

International Journal of Multidisciplinary Research and Growth Evaluation.

Reviewing the Role of IoT in Smart City Development in Africa

Bukky Okojie Eboseremen ^{1*}, Babawale Patrick Okare ², Tope David Aduloju ³, Eunice Nduta Kamau ⁴, Aifuwa Ehilenmen Stephen ⁵

- ¹Tecvinson AB, Malmö, Sweden
- ² Ceridian (Dayforce) Toronto, Canada
- ³ Toju Africa, Nigeria
- ⁴ Independent Researcher, USA
- ⁵ Trine University, NJ, U.S.A
- * Corresponding Author: Bukky Okojie Eboseremen

Article Info

ISSN (online): 2582-7138

Volume: 04 Issue: 03

May - June 2023 Received: 02-04-2023 Accepted: 04-05-2023 Published: 05-06-2023 Page No: 1155-1163

Abstract

The advent of the Internet of Things (IoT) has ushered in a new era of possibilities, particularly in the realm of urban development. Africa, with its burgeoning urbanization and the need for sustainable and efficient city planning, is increasingly turning to IoT technologies to propel the creation of smart cities. This review examines the evolving role of IoT in the context of smart city development across the African continent. In recent years, African cities have faced unprecedented challenges arising from rapid urbanization, population growth, and resource constraints. In response to these challenges, the integration of IoT technologies in urban planning has emerged as a promising avenue for creating smart, connected cities that enhance the quality of life for residents. IoT in smart city development involves the interconnectivity of devices, sensors, and systems through the internet, fostering data-driven decision-making and automation. The implementation of smart infrastructure, such as intelligent transportation systems, waste management solutions, and energy-efficient buildings, is becoming integral to African cities' pursuit of sustainable and resilient urban spaces. One key area where IoT plays a pivotal role is in the enhancement of urban mobility. Smart traffic management systems, powered by IoT sensors and real-time data analytics, enable cities to optimize traffic flow, reduce congestion, and enhance public transportation efficiency. This not only improves the overall transportation experience for residents but also contributes to reduced emissions and environmental sustainability. In the realm of public services, IoT facilitates efficient waste management through smart bins equipped with sensors that monitor waste levels. This datadriven approach enables cities to optimize waste collection routes, reduce operational costs, and minimize the environmental impact of inefficient waste disposal practices. Moreover, IoT contributes to the development of smart grids, enabling cities to better manage energy distribution, optimize resource usage, and enhance overall energy efficiency. By integrating renewable energy sources and leveraging IoT for real-time monitoring, African cities can address energy challenges and move towards sustainable urban development. In conclusion, the role of IoT in smart city development in Africa is rapidly evolving to address the unique challenges faced by urban centers on the continent. From improving urban mobility to enhancing waste management and promoting energy efficiency, IoT technologies offer a transformative pathway toward sustainable and resilient smart cities in Africa. As these initiatives continue to unfold, fostering collaborations between governments, technology providers, and local communities becomes crucial to ensuring the effective and inclusive implementation of IoT-driven solutions in the urban landscapes of Africa.

DOI: https://doi.org/10.54660/.IJMRGE.2023.4.3.1155-1163

Keywords: Role, IoT, Smart City, Development, Communities

1. Introduction

The advent of the Internet of Things (IoT) has ushered in a paradigm shift in the way we envision and construct urban landscapes.

IoT refers to the interconnected network of devices, sensors, and systems that communicate and exchange data through the internet. This transformative technology enables a seamless flow of information, fostering a web of interconnected devices that work in tandem to enhance efficiency, automate processes, and improve overall quality of life. As IoT continues to evolve, its significance becomes increasingly pronounced in addressing the complex challenges posed by rapid urbanization, resource constraints, and the demand for sustainable urban development.

In the African context, the dynamics of urbanization are undergoing a significant transformation (Asabere et al.,2020). The continent is experiencing unprecedented rates of urban growth and population expansion, bringing forth a host of challenges related to infrastructure, mobility, and resource management. African cities are grappling with the need to adapt to these changes swiftly while ensuring that development is sustainable, resilient, and inclusive. Smart city development in Africa emerges as a response to these challenges, incorporating innovative technologies to create urban environments that are intelligent, interconnected, and capable of meeting the evolving needs of their residents. In this context, IoT plays a pivotal role in shaping the future of African cities by offering solutions that optimize resource usage, enhance services, and promote a more sustainable urban existence (Moreno et al.,2021).

The purpose of this review is to delve into the evolving role of IoT in the context of smart city development in Africa (Tan and Taeihagh, 2020). By exploring the current landscape of challenges faced by African cities, understanding the potential applications of IoT technologies, and examining real-world case studies, this review aims to provide insights into how IoT can be harnessed to address the unique needs of urban environments in Africa. Additionally, it seeks to shed light on collaborative efforts, challenges, and considerations that shape the integration of IoT in smart city initiatives across the continent (Estevez *et al.*,2021). Ultimately, this review serves as a comprehensive exploration of the transformative potential of IoT in fostering sustainable, efficient, and interconnected smart cities in the African context.

1.1 Current Challenges in African Cities

Urbanization across Africa is advancing at an unprecedented pace, bringing both opportunities and challenges to the forefront (Cilliers, 2021). As African cities grapple with rapid population growth, resource constraints, and infrastructure challenges, the need for sustainable and efficient urban planning has become increasingly urgent. This section explores the current challenges faced by African cities, setting the stage for understanding the crucial role that Internet of Things (IoT) technologies can play in mitigating these issues and shaping the trajectory of smart city development.

