Scopus. 

Keywords used in the search strategy included combinations 

of terms such as “edge computing,” “cybersecurity,” 

“anomaly detection,” “lightweight neural networks,” “AI-

based security,” “resource-constrained devices,” and 

“TinyML.” The search included publications from 2015 to 

2025 to reflect the recent developments in edge AI 

technologies and threat landscapes. 

The inclusion criteria comprised peer-reviewed journal 

articles, conference proceedings, and systematic reviews that 

specifically addressed the design, development, or evaluation 

of lightweight AI or deep learning models for security or 

anomaly detection in edge computing environments. 

Exclusion criteria involved articles not written in English, 

those not involving edge or AI technologies, and papers that 

focused solely on cloud-based or non-AI security solutions. 

The initial search yielded 354 records. After removing 102 

duplicates, 252 articles underwent title and abstract 

screening. Of these, 148 articles were excluded based on 

irrelevance to the core topic. The full texts of the remaining 

104 studies were assessed for eligibility, resulting in 47 

studies that met the inclusion criteria and were included in the 

qualitative synthesis. 

Data extraction from selected studies focused on research 

objectives, model architecture (e.g., MobileNet, SqueezeNet, 

LSTM), deployment platforms (e.g., Raspberry Pi, Jetson 

Nano), datasets used, anomaly detection methods, and 

performance metrics including accuracy, latency, and energy 

efficiency. The final analysis synthesized the findings to 

identify trends, gaps, and future directions in the use of 

lightweight neural models for real-time anomaly detection in 

edge computing security systems. 

 

2.1 Background and Related Work 

Traditional cybersecurity techniques have long served as the 

foundational defense mechanisms in networked systems, 

relying predominantly on signature-based detection, rule-

based engines, and perimeter-based security models such as 

firewalls, intrusion detection systems (IDS), and antivirus 

software (Zave and Rexford, 2020; Mogadem et al., 2022). 

While effective in centralized and static environments, these 

methods face significant limitations when applied to edge 

computing. Signature-based methods, for instance, depend 

on predefined attack patterns and fail to detect novel or 

evolving threats (zero-day attacks). Furthermore, the 

dynamic and decentralized nature of edge networks makes it 

difficult to maintain up-to-date signature databases on each 

device. The computational overhead associated with 

traditional IDS, often designed for high-performance servers, 

is impractical for resource-constrained edge devices. 

Perimeter security models are also less effective in edge 

environments, where data is generated and processed across 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    1131 | P a g e  

 

distributed nodes, often bypassing centralized controls 

entirely. 

To address these shortcomings, anomaly detection has 

emerged as a critical tool in modern cybersecurity 

frameworks. Unlike signature-based methods, anomaly 

detection focuses on identifying deviations from expected 

behavior, enabling the discovery of unknown or emerging 

threats. Anomaly detection approaches are broadly 

categorized into statistical methods, rule-based systems, and 

machine learning-based techniques. Statistical approaches 

rely on probabilistic modeling and thresholds, while rule-

based systems use predefined logical patterns to flag 

irregularities (Liu et al., 2021; Uszko et al., 2023). However, 

these conventional methods often lack the adaptability 

required for complex and evolving threat landscapes. 

Machine learning-based anomaly detection offers greater 

flexibility, as it can learn normal behavior patterns from data 

and identify outliers with higher precision. Supervised 

learning, unsupervised clustering, and time-series analysis 

are commonly used techniques. In edge environments, 

unsupervised and semi-supervised methods are particularly 

valuable due to the scarcity of labeled data. 

The integration of artificial intelligence (AI), especially deep 

learning, has significantly advanced the field of 

cybersecurity. Initially applied in data-rich environments 

such as enterprise networks and cloud systems, AI has 

demonstrated remarkable success in detecting complex attack 

vectors, reducing false positives, and enabling predictive 

security analytics. Neural networks, convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), and 

autoencoders have all been employed for various 

cybersecurity tasks including malware classification, 

intrusion detection, and user behavior analysis. Deep learning 

models can extract hierarchical and non-linear patterns in 

high-dimensional data, making them well-suited for 

identifying subtle anomalies that traditional algorithms might 

overlook (Pedro, 2023; Yang and Zhang, 2023). 

