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Abstract 

This paper presents a comprehensive framework for machine learning-driven 

generative design tools that utilize reinforcement learning (RL) and evolutionary 

algorithms (EA) to optimize building layouts. This research approach explores 

thousands of design permutations while simultaneously optimizing for cost efficiency, 

material utilization, and structural integrity under various engineering constraints. The 

proposed system enables rapid prototyping and automated selection of optimal 

building configurations, reducing design time by 75% while improving structural 

performance by 23% compared to traditional methods. Experimental results 

demonstrate the effectiveness of the hybrid RL-EA approach across multiple building 

types and constraint scenarios. 
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1. Introduction 

The architectural and engineering design process has traditionally relied on human expertise and iterative refinement to achieve 
optimal building layouts. However, the complexity of modern construction projects, coupled with increasing demands for 
sustainability and cost-effectiveness, necessitates more sophisticated design methodologies. Machine learning-driven generative 
design represents a paradigm shift toward automated, data-driven design optimization that can explore vast solution spaces 
beyond human cognitive limitations. Generative design tools powered by artificial intelligence have emerged as transformative 
technologies in the architecture, engineering, and construction (AEC) industry. These systems leverage computational 
algorithms to generate, evaluate, and optimize design alternatives based on specified objectives and constraints. The integration 
of reinforcement learning and evolutionary algorithms provides a robust framework for navigating complex design spaces while 
maintaining structural feasibility and economic viability [1]. This research addresses the critical challenge of multi-objective 
optimization in building design, where architects and engineers must balance competing requirements such as cost minimization, 
material efficiency, structural performance, and aesthetic considerations. Traditional design approaches often result in 
suboptimal solutions due to the limited capacity for exhaustive exploration of design alternatives [2].  
This research contribution includes:  
● a novel hybrid RL-EA framework for generative building design,  
● comprehensive evaluation metrics for design quality assessment,  
● empirical validation across diverse building types, and  
● demonstrated improvements in design efficiency and performance. 
 

2. Related Work 

2.1. Generative Design in Architecture 

Early generative design systems focused primarily on form-finding and aesthetic optimization. Frazer's evolutionary architecture 
concept [3] laid the groundwork for computational design exploration, while more recent work by Nagy et al [4].
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demonstrated the application of machine learning techniques 

to architectural space planning. 

 

2.2. Reinforcement Learning in Design 

Reinforcement learning has shown promise in design 

optimization tasks. Chen and Liu [5] applied Q-learning to 

structural design problems, achieving significant 

improvements in beam layout optimization. Deep 

reinforcement learning approaches have been explored by 

Wang et al. [6] for adaptive building envelope design. 

 

2.3. Evolutionary Algorithms in Engineering  

Evolutionary algorithms have a rich history in engineering 

optimization. Genetic algorithms have been successfully 

applied to structural design by Goldberg and Samtani [7], 

while more recent work by Kumar en. [8] demonstrated multi-

objective evolutionary optimization for sustainable building 

design. 

 

2.4. Multi-Objective Optimization 

The challenge of balancing multiple design objectives has 

been addressed through various approaches. Pareto-optimal 

solutions provide a framework for understanding trade-offs 

between competing objectives, as demonstrated in the work 

of Deb et al. [9] on NSGA-II algorithms. 

 

3. Methodology 

3.1. System Architecture  

This research’s ML-driven generative design framework 

consists of four primary components:  

● Design Space Representation,  

● Reinforcement Learning Agent,  

● Evolutionary Algorithm Engine, and  

● Multi-Objective Evaluation System.  

 

The design space is represented as a graph-based structure 

where nodes represent functional spaces (rooms, corridors, 

mechanical systems) and edges represent spatial relationships 

and connectivity requirements. This representation allows for 

flexible exploration of layout configurations while 

maintaining architectural constraints. 

 

3.2. Reinforcement Learning Framework  

The RL component employs a Deep Q-Network (DQN) 

architecture [10] to learn optimal design policies. The state 

space encompasses current layout configuration, remaining 

design requirements, and constraint satisfaction status. 

Actions correspond to placement, modification, or removal 

of design elements. 

● State Representation: 

o Current layout topology matrix (S_topology) 

o Constraint satisfaction vector (S_constraints) 

o Resource utilization metrics (S_resources) 

o Performance indicators (S_performance) 

● Action Space: 

○ Element placement: A_place(element, position) 

○ Element removal: A_remove(element) 

○ Element modification: A modify (element, 

parameters) 

○ Relationship adjustment: A connect (element1, 

element2) 

 

Reward Function: 

 The reward function balances multiple objectives: 

 

 𝑅𝑡𝑜𝑡𝑎𝑙 =  (𝛼1  ×  𝑅𝑐𝑜𝑠𝑡) +  (𝛼2  ×  𝑅𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙) + (𝛼3  ×
 𝑅𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙) +  (𝛼4  ×  𝑅𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)  
 

Where 𝛼1, 𝛼2, 𝛼3, 𝑎𝑛𝑑 𝛼4 are weighting factors for cost 

efficiency, material utilization, structural integrity, and 

constraint satisfaction respectively. 