African cities are experiencing rapid urbanization as people migrate from rural areas to urban centers in search of better opportunities (Mubangizi, 2021). The continent's urban population is projected to double by 2050, placing immense pressure on existing infrastructure and services. This rapid urbanization poses challenges such as housing shortages, inadequate sanitation, and increased strain on transportation systems. The result is often sprawling informal settlements, where access to basic services and amenities is limited (Aboulnaga, *et al.*,2021). In this context, IoT technologies

can offer innovative solutions to manage the impact of rapid urbanization. Smart city initiatives leveraging IoT can optimize transportation systems, enhance public services, and improve overall urban efficiency. For example, smart traffic management systems can alleviate congestion, and real-time data analytics can inform urban planners to develop more effective infrastructure strategies, accommodating the burgeoning urban populations.

Resource constraints, including financial limitations and insufficient investment in infrastructure, present formidable challenges for African cities (Emon and Khan, 2023). Many urban areas face difficulties in providing basic services such as reliable electricity, clean water, and sanitation. The lack of essential infrastructure hampers the quality of life for residents and impedes economic development (Basavarajappa, 2020). Moreover, existing infrastructure often struggles to keep pace with the demands of growing urban populations. IoT technologies have the potential to address resource constraints by optimizing the use of available infrastructure and resources. For instance, smart grids powered by IoT can improve energy distribution efficiency, reducing waste and ensuring reliable power supply. Additionally, IoT-enabled water management systems can enhance water resource utilization, leading to improved access to clean water and sanitation services. By leveraging IoT to enhance resource efficiency, African cities can overcome infrastructure challenges and create more resilient and sustainable urban environments (Kareem et

The imperative for sustainable and efficient urban planning has become paramount in the face of rapid urbanization and resource constraints. Traditional urban planning models may no longer suffice, necessitating innovative approaches that prioritize environmental sustainability, economic viability, and social inclusivity. African cities need to embrace smart city development strategies that consider the long-term impact of urban growth and promote resilient, adaptive urban ecosystems. IoT technologies offer a pathway for sustainable and efficient urban planning in African cities (Balogun et al.,2020). Smart sensors, data analytics, and real-time monitoring can provide valuable insights into urban dynamics, allowing for evidence-based decision-making. For example, IoT-enabled waste management systems can optimize collection routes, reducing operational costs and environmental impact. Smart buildings equipped with energy-efficient technologies can contribute to reducing carbon footprints. By integrating IoT into urban planning, African cities can align their development trajectories with sustainability goals, ensuring that growth is both economically and environmentally responsible (Almalki et al.,2023). In conclusion, the current challenges faced by African cities, including rapid urbanization, resource constraints, and infrastructure challenges, underscore the urgency for innovative solutions. IoT technologies present a transformative opportunity to address these challenges and pave the way for smart city development that is inclusive, sustainable, and resilient. The next sections of this review will delve into how IoT applications can be harnessed to tackle these challenges and contribute to the creation of smarter and more livable urban environments across Africa.

1.2 Overview of IoT Technologies

The advent of the Internet of Things (IoT) has ushered in a new era of possibilities, particularly in the realm of urban

development (Rejeb et al.,2022). Across Africa, where cities are grappling with the challenges of rapid urbanization, resource constraints, and the need for sustainable growth, IoT technologies hold the key to transforming traditional urban landscapes into intelligent, interconnected, and efficient smart cities. This section provides a comprehensive overview of IoT technologies, explaining its components, highlighting the interconnectivity of devices and systems, and emphasizing the role of data-driven decision-making and automation in shaping urban development (Olaniyi et al.,2023).

At its core, the Internet of Things refers to the network of interconnected devices, sensors, and systems communicate and exchange data through the internet (Granell et al., 2020). The fundamental components of IoT include: Devices: These are physical objects embedded with sensors, actuators, and connectivity features that enable them to collect and transmit data. Devices range from everyday objects like smartphones and wearables to specialized sensors deployed in urban infrastructure (Salamone, 2021). Sensors: Sensors are instrumental in gathering real-time data from the physical environment. They can measure various parameters such as temperature, humidity, air quality, and movement. In the context of smart city development, sensors play a crucial role in monitoring urban dynamics and providing valuable insights. Connectivity: The connectivity layer facilitates communication between devices and systems. Technologies such as wireless networks, cellular communication, and the Internet ensure seamless data exchange, allowing IoT devices to function as a cohesive network. Data Processing and Storage: The vast amount of data generated by IoT devices requires sophisticated processing and storage capabilities (Diène et al., 2020). Cloud computing and edge computing solutions are commonly employed to manage and analyze data efficiently. Actuators: Actuators enable devices to perform actions based on the data they receive. For example, smart city applications might use actuators to control traffic lights, manage energy consumption in buildings, or optimize irrigation systems (Ramírez et al.,2021).

The strength of IoT lies in the interconnectivity of its components, creating a network that operates in synergy (Lee, 2021). Devices and sensors communicate with each other and with centralized systems, forming an ecosystem that fosters real-time data exchange. In smart city development, this interconnectivity enables: Real-Time Monitoring: Sensors distributed throughout the city provide continuous data streams, allowing for real-time monitoring of various parameters. This includes traffic flow, air quality, waste levels, and energy consumption (Lu et al., 2021). Communication: Devices communicate seamlessly, enabling a cohesive system where data from one sensor or device can trigger actions in another. This interconnectedness facilitates a holistic approach to urban management. Integration of Systems: IoT technologies allow for the integration of diverse urban systems. For instance, transportation systems can be integrated with energy management and public safety systems to optimize city operations. The modular nature of IoT infrastructure facilitates scalability. As the city evolves and expands, new devices and sensors can be seamlessly integrated into the existing IoT ecosystem (Bauer et al., 2021).