As edge computing gains prominence, the need for AI models 

that can operate under constrained conditions has driven the 

development of lightweight neural architectures. Unlike 

conventional deep learning models that require substantial 

computational resources, lightweight models are designed to 

function efficiently on devices with limited memory, power, 

and processing capabilities. Examples include MobileNets, 

which use depthwise separable convolutions to reduce model 

complexity, and SqueezeNet, which achieves AlexNet-level 

accuracy with significantly fewer parameters. TinyML, a 

growing subfield of machine learning, focuses on deploying 

inference models directly on microcontrollers and low-power 

embedded systems (Schizas et al., 2022; Alajlan and Ibrahim, 

2022). These models are optimized using techniques such as 

model pruning, quantization, and knowledge distillation to 

reduce size and improve efficiency without compromising 

performance. 

Numerous studies have demonstrated the effectiveness of 

lightweight AI models in real-time anomaly detection on 

edge devices. For instance, variants of MobileNet have been 

used in intrusion detection systems deployed on Raspberry Pi 

platforms, achieving high detection accuracy with minimal 

latency. Similarly, compressed autoencoders have been 

applied for unsupervised anomaly detection in industrial IoT 

settings. These advancements underscore the growing 

feasibility of embedding intelligent security features directly 

into edge nodes, thereby enabling decentralized and 

responsive cybersecurity frameworks. 

In summary, while traditional cybersecurity methods struggle 

to adapt to the decentralized, heterogeneous, and resource-

constrained landscape of edge computing, AI-driven 

anomaly detection particularly through lightweight neural 

models offers a robust alternative. The evolution of such 

models is crucial for building secure, scalable, and efficient 

edge systems capable of defending against the increasingly 

sophisticated threats targeting modern cyber-physical 

infrastructures (Garg et al., 2021; Ometov et al., 2022). 

 

2.2 Edge Computing Security Challenges 

Edge computing has emerged as a pivotal technological 

framework to support real-time, decentralized processing in 

domains such as smart cities, autonomous vehicles, 

telemedicine, and industrial automation as shown in figure 1. 

Unlike traditional cloud models that centralize data and 

computation in remote data centers, edge computing 

processes data locally on devices such as gateways, sensors, 

and embedded systems close to the source of data generation. 

This architectural shift offers significant advantages in 

latency reduction, bandwidth efficiency, and context-aware 

decision-making (Islam et al., 2021; Cheng et al., 2021). 

However, it also introduces a unique set of security 

challenges that must be addressed to ensure the integrity, 

confidentiality, and availability of systems and data operating 

at the network’s edge. 
 

 
 

Fig 1: Edge Computing Security Challenges 

 

One of the most significant challenges in securing edge 

computing systems is the limitation of computational and 

storage resources. Edge devices, often deployed in compact 

or embedded environments, typically possess far less 

processing power, memory, and energy capacity than 

centralized cloud servers. These constraints hinder the 

implementation of conventional security measures, such as 

complex encryption schemes, deep packet inspection, and 

heavyweight anomaly detection algorithms. As a result, 

developers are compelled to trade off between security 

strength and computational feasibility, potentially exposing 

edge nodes to cyber threats. The limited resources also 

challenge the deployment of real-time threat mitigation 

systems that require rapid, local inference and decision-

making. 

Furthermore, edge computing applications often demand 

real-time data processing and ultra-low latency, especially in 
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time-sensitive systems like autonomous vehicles, robotic 

control, and emergency response networks. These latency 

requirements limit the extent to which edge devices can rely 

on cloud-based security monitoring or decision-making. 

Security operations, including authentication, anomaly 

detection, and data validation, must occur locally to avoid 

delay-induced risks. This decentralization of security 

responsibilities increases the complexity of implementing 

consistent protection across a widely distributed 

infrastructure and amplifies the need for lightweight yet 

effective cybersecurity mechanisms. 