 

3.3. Evolutionary Algorithm Integration  

The evolutionary algorithm component operates on 

populations of design solutions generated by the RL agent. 

Genetic operators include crossover, mutation, and selection 

mechanisms specifically designed for architectural 

layouts.[11] 

 

Chromosome Encoding:  

Each design solution is encoded as a variable-length 

chromosome representing the sequence of design decisions 

and element placements. 

● Crossover Operations: 

o Spatial crossover: Exchange spatial regions between 

parent solutions 

o Functional crossover: Exchange functional elements 

while maintaining spatial coherence 

o Hybrid crossover: Combine spatial and functional 

characteristics 

● Mutation Operations: 

o Local perturbation: Small adjustments to element 

positions 

o Functional replacement: Substitute functionally 

equivalent elements 

o Topological modification: Alter spatial connectivity 

patterns 

 

3.4. Multi-Objective Evaluation  

The evaluation system assesses design solutions across four 

primary objectives: 

● Cost Optimization: Total construction cost including 

materials, labor, and equipment 

● Material Efficiency: Waste minimization and 

sustainable material usage 

● Structural Integrity: Load-bearing capacity and safety 

factor margins 

● Constraint Satisfaction: Compliance with building 

codes and design requirements 

 

4. Experimental Setup 

4.1. Dataset and Test Cases Experiments were conducted on 

three building types in the Austin, Metropolitan Area of 

Central Texas: (1) Residential complexes (50-200 units), (2) 

Commercial office buildings (5-20 floors), and (3) Mixed-use 

developments. Each category included 25 distinct design 

challenges with varying constraints and requirements. 

 

4.2. Baseline Comparisons 

Performance was compared against three baseline 

approaches: 

● Traditional human-designed layouts 

● Pure genetic algorithm optimization 

● Random search within constraint boundaries 
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4.3. Performance Metrics 

Evaluation metrics included: 

● Design quality score (composite of all objectives) 

● Convergence time to optimal solutions 

● Solution diversity and coverage 

● Constraint violation rates 

● Structural performance indicators 

 

5. Results and Analysis 

5.1. Performance Comparison 

The hybrid RL-EA approach demonstrated superior 

performance across all metrics, achieving a 23.2% 

improvement in design quality score compared to traditional 

methods.  

 

Table 1: Comparative Performance Results 
 

Method Design Quality Score Convergence Time (hrs) Material Efficiency (%) Cost Reduction (%) 

Traditional Design 72.3 ± 8.5 120.0 ± 24.0 68.2 ± 12.1 Baseline 

Pure GA 78.9 ± 6.2 8.5 ± 2.1 74.8 ± 9.3 12.3 ± 4.2 

Random Search 61.4 ± 11.8 15.2 ± 5.7 61.9 ± 15.2 -8.7 ± 6.1 

Hybrid RL-EA 89.1 ± 4.7 6.2 ± 1.8 83.4 ± 7.1 23.8 ± 5.9 

5.2. Convergence Analysis  

The hybrid approach achieved 95% of optimal performance  

within 300 iterations, compared to 600+ iterations for pure 

genetic algorithms.  

 

Fig 1: Convergence Characteristics 
 

5.3. Multi-Objective Trade-offs   
 

 

Fig 2: Pareto Front Analysis
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5.4. Building Type Performance 

 Mixed-use developments showed the highest improvement  

rates, likely due to increased design complexity and 

optimization opportunities.  

 

Table 2: Performance by Building Type 
 

Building Type Quality Improvement (%) Time Reduction (%) Material Savings (%) 

Residential 28.4 ± 6.2 74.8 ± 8.1 19.7 ± 4.3 

Commercial 22.1 ± 5.8 71.2 ± 7.4 16.9 ± 3.8 

Mixed-Use 31.7 ± 7.9 78.9 ± 9.2 22.4 ± 5.1 

5.5. Constraint Satisfaction Analysis 

The hybrid approach achieved significantly lower constraint  

violation rates across all categories.  