The true power of IoT in smart city development lies in its ability to inform data-driven decision-making and enable automation (Bibri and Krogstie, 2020). Key aspects include:

The data generated by IoT devices is a valuable resource for urban planners and policymakers. Advanced analytics tools process and analyze this data to derive actionable insights. For example, traffic patterns can be analyzed to optimize transportation routes, or energy consumption data can inform efficiency strategies. IoT enables the application of predictive analytics to anticipate future trends and issues. Predictive models can be developed to forecast traffic congestion, detect maintenance needs in infrastructure, or predict public service demands. IoT technologies enable the automation of various urban processes (Zekić,2021). For instance, smart traffic management systems can dynamically adjust traffic signals based on real-time data, optimizing the flow of vehicles and reducing congestion. Automated waste management systems can optimize collection routes, improving efficiency and reducing operational costs. Through data-driven decisionmaking and automation, IoT contributes to the overall efficiency of urban development. Processes become more streamlined, resources are utilized optimally, and the city can respond proactively to changing circumstances (Tang et al.,

In the context of African cities facing challenges such as rapid urbanization and resource constraints, the deployment of IoT technologies offers a transformative approach to urban development. As the subsequent sections of this review delve into the specific applications of IoT in African smart cities, it becomes clear that leveraging the interconnectivity, datadriven insights, and automation capabilities of IoT is instrumental in creating sustainable, efficient, and resilient urban environments across the continent (Allam, 2020).

1.3 Application of IoT in Smart City Development

The application of Internet of Things (IoT) technologies in smart city development is poised to revolutionize urban landscapes across Africa (Echendu and Okafor, 2021). By leveraging IoT, cities can address challenges related to rapid urbanization, resource constraints, and the need for sustainable growth. This section explores specific applications of IoT in key areas of urban development in Africa, including urban mobility, public services, and energy efficiency.

In African cities grappling with increasing traffic congestion, smart traffic management systems powered by IoT offer innovative solutions (Sovacool, 2022). These systems utilize a network of sensors, cameras, and connected devices to monitor traffic patterns in real-time. By collecting data on vehicle movement, congestion points, and traffic flow, smart traffic management systems can: IoT-enabled traffic signals can dynamically adjust based on real-time traffic conditions, improving the flow of vehicles and reducing congestion at key intersections. Data analytics on historical and real-time traffic data enable the prediction of traffic patterns, allowing for proactive measures to alleviate congestion during peak hours or special events. IoT-connected devices, such as smart road signs and sensors, contribute to enhanced road safety by providing real-time information to drivers about potential hazards or changes in road conditions.

IoT plays a pivotal role in optimizing public transportation systems, making them more efficient, reliable, and responsive to the needs of commuters. IoT applications in this domain include: IoT-enabled tracking devices on public transport vehicles provide real-time location information. Commuters can access this information through mobile apps, ensuring accurate arrival times and reducing waiting times

(Liu and Miller, 2020). IoT sensors on public transport vehicles facilitate predictive maintenance, allowing operators to anticipate and address potential issues before they lead to breakdowns. This enhances the reliability of public transportation services. Smart ticketing and fare collection systems leverage IoT to streamline payment processes, reduce queues, and enhance the overall efficiency of public transportation (Rajkumar and Deborah, 2021).

Efficient waste management is a critical aspect of smart city development, and IoT technologies are instrumental in optimizing waste collection and disposal (Szpilko et al., 2023). Smart waste management solutions involve: IoT-Enabled Bins: Waste bins equipped with sensors can monitor fill levels in real-time. When a bin reaches a specified capacity, the system generates alerts for waste collection teams, ensuring timely and efficient pickups. Route Optimization: IoT data analytics help optimize waste collection routes, minimizing travel distances and reducing fuel consumption. This not only enhances operational but also contributes to environmental efficiency sustainability. Recycling Initiatives: IoT can support recycling efforts by tracking and incentivizing recycling behaviors. Smart bins for recyclables can be monitored, and citizens can receive rewards or incentives for participating in recycling programs (Gibovic and Bikfalvi, 2021).

In addition to smart waste management, optimizing waste collection routes through IoT-driven solutions further contributes to the efficiency of public services (Aithal, 2021). This involves: Using real-time data on waste bin fill levels, IoT analytics can dynamically plan and optimize waste collection routes. This minimizes travel time, reduces fuel consumption, and lowers operational costs. IoT-equipped waste collection vehicles can be tracked in real-time using GPS technology. This allows for better fleet management, route adherence, and coordination of multiple collection vehicles. Predictive analytics based on historical data can forecast waste generation patterns, helping municipalities allocate resources more effectively and respond proactively to changing waste collection demands.

IoT-enabled smart grids are a cornerstone of enhancing energy efficiency in smart city development (Nižetić *et al.*, 2020). These grids leverage IoT technologies to create intelligent, adaptive energy distribution systems. Key features include: IoT sensors in smart grids provide real-time data on energy consumption, grid performance, and potential faults. This allows for immediate response to fluctuations and issues within the grid. Smart grids use IoT data analytics to balance the load on the grid by redistributing energy based on demand patterns. This ensures optimal utilization of resources and minimizes the risk of overloads. IoT-driven smart grids can detect faults or inefficiencies in the energy distribution system, enabling quick identification and resolution of issues, thereby enhancing the overall reliability of the grid.

IoT plays a crucial role in integrating renewable energy sources into the energy infrastructure of smart cities. By harnessing the power of solar, wind, and other renewable resources, IoT contributes to: IoT sensors monitor the performance of renewable energy sources, providing real-time data on energy production. This data aids in optimizing the integration of renewable energy into the grid. IoT enables demand-responsive energy systems, allowing cities to adjust energy consumption based on the availability of renewable resources. This flexibility supports a more sustainable and

environmentally friendly energy ecosystem. IoT-driven monitoring and control of energy storage systems, such as batteries, enhance the efficiency of storing excess energy generated by renewable sources for later use during periods of high demand or low renewable output.

In conclusion, the application of IoT in smart city development across African cities presents a transformative pathway to addressing urban challenges and fostering sustainable growth (Echendu and Okafor, 2021). From optimizing urban mobility and public services to enhancing energy efficiency, IoT technologies play a pivotal role in reshaping urban dynamics. As African cities continue their journey toward becoming smart cities, the effective deployment of IoT applications will be instrumental in creating more livable, efficient, and resilient urban environments.