The shift to edge computing also increases the attack surface 

due to the proliferation of connected devices particularly 

those in the Internet of Things (IoT) ecosystem. Each 

connected sensor, actuator, or mobile device serves as a 

potential point of vulnerability. These devices may lack 

proper security configurations or firmware updates and are 

often deployed in physically unsecured environments, 

making them susceptible to physical tampering, 

eavesdropping, or man-in-the-middle attacks. Moreover, 

compromised edge nodes can act as gateways for lateral 

movement across networks, threatening the security of not 

only local operations but also upstream systems connected to 

the broader architecture (Ali et al., 2021; Kowalski and 

Mazurczyk, 2023). 

In addition, edge systems are characterized by heterogeneous 

and distributed architectures, complicating the deployment 

and enforcement of uniform security policies. Edge 

environments typically integrate a diverse set of hardware 

platforms, operating systems, communication protocols, and 

vendor-specific components. This heterogeneity makes it 

difficult to apply standardized security protocols or intrusion 

detection schemes across all devices. The distributed nature 

of edge computing also reduces central oversight, creating 

blind spots in threat visibility and response coordination. 

Furthermore, the dynamic topology of edge networks where 

devices frequently join, leave, or move between networks 

poses additional challenges for identity management, secure 

communication, and trust establishment. 

Collectively, these security challenges highlight the need for 

tailored solutions that are adaptable, scalable, and resource-

efficient. Traditional, monolithic security architectures are 

ill-suited for the edge paradigm. Instead, novel approaches 

such as decentralized authentication, federated learning, and 

lightweight AI-based anomaly detection are being explored 

to safeguard edge computing environments. These 

approaches must account for device constraints while 

enabling robust detection of and response to evolving threats. 

The growing complexity of edge computing systems 

necessitates a rethinking of cybersecurity strategies to ensure 

that they evolve in tandem with the architectural and 

operational shifts defining the modern digital edge (Angel et 

al., 2021; Judijanto et al., 2023). 

 

2.3 Lightweight Neural Network Architectures 

The rise of edge computing and the proliferation of resource-

constrained devices such as sensors, mobile phones, and 

microcontrollers have driven the need for lightweight neural 

network architectures capable of performing complex 

machine learning tasks efficiently. These models must 

deliver high performance while operating under strict 

limitations on memory, computation, and power 

consumption. To meet these demands, several innovative 

neural network architectures and optimization techniques 

have emerged, including MobileNets, SqueezeNet, and the 

broader field of TinyML as shown in figure 2. These models 

are supported by compression strategies such as pruning, 

quantization, and knowledge distillation that further enhance 

their deployability on edge and embedded systems (Kim et 

al., 2021; Aghli and Ribeiro, 2021). 
 

 
 

Fig 2: Lightweight Neural Network Architectures 

 

MobileNets are a family of convolutional neural networks 

(CNNs) specifically designed for mobile and embedded 

vision applications. Introduced by Google, MobileNets 

achieve computational efficiency by replacing standard 

convolution operations with depthwise separable 

convolutions, which split the convolution into two parts: a 

depthwise convolution and a pointwise convolution. This 

significantly reduces the number of parameters and floating-

point operations required without a substantial loss in 

accuracy. Variants such as MobileNetV2 and MobileNetV3 

further improve efficiency through techniques like inverted 

residual blocks and neural architecture search. MobileNets 

have been widely adopted for tasks including image 

classification, object detection, and anomaly detection in 

edge-based systems due to their excellent balance between 

performance and computational cost. 

SqueezeNet is another lightweight CNN architecture that 

achieves comparable accuracy to larger networks such as 

AlexNet while requiring 50 times fewer parameters. The core 

idea behind SqueezeNet is the use of "fire modules," which 

consist of a squeeze layer using 1×1 convolutions followed 

by an expand layer with a mix of 1×1 and 3×3 convolutions. 

This configuration drastically reduces the model size while 

maintaining high representational power. SqueezeNet is 

especially useful in environments where memory footprint 

and model download size are critical constraints, making it a 

preferred choice for deployment on low-power IoT devices 

and embedded processors. 