  

 

 
 

 

Fig 3: Constraint Violation Rates 
 

5.6. Algorithm Component Analysis 

 

 

 

Fig 4: Individual Algorithm Component Performance 
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5.7. Design Space Exploration Coverage  

 

 

Fig 5: Solution Space Coverage Analysis 

 

Hybrid RL-EA Advantages: 

● Fastest coverage growth rate 

● Reaches 95% coverage by iteration 500 

● Most comprehensive exploration 

Coverage Metrics: 

● Traditional: Limited to 2% (manual) 

● Random: Plateau at ~40% 

● Pure GA: Steady but slower grow 

 

5.8. Material Usage Optimization 

 
Table 3: Material Efficiency Analysis by Category 

 

Material Category Traditional Usage (%) Hybrid RL-EA Usage (%) Waste Reduction (%) 

Concrete 78.4 ± 9.2 89.7 ± 5.1 22.3 ± 3.8 

Steel Reinforcement 71.2 ± 11.8 86.3 ± 6.4 18.9 ± 4.2 

Structural Steel 69.8 ± 8.7 84.1 ± 7.2 20.5 ± 3.9 

Insulation Materials 74.6 ± 10.3 88.9 ± 4.8 19.2 ± 4.1 

Facade Elements 76.1 ± 9.5 87.4 ± 5.9 14.8 ± 3.2 

 

Fig 6: Cost Distribution Optimization 

 

The hybrid approach reduces primary cost drivers (materials 

and labor) while strategically increasing equipment  

utilization and overhead allocation for better long-term 

efficiency. 
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6. Discussion 

6.1. Algorithm Performance 

The superior performance of the hybrid RL-EA approach can 

be attributed to the complementary strengths of both 

methodologies. Reinforcement learning provides efficient 

exploration of the design space through learned policies, 

while evolutionary algorithms maintain population diversity 

and avoid local optima. The reward function design proved 

crucial for balancing multiple objectives. The weighting 

factors (α₁ = 0.3, α₂ = 0.25, α₃ = 0.3, α₄ = 0.15) were optimized 

through preliminary experiments and domain expert 

consultation. 

 

6.2. Scalability Considerations 

Computational complexity analysis revealed that the hybrid 

approach scales approximately O(n²log n) with problem size, 

compared to O(n³) for traditional optimization methods. This 

improved scalability enables application to larger, more 

complex building projects. 

 

6.3. Practical Implementation 

Real-world deployment considerations include integration 

with existing CAD systems, user interface design for 

architect interaction, and validation of generated designs by 

human experts. The system has been successfully integrated 

with three major architectural software platforms. 

 

6.4. Limitations and Future Work 

 Current limitations include: (1) limited handling of aesthetic 

considerations, (2) dependency on high-quality training data, 

and (3) computational requirements for real-time 

optimization. Future research directions include integration 

of aesthetic evaluation models [12], transfer learning across 

building types, and edge computing deployment for mobile 

applications. 

 

 

Fig 7: Structural Performance Distribution 

 

The hybrid RL-EA approach consistently produces designs 

with higher structural safety factors and significantly reduced 

variability, indicating more reliable and robust structural 

performance across all generated solutions. 
 

 

Fig 8: Multi-Building Type Performance Radar Chart 
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Future research directions include integration of aesthetic 

evaluation models, transfer learning across building types, 

and edge computing deployment for mobile applications. 

 

Residential Buildings: Balanced performance across all 

metrics 

● Excellent constraint satisfaction (92%) 

● Strong cost efficiency (88%) 

● Balanced performance profile 

● Optimal for standardized layouts 

 

Commercial Buildings: Strong cost efficiency, moderate 

material usage 

● Best cost efficiency (90%) 

● Good structural performance (85%) 

● Focus on economic optimization 

● Efficient space utilization 

 

Mixed-Use Buildings: Highest design quality, complex 

constraint handling 

● Highest design quality (90%) 

● Superior structural performance (92%) 

● Complex optimization handling 

● Greatest improvement potential 

 

Performance Summary 

● Residential Avg 87.0 

● Commercial Avg 84.0 

● Mixed-Use Avg 87.2 

● Overall Average Performance: 86.1/100 - 

Demonstrating consistent high performance across all 

building type  

 

7. Conclusion 

This research demonstrates the significant potential of 

machine learning-driven generative design tools for building 

layout optimization. The hybrid reinforcement learning and 

evolutionary algorithm approach achieves substantial 

improvements in design quality (23.2%), time efficiency 

(75% reduction), and material utilization (22.3% 

improvement) compared to traditional methods. The multi-

objective optimization framework successfully balances 

competing design requirements while maintaining constraint 

satisfaction. The system's ability to explore thousands of 

design permutations enables discovery of novel, high-

performance solutions that would be difficult to achieve 

through conventional design processes. Key contributions of 

this work include: 

● A novel hybrid RL-EA framework for architectural 

design,  

● Comprehensive evaluation methodology for design 

quality assessment,  

● Demonstrated performance improvements across 

multiple building types, and  

● Practical implementation guidelines for industry 

adoption.  

 

The results indicate strong potential for widespread adoption 

of ML-driven generative design tools in the architecture and 

engineering industries. Future research will focus on 

expanding the framework to include aesthetic optimization, 

sustainability metrics, and real-time collaborative design 

capabilities. 
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