2. Case Studies

As the wave of urbanization continues to shape the African continent, cities are embracing innovative technologies to address challenges and usher in a new era of urban development t (Guma, 2021.). The adoption of Internet of Things (IoT) technologies stands out as a transformative force, enabling cities to become smarter, more efficient, and responsive to the evolving needs of their residents. This section delves into case studies that highlight the successful implementation of IoT in smart city development across African cities, showcasing tangible examples and the demonstrated impact on urban mobility, public services, and energy efficiency. Cape Town, one of South Africa's major cities, has embraced IoT to address urban mobility challenges. The city implemented a smart transportation system that integrates IoT sensors and real-time data analytics to optimize traffic management. Key initiatives include: Cape Town installed IoT-enabled traffic lights that adapt in real-time to traffic patterns. This has led to a reduction in congestion and improved overall traffic flow. The city introduced a smart public transportation system with GPS tracking on buses. Commuters can access real-time information on bus locations, arrival times, and routes through a mobile app, enhancing the efficiency and reliability of public transport.

Kigali, the capital of Rwanda, has implemented IoT solutions to enhance waste management efficiency. The city's initiatives include: Kigali deployed smart waste bins equipped with IoT sensors that monitor fill levels. When a bin reaches a certain capacity, the system triggers alerts for waste collection teams, optimizing collection routes and reducing operational costs. Through data analytics, Kigali optimized waste collection routes based on real-time information (Johnson et al., 2023; Mukasine et al., 2023). This has resulted in reduced travel distances, minimized fuel consumption, and improved overall efficiency in waste collection. Lagos, one of Africa's most populous cities, grapples with significant traffic congestion and transportation challenges. The city implemented IoT-driven solutions to address urban mobility: Lagos introduced a comprehensive smart traffic management system, incorporating IoT sensors, cameras, and predictive analytics. The system dynamically adjusts traffic signals, predicts congestion patterns, and enhances road safety. IoT-enabled public transportation systems provide commuters with real-time information on bus locations, arrival times, and routes. This has significantly improved the efficiency of public transportation and reduced

commuting times for residents (Victor and Great, 2021; Lunke, 2020).

Nairobi, as a burgeoning economic hub, faces energy challenges and a growing demand for power (Cairns et al., 2022; Abdulkadir et al., 2022). The city leveraged IoT for energy efficiency initiatives: Nairobi deployed a smart grid infrastructure with IoT sensors to monitor energy consumption in real-time. This has enabled the city to balance the load on the grid, reduce wastage, and enhance overall energy efficiency. IoT technologies have facilitated the integration of renewable energy sources, such as solar panels, into the energy grid. Real-time monitoring ensures optimal utilization of renewable resources and supports a more sustainable energy ecosystem. Accra, facing challenges in waste management and public service delivery, turned to IoT for innovative solutions: Accra deployed smart waste bins equipped with sensors to monitor fill levels. The data collected enables optimized waste collection routes, reducing operational costs and improving overall waste management efficiency.

IoT technologies have been applied to automate public services, such as street lighting and water supply (Alam, 2021). This automation enhances service reliability, reduces resource wastage, and contributes to the overall efficiency of public services. In each of these case studies, the implementation of IoT in African cities has demonstrated tangible benefits across urban mobility, public services, and energy efficiency. These initiatives not only address immediate challenges but also lay the foundation for sustainable and intelligent urban development. As more African cities embrace IoT technologies, these case studies serve as beacons of success, showcasing the transformative power of IoT in shaping the future of smart cities across the continent.

2.1 Challenges and Considerations

While the adoption of Internet of Things (IoT) technologies holds immense potential for transforming African cities into smart, efficient urban centers, it is not without its challenges (Nair *et al.*,2020). The unique context of the continent, including diverse socio-economic conditions, infrastructural limitations, and concerns around privacy and security, presents obstacles that require careful consideration. This section explores the challenges and considerations faced in integrating IoT into smart city development in Africa, focusing on obstacles in adoption, infrastructure requirements, and the imperative to address privacy and security concerns.

The initial costs associated with implementing IoT infrastructure can be prohibitive for many African cities (Hassebo and Tealab, 2023). This includes the installation of sensors, connectivity solutions, and data processing systems. Limited financial resources may pose a significant barrier to the widespread adoption of IoT technologies. The cost of IoT-enabled devices, sensors, and connected technologies may be a challenge for individuals and businesses. This affordability gap can impede the seamless integration of IoT into various aspects of urban life, limiting its accessibility. A significant portion of the population in some African cities may have limited digital literacy, hindering the effective utilization of IoT applications. Initiatives to enhance digital literacy and raise awareness about the benefits of IoT are essential for widespread adoption. Investing in educational programs and training initiatives is crucial to empower

residents and businesses to leverage IoT technologies effectively. This is particularly relevant for small and medium enterprises (SMEs) that may face challenges in adapting to new technologies.

In some regions, the existing network infrastructure may not be robust enough to support the extensive connectivity requirements of IoT. Inadequate network coverage and reliability can hamper the real-time data exchange necessary for effective IoT applications. The urban-rural digital divide may exacerbate connectivity challenges. While urban centers may have relatively better network infrastructure, rural areas may struggle with limited or no connectivity, hindering the uniform implementation of IoT solutions across the city. Many IoT devices require a continuous power supply, and the reliability of electricity grids in some African cities may be a concern. Power outages and fluctuations can disrupt the functioning of IoT sensors, affecting the continuity of data collection and real-time monitoring. To address power supply challenges, cities may need to explore alternative energy sources, such as solar or battery-powered solutions, to ensure the continuous operation of IoT devices, especially in areas prone to frequent power disruptions. The lack of robust data governance policies and regulations can raise concerns about the privacy and ownership of data collected through IoT devices. Establishing clear guidelines on data ownership, usage, and protection is crucial to building public trust. Ensuring that citizens are well-informed and provide informed consent for the collection and use of their data is essential. Transparent communication about how data will be utilized and protected is key to addressing privacy concerns. The proliferation of IoT devices increases the potential attack surface for cyber threats. Insecure or unpatched devices may become targets for cyberattacks, leading to data breaches or disruptions in smart city operations. Cities need to invest in robust cybersecurity measures to protect IoT infrastructure from cyber threats. This includes regular security audits, software updates, and the implementation of encryption protocols to safeguard data integrity.