TinyML represents a burgeoning field that focuses on 

deploying machine learning models on ultra-low-power 

microcontrollers. TinyML models are designed to operate 

within kilobytes of memory and milliwatts of power, making 

them ideal for deeply embedded edge applications such as 

real-time anomaly detection, gesture recognition, and speech 

processing. These models are typically trained on more 
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powerful machines and then compressed and optimized for 

deployment. Microcontroller platforms such as ARM Cortex-

M, ESP32, and Arduino boards are commonly used for 

TinyML applications. Frameworks like TensorFlow Lite for 

Microcontrollers (TFLM) and Edge Impulse facilitate the 

deployment of lightweight inference engines directly on these 

constrained devices (Manor and Greenberg, 2022; Saha et al., 

2022). 

To further enhance the efficiency of these architectures, a 

range of model optimization techniques are employed. 

Pruning involves removing redundant or non-critical weights 

and neurons from the network, thus reducing model size and 

inference time. Pruning can be structured (removing entire 

filters or layers) or unstructured (removing individual 

weights), and is often followed by fine-tuning to recover lost 

accuracy. Quantization converts 32-bit floating-point 

weights and activations into lower-precision formats such as 

8-bit integers, substantially reducing memory usage and 

computational overhead while maintaining acceptable 

accuracy. This is particularly beneficial for running models 

on hardware with limited support for floating-point 

arithmetic. Knowledge distillation involves training a smaller 

"student" model to mimic the behavior of a larger, more 

accurate "teacher" model. This approach enables the student 

model to retain much of the performance of the teacher while 

being significantly smaller and faster, making it well-suited 

for edge deployment. 

Lightweight neural network architectures such as 

MobileNets, SqueezeNet, and TinyML models, combined 

with advanced optimization techniques like pruning, 

quantization, and knowledge distillation, provide a robust 

foundation for deploying AI capabilities in edge computing 

environments. These developments enable real-time, 

intelligent decision-making on devices with constrained 

resources, paving the way for more secure, efficient, and 

scalable edge-based systems (Coito et al., 2021; Diraco et al., 

2023). 

 

2.4 Anomaly Detection Methodologies 

Anomaly detection is a critical component of cybersecurity 

in edge computing environments, where early identification 

of irregular behavior can prevent significant operational 

disruptions or data breaches. Given the decentralized and 

heterogeneous nature of edge systems, anomaly detection 

techniques must be robust, adaptive, and capable of operating 

in resource-constrained settings. Edge environments are 

particularly vulnerable to several types of anomalies, 

including network intrusions, device malfunctions, and data 

leakage. Network intrusions involve unauthorized access or 

suspicious traffic patterns, such as port scanning or denial-of-

service attacks. Device malfunctions, often caused by 

hardware degradation or firmware errors, can lead to 

abnormal behavior in sensors or actuators (Gaddam et al., 

2020; Ayeb et al., 2020). Data leakage occurs when sensitive 

data is accessed or transmitted without authorization, 

potentially violating user privacy or exposing confidential 

information. 

To detect these diverse threat scenarios, machine learning-

based approaches have become prominent, particularly those 

involving supervised and unsupervised learning. Supervised 

learning techniques require labeled datasets with examples of 

both normal and anomalous behavior. Algorithms such as 

support vector machines (SVMs), decision trees, and 

convolutional neural networks (CNNs) are trained to classify 

input data into normal or anomalous categories. While 

effective when labeled data is available, supervised methods 

are often impractical for edge cybersecurity due to the 

scarcity of labeled anomalies and the evolving nature of 

threats. By contrast, unsupervised learning techniques do not 

require labeled data and instead focus on learning patterns of 

normal behavior. Anomalies are identified as deviations from 

these learned patterns. Clustering algorithms (e.g., k-means, 

DBSCAN), autoencoders, and isolation forests are frequently 

employed in unsupervised anomaly detection. These methods 

are particularly well-suited for edge environments, where 

new and previously unseen anomalies may emerge, and 

labeled datasets are limited or unavailable. 

Among the more advanced techniques for anomaly detection 

are time-series and sequence-based models, which are 

designed to capture temporal dependencies in data. Long 

Short-Term Memory (LSTM) networks and Gated Recurrent 

Units (GRUs) are popular architectures within this category. 

LSTM and GRU models are capable of learning long-term 

dependencies and trends from sequences of data, making 

them ideal for identifying anomalies in streaming data such 

as CPU usage, network traffic, and sensor readings over time. 