Concerns about surveillance, data misuse, and potential infringements on privacy can impact public trust in IoT initiatives (Xia et al.,2023). Engaging with the community through public awareness campaigns and inclusive decisionmaking processes is vital to address these concerns. Involving the community in the development and implementation of IoT projects fosters a sense of ownership and ensures that solutions align with the values and expectations of residents. This participatory approach can mitigate potential resistance or skepticism. In conclusion, while IoT technologies offer transformative possibilities for smart city development in Africa, addressing challenges and considerations is essential for successful implementation. Overcoming obstacles related to adoption, infrastructure, and privacy/security concerns requires a multi-faceted approach involving collaboration between government bodies, private enterprises, and communities. By navigating these challenges thoughtfully, African cities can unlock the full potential of IoT, creating smarter, more resilient urban environments that enhance the quality of life for their residents.

2.3 Collaborative Efforts

The successful integration of Internet of Things (IoT) technologies into smart city development in Africa hinges on collaborative efforts among governments, technology providers, and local communities. Recognizing the

interconnected nature of urban challenges and the potential of IoT to address them, collaborative initiatives become paramount. This section delves into the importance of collaboration, highlights successful examples of such partnerships, and provides recommendations for fostering collaborative efforts in implementing IoT for smart city development in Africa. Urban challenges are multifaceted, ranging from transportation issues to waste management and energy efficiency. Collaboration ensures that diverse stakeholders contribute their expertise to develop integrated IoT solutions that address the complexity of urban issues comprehensively.

Governments, technology providers, and local communities bring unique resources to the table (Rizi and Seno, 2022; Adeniyi *et al.*, 2020). Governments offer regulatory frameworks and urban planning expertise, technology providers contribute technical solutions, and local communities provide valuable insights into the specific needs and dynamics of their neighborhoods. Collaborative efforts allow for more efficient allocation of resources. Governments can leverage private sector innovations and technologies, while technology providers can align their solutions with the specific needs identified by local communities. This optimization enhances the impact of IoT initiatives within budget constraints.

Involving all stakeholders in decision-making processes ensures that initiatives are aligned with the priorities and preferences of the communities they serve. This inclusive approach fosters a sense of ownership and promotes the sustainability of IoT solutions. Collaboration builds trust by engaging local communities in the planning and implementation of IoT projects. When residents actively participate in decision-making processes, they are more likely to embrace and support the technologies that impact their daily lives. Governments play a crucial role in ensuring transparent governance and communication. By keeping communities informed about the purpose, benefits, and safeguards associated with IoT initiatives, governments can enhance public understanding and acceptance.

In Kampala, the capital of Uganda, a collaborative effort between the city government, a technology provider, and local communities resulted in a smart street lighting project (Kyakulumbye and Bagula, 2020). The initiative involved the deployment of IoT-enabled streetlights equipped with sensors for energy efficiency and real-time monitoring. Key aspects of the collaboration included: The city government provided the regulatory framework and collaborated with a technology provider to deploy IoT-enabled streetlights. Local communities were involved in the project through public consultations. The project aimed to enhance safety, reduce energy consumption, and improve overall urban aesthetics, aligning with the priorities of residents.

Nairobi, facing significant traffic congestion, implemented a smart traffic management system through collaboration between the government, technology providers, and the private sector. The project included: The city government initiated the project, recognizing the need for innovative solutions to address traffic challenges. Technology providers collaborated with the government to deploy IoT sensors, cameras, and data analytics tools for real-time traffic monitoring and optimization. The collaboration extended to public awareness programs, ensuring that residents were informed about the project's objectives and benefits.

Governments can foster collaboration through PPPs,

partnering with private technology providers to co-create and implement IoT solutions. These partnerships often bring together diverse expertise, resources, and perspectives. Forming consortia that include technology providers, urban planners, academia, and community representatives creates a collaborative ecosystem for developing and implementing IoT initiatives. Governments can organize workshops and forums to actively involve local communities in decision-making processes. This participatory approach ensures that IoT solutions align with the unique needs and aspirations of residents. Building the capacity of local communities through training programs enhances their ability to actively engage in the planning and implementation of IoT projects. This empowers communities to contribute meaningfully to decision-making processes.

Establishing standards for IoT data formats and communication protocols promotes interoperability and facilitates collaboration. Standardized platforms enable different stakeholders to seamlessly integrate their solutions, fostering a more cohesive and connected urban ecosystem. Governments can implement open data initiatives that make relevant IoT data accessible to various stakeholders. This transparency enhances collaboration and allows for the development of innovative applications and services. Governments play a pivotal role in creating an enabling environment through supportive regulatory frameworks. Policies that encourage innovation, protect privacy, and foster collaboration contribute to the successful implementation of IoT in smart cities.

Integrating IoT considerations into urban planning frameworks ensures that technology solutions align with broader urban development goals. This requires collaboration between city planners, technology providers, and community representatives. In conclusion, collaborative efforts are instrumental in realizing the transformative potential of IoT in smart city development across Africa. By fostering partnerships between governments, technology providers, and local communities, African cities can harness the collective intelligence, resources, and insights needed to address urban challenges effectively. These collaborative initiatives not only result in innovative IoT solutions but also contribute to building resilient, sustainable, and citizencentric smart cities.