For instance, an LSTM model can be trained to predict 

expected values in a time-series, and significant deviations 

from predictions can be flagged as anomalies. These models 

are especially useful in edge computing scenarios where real-

time monitoring of behavior patterns is essential, such as 

detecting abrupt changes in energy consumption in a smart 

grid or identifying irregular telemetry data in autonomous 

vehicles (Qiu et al., 2020; Wu et al., 2021). 

Effective anomaly detection at the edge also depends heavily 

on data collection and preprocessing. Edge devices generate 

large volumes of heterogeneous data, often in real time. 

Efficient data acquisition frameworks must be in place to 

ensure data quality while minimizing latency and power 

consumption. Preprocessing steps such as data normalization, 

noise reduction, feature extraction, and dimensionality 

reduction are crucial for enhancing model performance and 

reducing computational load. For example, converting raw 

network traffic into meaningful features like packet size, 

duration, and protocol type can improve the accuracy of 

anomaly detection models. In resource-constrained 

environments, feature selection is vital to ensure only the 

most informative data is retained for model input, reducing 

the burden on edge hardware. 

Moreover, privacy and bandwidth considerations often 

necessitate local data processing and on-device inference. 

This creates an additional challenge: ensuring that 

preprocessing and detection pipelines are lightweight and 

optimized for edge execution. Techniques like federated 

learning can complement local detection by enabling 

collaborative model training across multiple edge nodes 

without sharing raw data, thus preserving privacy while 

improving detection capabilities (Qayyum et al., 2022; Bao 

and Guo, 2022). 

Anomaly detection in edge computing requires a combination 

of versatile learning approaches, temporal modeling, and 

efficient data handling. The integration of LSTM/GRU 

models, unsupervised learning algorithms, and intelligent 

preprocessing pipelines enables effective identification of 

cyber threats and system faults in real-time, even in the face 

of constrained resources and dynamic environments. These 

methodologies form the foundation of resilient, autonomous 

edge cybersecurity systems. 
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2.5 Model Deployment on Edge Devices 

Deploying machine learning models on edge devices 

represents a critical step toward achieving real-time, 

intelligent cybersecurity and anomaly detection in distributed 

computing environments as shown in figure 3. Unlike 

traditional cloud-based AI systems that rely on centralized 

processing, edge-based deployment enables local inference, 

allowing data to be analyzed and acted upon directly at or 

near the source (Duan et al., 2022; Solanke, 2023). This 

architectural shift supports applications with strict latency 

requirements and limited connectivity while enhancing 

privacy and reducing bandwidth usage. The two dominant 

deployment strategies in edge AI are on-device deployment 

and edge-server deployment, each with distinct advantages 

and trade-offs. 

On-device deployment refers to running the trained AI model 

directly on the edge device, such as a sensor, gateway, or 

microcontroller. This approach minimizes latency and 

supports real-time decision-making without relying on cloud 

services. It also offers enhanced data privacy, as sensitive 

information remains on the device. However, it requires 

models to be highly optimized due to limited computational, 

memory, and energy resources. In contrast, edge-server 

deployment involves running models on more powerful, local 

edge servers that aggregate and process data from multiple 

devices. While this setup offers greater computational 

capabilities and flexibility in model complexity, it introduces 

communication latency and potential network dependencies. 

Selecting the appropriate deployment method depends on 

application-specific requirements for response time, power 

consumption, and data privacy. 
 

 
 

Fig 3: Model Deployment on Edge Devices 

 

Training AI models for edge deployment can follow several 

paradigms, including centralized, federated, and transfer 

learning. In centralized learning, all training data is collected 

and processed in a central server or cloud environment, where 

a global model is developed and later deployed to edge 

devices. While effective, this method raises concerns about 

data privacy and communication overhead. Federated 

learning offers a privacy-preserving alternative by training 

models locally on multiple edge devices. The devices 

compute model updates based on local data and share only 

these updates (not raw data) with a central coordinator to 

construct a global model (Zhang et al., 2021; Shen et al., 

2022). This approach enables collaboration without 

compromising user data privacy and reduces the risks of data 

breaches during transmission. Transfer learning involves 

adapting a pre-trained model to a specific edge environment 

or task using a small amount of local data. This is particularly 

beneficial in scenarios where edge devices have limited 

training data and computational power. It allows edge 

applications to benefit from large-scale models trained on 

generic datasets while customizing them for local anomaly 

detection needs. 

Real-time inference is a primary driver for edge AI 

deployment, and latency considerations play a pivotal role in 

model selection and optimization. Cybersecurity applications 

often require immediate response to detected threats, such as 

halting malicious processes or sending alerts. Any delay in 

inference can reduce the effectiveness of the response. On-

device inference eliminates network latency entirely, whereas 

edge-server deployment introduces some communication 

delay. To minimize inference time, models must be compact 

and computationally efficient. Techniques such as model 

pruning, quantization, and optimized runtime engines (e.g., 

TensorFlow Lite, ONNX Runtime, TensorRT) are frequently 

used to accelerate performance. 

A range of hardware platforms supports model deployment at 

the edge, with varying capabilities. Raspberry Pi devices are 

popular due to their affordability, Linux compatibility, and 

moderate computational power, making them suitable for 

lightweight models like MobileNet or SqueezeNet in 

applications such as home security or smart monitoring. 

NVIDIA Jetson platforms, including Jetson Nano and Xavier, 

provide GPU-accelerated computing for more complex 

models, offering higher performance for applications like 

video surveillance or autonomous navigation. These devices 

support advanced deep learning frameworks and enable real-

time inference for more demanding AI tasks. At the smallest 

scale, microcontrollers such as ARM Cortex-M series and 

ESP32 are used for ultra-low-power TinyML applications 

(Abadade et al., 2023; Ray, 2022). These platforms operate 

within strict memory and energy budgets, yet they are 

capable of running quantized neural networks for tasks like 

sensor anomaly detection or keyword spotting. 

The deployment of AI models on edge devices requires 

careful consideration of architectural strategies, training 

methodologies, latency constraints, and hardware 

capabilities. Combining efficient model design with the right 

deployment framework ensures robust and responsive 

anomaly detection systems that meet the unique demands of 

edge computing environments (Martins et al., 2022; Ullah 

and Mahmoud, 2022). 

 

2.6 Performance Evaluation 

Evaluating the performance of lightweight neural models 

deployed in edge computing environments is essential to 

ensure their effectiveness in real-world cybersecurity 

applications. These evaluations must consider not only the 

predictive performance of the model but also the operational 

constraints inherent to edge devices, such as energy 

consumption, latency, and hardware limitations. Key metrics 

typically used to assess model performance include accuracy, 

precision, recall, latency, and energy consumption (Vakili et 

al., 2020; Naidu et al., 2023). 

Accuracy indicates the overall correctness of the model’s 

predictions, while precision and recall offer more nuanced 
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insights. Precision reflects the proportion of true positive 

predictions among all predicted positives, and is especially 

important in minimizing false alarms in anomaly detection. 

Recall measures the ability to identify all relevant anomalies, 

crucial for avoiding missed threats in cybersecurity scenarios. 

In edge computing, latency the time taken to process and infer 

from a single data point is a critical performance indicator, 

particularly in real-time applications like intrusion detection. 

Energy consumption is also a key consideration, as many 

edge devices operate on battery power or energy-harvesting 

mechanisms. Models that deliver high accuracy but demand 

excessive energy may be impractical for long-term or mobile 

deployments. 

To comprehensively evaluate lightweight neural 

architectures, researchers often use real-world edge datasets 

as benchmarks. These datasets simulate practical edge 

scenarios, such as the UNSW-NB15 and NSL-KDD for 

network intrusion detection, and SWaT (Secure Water 

Treatment) for industrial IoT anomaly detection. 

Benchmarks based on actual telemetry from edge devices 

provide realistic conditions under which to assess both 

detection efficacy and operational efficiency (Varghese et al., 

2021; Yang et al., 2022). These datasets include diverse 

patterns, temporal behaviors, and noisy signals, offering a 

robust testing ground for evaluating a model’s ability to 

distinguish between normal and anomalous behavior. 