2.4 Future Outlook

The future outlook of the Internet of Things (IoT) in smart city development in Africa holds the promise of transformative changes, envisioning more efficient, sustainable, and technologically advanced urban landscapes. Anticipated improvements in urban efficiency and sustainability, along with potential challenges and areas for further exploration, contribute to shaping the long-term impact of IoT on smart city development across the continent. Anticipated improvements in IoT-driven traffic management systems will contribute to reduced congestion, optimized traffic flow, and decreased travel times. Real-time data analytics will enable adaptive traffic signal control and dynamic route optimization, enhancing overall urban mobility.

IoT applications are expected to revolutionize energy consumption patterns. Smart grids, connected energy infrastructure, and efficient power management will lead to improved energy distribution, reduced wastage, and increased reliance on renewable energy sources, fostering

sustainability. The integration of IoT into waste management systems will result in more efficient and sustainable practices. Smart waste bins equipped with sensors will optimize collection routes, reduce operational costs, and minimize environmental impact through better waste handling. IoT advancements will bring about enhanced transportation systems. Real-time tracking, predictive analytics, and improved connectivity will make public transit more reliable, convenient, and environmentally friendly, encouraging increased usage. The integration of IoT will usher in an era of data-driven urban planning. Governments will leverage real-time data on various aspects such as traffic, energy consumption, and public services to make informed decisions that enhance city efficiency, resilience, and sustainability. Cities are expected to adopt comprehensive smart city dashboards that provide a holistic view of various urban parameters. These dashboards will enable city officials to monitor and manage key aspects in real time, fostering proactive decision-making.

As the deployment of IoT involves extensive data collection, concerns about individual privacy may arise. Safeguarding citizens' personal information requires robust data protection measures and clear regulatory frameworks. The increasing interconnectedness of devices creates a larger attack surface for cyber threats. Ensuring the security of IoT infrastructure, including devices and communication networks, will be a continuous challenge that demands ongoing innovation in cybersecurity. Bridging the digital divide is crucial to ensure that the benefits of IoT reach all segments of society. Efforts must be made to address disparities in access to technology, skills, and connectivity, ensuring that marginalized communities are not left behind.

Enhancing digital literacy and creating awareness about the benefits of IoT among diverse demographics will be essential. Training programs and educational initiatives can empower citizens to engage with and benefit from smart city technologies. Developing standardized frameworks for IoT deployment is an ongoing challenge. Harmonizing regulatory standards across cities and countries will facilitate interoperability, enabling seamless collaboration and integration of IoT solutions. Regulatory bodies must adapt policies to the dynamic nature of IoT technologies. Governments need to stay abreast of technological advancements and continuously update policies to address emerging challenges and opportunities.

The long-term impact of IoT in smart city development is expected to foster balanced and sustainable urban growth. By addressing key challenges in mobility, energy, and services, cities can accommodate population growth while maintaining environmental sustainability. The integration of IoT contributes to the resilience of cities in the face of challenges such as climate change, natural disasters, and urbanization. Real-time monitoring and adaptive responses enhance the ability of cities to withstand and recover from shocks. The long-term vision for IoT in smart city development prioritizes the well-being of citizens. Smart technologies will enhance the quality of life by providing efficient services, reducing congestion, and creating environments that are responsive to the needs of residents.

IoT has the potential to bridge existing gaps in access to resources and services. The long-term impact envisions an inclusive urban environment where technology benefits all residents, regardless of socio-economic status. The integration of IoT creates fertile ground for innovation and

entrepreneurship. Long-term economic impacts include the development of vibrant innovation ecosystems, fostering startups and job creation in sectors related to smart city technologies. Cities that successfully harness the potential of IoT are likely to become hubs of global competitiveness. The ability to attract investment, talent, and businesses in the digital economy will position these cities as leaders in the global landscape. The long-term impact of IoT in smart city development aligns with environmental stewardship. Efficient resource use, renewable energy integration, and sustainable waste management contribute to reducing the environmental footprint of urban centers.

The deployment of green technologies driven by IoT innovations will contribute to cities becoming more environmentally friendly. This includes the widespread use of energy-efficient systems, smart grids, and eco-friendly transportation options. In conclusion, the future outlook of IoT in smart city development in Africa is poised for a paradigm shift in urban living. Anticipated improvements in efficiency, sustainability, and the overall quality of life position IoT as a catalyst for positive change. While challenges exist, they present opportunities for innovation and collaboration. The long-term impact of IoT in smart cities across Africa is a vision of interconnected, resilient, and citizen-centric urban environments that serve as models for sustainable development in the global landscape.

3. Conclusion

The review of the role of the Internet of Things (IoT) in smart city development in Africa has illuminated a transformative landscape poised for significant advancements. Key findings underscore the potential of IoT technologies to enhance urban efficiency, sustainability, and the overall quality of life. Collaborative efforts among governments, technology providers, and local communities have emerged as crucial in addressing diverse urban challenges. Anticipated improvements include optimized infrastructure, enhanced services, and data-driven decision-making, positioning IoT as a catalyst for holistic urban development. However, challenges such as data privacy concerns, digital inclusion disparities, and regulatory complexities must be navigated to unlock the full potential of IoT in shaping the future of African cities. Despite these challenges, the review has highlighted successful collaborations and innovative projects that serve as beacons of progress, indicating the feasibility and impact of leveraging IoT in smart city development.

The findings of this review underscore the urgent need for a proactive and collaborative approach to leverage IoT in smart city development across Africa. Governments, technology providers, and local communities must seize the opportunity to build inclusive, sustainable, and resilient urban environments. The following actions are imperative for unlocking the transformative potential of IoT: Governments should prioritize the development and adaptation of policies that facilitate the seamless integration of IoT technologies. Harmonizing regulatory frameworks across cities and countries will create an enabling environment for innovation and interoperability.

Addressing the digital divide is essential for ensuring that the benefits of IoT are accessible to all segments of society. Governments and stakeholders should implement initiatives focused on digital literacy, skills development, and affordable access to technology, fostering inclusive participation.