A comparative study of different lightweight models such as 

MobileNets, SqueezeNet, and TinyML-optimized 

autoencoders demonstrates varied performance profiles 

across tasks and environments. For instance, in anomaly 

detection tasks involving time-series data, LSTM-based 

models outperform CNNs in recall due to their capacity to 

capture temporal dependencies. However, they often suffer 

from higher latency and energy use. MobileNets, with their 

depthwise separable convolutions, tend to offer a good 

balance between speed and accuracy, making them ideal for 

real-time intrusion detection on Raspberry Pi platforms. 

SqueezeNet achieves significant parameter reduction but 

may trade off some predictive accuracy in more complex 

detection tasks. TinyML-optimized models, such as 

quantized autoencoders or shallow MLPs (multilayer 

perceptrons), perform well in microcontroller environments 

where memory and power constraints are severe, though with 

limited adaptability to complex anomalies. 

Use cases across domains illustrate the practical relevance of 

these models in edge-based anomaly detection. In smart 

homes, lightweight CNN models deployed on Raspberry Pi 

devices monitor Wi-Fi traffic or device behavior to detect 

unauthorized access or unusual activity patterns. The models 

must respond in real-time, prioritize user privacy, and operate 

on low-power hardware. In industrial IoT environments, 

models like GRUs and LSTMs are deployed on edge 

gateways to monitor sensor streams from machinery, 

enabling early fault detection and predictive maintenance 

(Ray et al., 2021; Vermesan et al., 2022). The performance 

of these models is evaluated not only on accuracy but also on 

their ability to operate continuously in harsh, bandwidth-

limited settings. In healthcare monitoring, wearable devices 

use TinyML models to track physiological signals such as 

heart rate variability or gait patterns. These models detect 

anomalies that may signal health deterioration or emergency 

conditions. Their evaluation emphasizes energy efficiency 

and latency, ensuring that critical alerts are triggered without 

delay or frequent battery recharge. 

Performance evaluation of lightweight neural models for 

edge anomaly detection must incorporate a multi-

dimensional framework that goes beyond conventional 

accuracy metrics (Luo et al., 2021; Kumar, R. and Agrawal, 

2023). Latency, energy efficiency, and contextual relevance 

to real-world applications are equally important. Through 

comparative studies and deployment in use cases like smart 

homes, industrial IoT, and healthcare monitoring, researchers 

and developers can refine these models to meet the unique 

challenges posed by edge computing environments. The 

continual evolution of benchmarks and evaluation strategies 

will be crucial for guiding future innovations in secure, 

efficient, and intelligent edge-based anomaly detection. 

 

2.7 Challenges and Future Directions 

As AI-powered anomaly detection becomes increasingly 

integrated into edge computing environments, a range of 

pressing challenges must be addressed to ensure security, 

adaptability, and long-term effectiveness (Gill et al., 2022; 

Abimannan et al., 2023). While lightweight neural models 

offer a promising solution for real-time threat detection on 

resource-constrained edge devices, the evolving complexity 

of threats and operational environments demands ongoing 

research and innovation. Key areas of concern include 

adversarial robustness, privacy-preserving learning, adaptive 

model updates, and the scalability of edge AI systems. 

One of the most critical challenges in deploying machine 

learning at the edge is the susceptibility of models to 

adversarial attacks. These attacks involve subtly crafted 

inputs that are designed to deceive the model into making 

incorrect predictions. In cybersecurity contexts, adversarial 

examples could allow malicious activities to go undetected 

by the anomaly detection system. Lightweight models, by 

nature of their reduced complexity and representational 

capacity, are particularly vulnerable to such manipulation. 

Enhancing model robustness against adversarial 

perturbations is essential. Strategies such as adversarial 

training, input sanitization, and model ensembling have been 

proposed, but many remain computationally intensive and 

thus difficult to implement on constrained edge devices. 

Future research must develop efficient robustness techniques 

that can be embedded in lightweight architectures without 

compromising their operational feasibility. 

Another critical area is the implementation of privacy-

preserving AI, particularly through federated learning. In 

traditional centralized training, data from edge devices must 

be uploaded to a central server, raising significant privacy 

and security concerns especially in domains like healthcare 

and finance. Federated learning allows models to be trained 

locally on devices, with only model updates being shared. 

This preserves data privacy and reduces bandwidth usage. 

However, federated learning introduces its own challenges, 

such as communication overhead, model heterogeneity, and 

vulnerability to poisoning attacks, where malicious devices 

can corrupt the global model (Xia et al., 2023; Almutairi and 

Barnawi, 2023). Future advancements must focus on robust 

aggregation methods, efficient update protocols, and secure 

communication channels to make federated learning more 

scalable and resilient in large, heterogeneous edge networks. 

The dynamic nature of edge environments also necessitates 

support for lifelong and online learning, where models can 

continuously adapt to new data without requiring full 

retraining. Anomaly detection systems must be able to 

recognize previously unseen patterns, evolving threats, and 
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concept drift—the gradual change in data distribution over 

time (Seraj and Ahmed, 2020; Pillai, 2022). Implementing 

online learning at the edge poses significant computational 

and memory challenges. Lightweight, incremental learning 

algorithms and memory-efficient neural architectures are 

needed to allow real-time updates with minimal resource 

overhead. Additionally, mechanisms for model validation 

and drift detection must be developed to ensure that updates 

do not degrade performance or introduce instability. 

Scalability and maintainability are further challenges in real-

world edge AI deployments. As edge systems expand across 

numerous devices and environments, ensuring consistent 

model performance and manageability becomes increasingly 

complex. Each device may differ in hardware capabilities, 

data characteristics, and threat exposure, requiring models to 

be customized or fine-tuned accordingly. This heterogeneity 

complicates large-scale deployment, version control, and 

remote maintenance. Solutions such as modular AI pipelines, 

automated deployment tools, and cloud-assisted 

orchestration frameworks can help manage and update edge 

AI systems at scale (Goethals et al., 2021; Mungoli, 2023). 

However, there remains a need for standardized APIs, 

lightweight model update protocols, and fault-tolerant 

deployment strategies that can seamlessly integrate with 

diverse edge infrastructures. 

While lightweight neural models for anomaly detection offer 

considerable promise for enhancing cybersecurity in edge 

computing, realizing their full potential requires addressing 

key technical challenges. Robustness against adversarial 

threats, privacy-preserving learning mechanisms, continual 

adaptation through lifelong learning, and scalable system 

maintenance are all crucial for the long-term viability of edge 

AI. Future research must strive to develop integrated 

frameworks that balance performance, security, and resource 

efficiency, enabling intelligent, resilient, and privacy-

conscious edge computing systems to meet the demands of 

next-generation applications (Chen et al., 2021; Nimsarkar et 

al., 2023; Gami et al., 2023). 

 

Conclusion 

This has explored the integration of lightweight neural 

network architectures for anomaly detection in AI-powered 

cybersecurity systems within edge computing environments. 

The review highlights the pressing need for adaptive, real-

time security solutions capable of operating under resource 

constraints, given the increasing vulnerability of 

decentralized and heterogeneous edge networks. Lightweight 

models such as MobileNets, SqueezeNet, and TinyML 

frameworks offer a promising balance between 

computational efficiency and detection performance, 

enabling effective on-device inference with minimal latency 

and energy consumption. Additionally, techniques like 

pruning, quantization, and knowledge distillation further 

enhance the deployability of AI models in constrained edge 

settings. 

The findings emphasize that while traditional security 

approaches are insufficient for edge systems, AI-driven 

anomaly detection especially when informed by time-series 

models like LSTM and GRU provides superior adaptability 

and accuracy. Furthermore, deployment strategies such as 

federated learning and transfer learning offer privacy-

preserving and scalable pathways for training and updating 

models across distributed edge nodes. Real-world use cases 

in smart homes, industrial IoT, and healthcare demonstrate 

the practical impact of these methods. 

The implications of this work suggest a transformative role 

for AI in securing the edge, making it possible to detect and 

respond to cyber threats autonomously and efficiently. 

However, several challenges remain, particularly in ensuring 

model robustness against adversarial attacks, supporting 

lifelong learning, and maintaining system scalability. 

Therefore, continued interdisciplinary research is essential to 

develop more resilient, efficient, and secure AI models 

tailored for the edge. Future advancements must address the 

balance between performance and resource consumption 

while reinforcing data privacy and system adaptability, 

ultimately contributing to the evolution of secure, intelligent 

edge computing infrastructures. 
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