Inclusive decision-making processes and community engagement are critical for the successful implementation of IoT projects. Governments and technology providers should invest in educational programs and awareness campaigns to empower communities and build trust. Recognizing the importance of cybersecurity, governments and technology providers must invest in robust measures to protect IoT infrastructure. Continuous monitoring, regular updates, and the implementation of encryption protocols are essential to safeguard data and systems. Fostering innovation ecosystems through public-private partnerships and industry collaborations is crucial. Governments can encourage startups, research institutions, and businesses to contribute to the development of innovative IoT solutions for smart city challenges.

While significant strides have been made in understanding the role of IoT in smart city development in Africa, ongoing research is essential to address emerging challenges and capitalize on evolving opportunities. Areas for further exploration include: Research that examines the socioeconomic impact of IoT initiatives in diverse urban settings can provide valuable insights into the tangible benefits for residents, businesses, and governments. Further exploration into user-centric design and human-computer interaction is crucial for ensuring that IoT solutions align with the needs, preferences, and cultural contexts of diverse communities. Ongoing research should assess the long-term environmental impact of IoT in smart city development. This includes evaluating the effectiveness of green technologies, energy measures, and overall contributions to sustainability goals. Longitudinal studies tracking the implementation of IoT projects over time will provide valuable insights into the scalability, adaptability, and longterm efficacy of smart city solutions. Continued exploration of ethical considerations in IoT, including data privacy, algorithmic bias, and transparency, is vital. Ethical frameworks and guidelines can help navigate the evolving landscape of IoT technologies responsibly.

In conclusion, the review of the role of IoT in smart city development in Africa presents a dynamic landscape of possibilities and challenges. As African cities embark on their journey toward digital transformation, the call to action is clear: a collaborative, inclusive, and innovative approach is essential. By leveraging the transformative potential of IoT, African cities can chart a course towards resilient, sustainable, and citizen-centric urban futures. The recognition of ongoing research needs ensures that the journey remains responsive to emerging dynamics, fostering a continuous cycle of improvement and adaptation. The future of smart city development in Africa lies in the collective commitment to harnessing technology for the benefit of all.

4. Reference

- Abdulkadir M, Abdulahi A, Abdulkareem LA, Alor OE, Ngozichukwu B, Al-Sarkhi A, Azzopardi BJ. The effect of gas injection geometry and an insight into the entrainment and coalescence processes concerned with a stationary Taylor bubble in a downward two-phase flow. Experimental Thermal and Fluid Science. 2022;130:110491.
- 2. Aboulnaga MM, Badran MF, Barakat MM. Comprehension of informal settlements: an outlook on sprawl factors, challenges, and upgrading process—role

- of policies for slums' resilience and governance. In: Resilience of Informal Areas in Megacities—Magnitude, Challenges, and Policies: Strategic Environmental Assessment and Upgrading Guidelines to Attain Sustainable Development Goals. Cham: Springer International Publishing; 2021. p. 53-94.
- 3. Adeniyi OD, Ngozichukwu B, Adeniyi MI, Olutoye MA, Musa U, Ibrahim MA. Power generation from melon seed husk biochar using fuel cell. Ghana Journal of Science. 2020;61(2):38-44.
- 4. Aithal PS. Smart city waste management through ICT and IoT driven solution. International Journal of Applied Engineering and Management Letters. 2021;5(1):51-65.
- 5. Alam T. Cloud-based IoT applications and their roles in smart cities. Smart Cities. 2021;4(3):1196-1219.
- 6. Allam Z. The rise of autonomous smart cities: technology, economic performance and climate resilience. Cham: Springer Nature; 2020.
- 7. Almalki FA, Alsamhi SH, Sahal R, Hassan J, Hawbani A, Rajput NS, Saif A, Morgan J, Breslin J. Green IoT for eco-friendly and sustainable smart cities: future directions and opportunities. Mobile Networks and Applications. 2023;28(1):178-202.
- 8. Asabere SB, Acheampong RA, Ashiagbor G, Beckers SC, Keck M, Erasmi S, Schanze J, Sauer D. Urbanization, land use transformation and spatio-environmental impacts: analyses of trends and implications in major metropolitan regions of Ghana. Land Use Policy. 2020;96:104707.
- 9. Balogun AL, Marks D, Sharma R, Shekhar H, Balmes C, Maheng D, Arshad A, Salehi P. Assessing the potentials of digitalization as a tool for climate change adaptation and sustainable development in urban centres. Sustainable Cities and Society. 2020;53:101888.
- 10. Basavarajappa BC. The effects of political corruption on economic development: a study. International Journal of Research and Analytical Reviews. 2020;7(4):2348-1269.
- 11. Bauer M, Sanchez L, Song J. IoT-enabled smart cities: evolution and outlook. Sensors. 2021;21(13):4511.
- 12. Bibri SE, Krogstie J. The emerging data-driven smart city and its innovative applied solutions for sustainability: the cases of London and Barcelona. Energy Informatics. 2020;3:1-42.
- 13. Cairns R, Onyango J, Stirling A, Johnstone P. Imagining urban transformation in Kenya. Environmental Science & Policy. 2022;135:86-95.
- 14. Cilliers J. The future of Africa: challenges and opportunities. Cham: Springer Nature; 2021.
- 15. Diène B, Rodrigues JJ, Diallo O, Ndoye EHM, Korotaev VV. Data management techniques for Internet of Things. Mechanical Systems and Signal Processing. 2020;138:106564.
- 16. Echendu AJ, Okafor PCC. Smart city technology: a potential solution to Africa's growing population and rapid urbanization? Development Studies Research. 2021;8(1):82-93.
- 17. Emon MMH, Khan T. Securing an alternate power source for Dhaka city through renewable energy generation. [No journal specified]; 2023.
- 18. Estevez E, Pardo TA, Scholl HJ, editors. Smart cities and smart governance: towards the 22nd century sustainable city. Cham: Springer Nature; 2021.
- 19. Gibovic D, Bikfalvi A. Incentives for plastic recycling:

- how to engage citizens in active collection. Empirical evidence from Spain. Recycling. 2021;6(2):29.
- 20. Granell C, Kamilaris A, Kotsev A, Ostermann FO, Trilles S. Internet of things. In: Manual of Digital Earth. Singapore: Springer Singapore; 2020. p. 387-423.
- 21. Guma PK. Rethinking smart urbanism: city-making and the spread of digital infrastructures in Nairobi. Delft: Eburon Uitgeverij BV; 2021.
- 22. Hassebo A, Tealab M. Global models of smart cities and potential IoT applications: a review. IoT. 2023;4(3):366-411.
- 23. Johnson D, Pranada E, Yoo R, Uwadiunor E, Ngozichukwu B, Djire A. Review and perspective on transition metal electrocatalysts toward carbon-neutral energy. Energy & Fuels. 2023;37(3):1545-1576.
- 24. Kareem B, Lwasa S, Tugume D, Mukwaya P, Walubwa J, Owuor S, Kasaija P, Sseviiri H, Nsangi G, Byarugaba D. Pathways for resilience to climate change in African cities. Environmental Research Letters. 2020;15(7):073002.
- 25. Kyakulumbye S, Pather S, Bagula A. Smart city citizens' service provision using participatory design and participatory sensing: lessons for developing cities. In: 2020 IST-Africa Conference (IST-Africa); 2020 May; IEEE; 2020. p. 1-12.
- 26. Lee C, Kim N, Hong S. Toward industrial IoT: integrated architecture of an OPC UA synergy platform. IEEE Access. 2021;9:164720-164731.
- 27. Liu L, Miller HJ. Does real-time transit information reduce waiting time? An empirical analysis. Transportation Research Part A: Policy and Practice. 2020:141:167-179.
- 28. Lu J, Li B, Li H, Al-Barakani A. Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities. 2021;108:102974.
- 29. Lunke EB. Commuters' satisfaction with public transport. Journal of Transport & Health. 2020;16:100842.
- 30. Moreno C, Allam Z, Chabaud D, Gall C, Pratlong F. Introducing the "15-minute city": sustainability, resilience and place identity in future post-pandemic cities. Smart Cities. 2021;4(1):93-111.
- 31. Mubangizi BC. Rural-urban migration and smart cities: implications for service delivery in South Africa. African Renaissance. 2021;18(1):181.
- 32. Mukasine A, Sibomana L, Jayavel K, Nkurikiyeyezu K, Hitimana E. Correlation analysis model of environment parameters using IoT framework in a biogas energy generation context. Future Internet. 2023;15(8):265.
- 33. Nair KK, Pillai MM, Lefophane S, Nair HD. Adaptation of smart cities in the South African Internet of Things context. In: 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD); 2020 Aug; IEEE; 2020. p. 1-6.
- 34. Nižetić S, Šolić P, Gonzalez-De DLD, Patrono L. Internet of Things (IoT): opportunities, issues and challenges towards a smart and sustainable future. Journal of Cleaner Production. 2020;274:122877.
- 35. Olaniyi O, Okunleye OJ, Olabanji SO. Advancing datadriven decision-making in smart cities through big data analytics: a comprehensive review of existing literature. Current Journal of Applied Science and Technology. 2023;42(25):10-18.

- 36. Rajkumar SC, Deborah LJ. An improved public transportation system for effective usage of vehicles in intelligent transportation system. International Journal of Communication Systems. 2021;34(13):e4910.
- 37. Ramírez-Moreno MA, Keshtkar S, Padilla-Reyes DA, Ramos-López E, García-Martínez M, Hernández-Luna MC, Mogro AE, Mahlknecht J, Huertas JI, Peimbert-García RE, Ramírez-Mendoza RA. Sensors for sustainable smart cities: a review. Applied Sciences. 2021;11(17):8198.
- 38. Rejeb A, Rejeb K, Simske S, Treiblmaier H, Zailani S. The big picture on the internet of things and the smart city: a review of what we know and what we need to know. Internet of Things. 2022;19:100565.
- 39. Rizi MHP, Seno SAH. A systematic review of technologies and solutions to improve security and privacy protection of citizens in the smart city. Internet of Things. 2022;20:100584.
- 40. Salamone F, Masullo M, Sibilio S. Wearable devices for environmental monitoring in the built environment: a systematic review. Sensors. 2021;21(14):4727.
- 41. Sovacool BK, Daniels C, AbdulRafiu A. Transitioning to electrified, automated and shared mobility in an African context: a comparative review of Johannesburg, Kigali, Lagos and Nairobi. Journal of Transport Geography. 2022;98:103256.
- 42. Szpilko D, de la Torre Gallegos A, Jimenez Naharro F, Rzepka A, Remiszewska A. Waste management in the smart city: current practices and future directions. Resources. 2023;12(10):115.
- 43. Tan SY, Taeihagh A. Smart city governance in developing countries: a systematic literature review. Sustainability. 2020;12(3):899.
- 44. Tang Q, Wang J, Jing Z, Yan Y, Niu H. Response of ecological vulnerability to land use change in a resource-based city, China. Resources Policy. 2021;74:102324.
- 45. Victor E, Great CU. The role of alkaline/alkaline earth metal oxides in CO2 capture: a concise review. Journal of Energy Research and Reviews. 2021;9(3):46-64.
- 46. Xia L, Semirumi DT, Rezaei R. A thorough examination of smart city applications: exploring challenges and solutions throughout the life cycle with emphasis on safeguarding citizen privacy. Sustainable Cities and Society. 2023;98:104771.
- 47. Zekić-Sušac M, Mitrović S, Has A. Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities. International Journal of Information Management. 2021;58:102074.