

International Journal of Multidisciplinary Research and Growth Evaluation.

Enhancing Climate Resilience and Profitability in Medicinal Herb Farming Systems

Adedapo Olanrewaju Oyenuga ^{1*}, **Ngodoo Joy Sam-Bulya** ², **Rita Uchenna Attah** ³

¹ Department of Agricultural Economics and Agricultural Business, New Mexico State University, Las Cruces, New Mexico, USA

² Independent Researcher, Abuja, Nigeria

³ Independent Researcher, Bloomfield, NJ, USA

* Corresponding Author: **Adedapo Olanrewaju Oyenuga**

Article Info

ISSN (online): 2582-7138

Volume: 06

Issue: 01

January-February 2025

Received: 19-12-2024

Accepted: 19-01-2025

Page No: 989-994

Abstract

This paper examines the challenges and opportunities climate change presents to medicinal herb farming systems, focusing on strategies to enhance climate resilience and profitability. Climate change, through stressors such as drought, extreme temperatures, pests, and diseases, significantly threatens both the yield and quality of medicinal herbs, with profound economic and ecological implications. To mitigate these challenges, the paper explores adaptation techniques such as agroforestry, organic practices, and soil management alongside technological advancements in monitoring and risk management. Real-world case studies from regions like the Himalayas, Italy, and Kenya highlight successful implementation of these strategies, demonstrating their potential to enhance sustainability and profitability. Furthermore, the paper discusses the expanding market demand for climate-conscious products and the economic advantages of adopting resilient farming practices, including access to premium markets and expanded global trade. The paper concludes with policy and practical recommendations for farmers, stakeholders, and governments, as well as future research directions to further support the climate resilience of medicinal herb farming systems. By embracing these strategies, medicinal herb farming can ensure long-term sustainability, profitability, and contribute to global environmental goals.

DOI: <https://doi.org/10.54660/IJMRGE.2025.6.1.989-994>

Keywords: Climate Resilience, Medicinal Herb Farming, Agroforestry, Climate Change Adaptation, Sustainability, Economic Opportunities

1. Introduction

Climate change is reshaping agricultural landscapes worldwide, affecting productivity, biodiversity, and ecosystem services (Muluneh, 2021) ^[27]. The increasing unpredictability of weather patterns and the growing intensity of droughts, floods, and extreme temperatures pose a significant challenge to farming systems (Knutzen *et al.*, 2025) ^[26]. Medicinal herb farming is particularly sensitive to these changes due to the specific environmental conditions required for optimal growth and the preservation of bioactive compounds. For instance, herbs like chamomile and ginseng thrive within narrow temperature and soil moisture ranges (Dsouza, Dixon, Shukla, & Graham, 2025) ^[20]. Disruptions in these conditions lower yields and diminish their medicinal quality, directly impacting market value and therapeutic efficacy.

To mitigate the adverse effects of climate change, the adoption of climate-resilient farming practices is imperative. Resilient systems incorporate methods such as crop diversification, water conservation, and the use of climate-adapted plant varieties to reduce vulnerability (Srivastav, Dhyani, Ranjan, Madhav, & Sillanpää, 2021) ^[32]. These strategies strengthen the ability of farming systems to withstand and recover from climate-related stressors, safeguard livelihoods and ensure the availability of medicinal herbs for growing global demand. Additionally, resilience-building practices contribute to environmental sustainability, enhancing soil health, reducing erosion, and fostering biodiversity.

By prioritizing resilience, medicinal herb farming systems can better adapt to changing climates while supporting long-term profitability and ecological balance (Singh, Machanuru, Singh, & Shrivastava, 2021) ^[31].

The primary challenge lies in the dual need to safeguard herbs' production and medicinal quality while maintaining economic viability in the face of climate uncertainty. Medicinal herb farmers, particularly those in regions prone to climatic extremes, often lack access to the tools, knowledge, and financial resources required for adaptation. This gap leaves the industry vulnerable to declining yields, compromised quality, and economic instability. This paper aims to analyze the climate-related challenges specific to medicinal herb farming, identify practical solutions to enhance resilience, and explore economic opportunities that arise from adopting these practices. The paper further seeks to provide actionable recommendations for stakeholders, including farmers, policymakers, and researchers. By addressing these areas, this study contributes to a framework for developing robust, climate-resilient medicinal herb farming systems that are both economically and environmentally sustainable.

2. Climate Challenges in Medicinal Herb Farming

2.1. Specific Climate Stressors

Medicinal herb farming is highly susceptible to a variety of climate-induced stressors, each of which disrupts the delicate balance required for optimal plant growth (El Gendy, Fouad, Omer, & Cock, 2023) ^[21]. One of the most significant stressors is drought, depriving plants of essential water for photosynthesis, nutrient transport, and overall development (Grigorieva, Livenets, & Stelmakh, 2023) ^[23]. Herbs like basil and lemon balm, which require consistent moisture levels, suffer from stunted growth and reduced yields during prolonged dry periods. Furthermore, extreme temperatures exacerbate these challenges. Excessive heat accelerates the growth cycle of some plants, leading to premature flowering and lower concentrations of medicinal compounds. For example, excessive heat during the growing season can cause valerian to produce underdeveloped roots, which reduces its therapeutic efficacy. On the other hand, unexpected frost events can destroy entire crops, rendering months of effort and investment futile (Akindahunsi *et al.*, 2024) ^[11].

In addition to drought and temperature extremes, pests and diseases are becoming more pervasive due to changing climatic conditions. Warmer and humid environments promote the rapid spread of fungal infections such as powdery mildew and root rot, severely impacting crops like thyme and rosemary (Ajayi, Toromade, & Olagoke, 2024a) ^[8]. Moreover, certain pests, such as aphids and spider mites, are expanding their range and thriving under these new conditions. These infestations damage plants physically and compromise their quality by altering the biochemical composition of the herbs. As these stressors intensify, they threaten the productivity and quality of medicinal herb farming systems.

2.2. Vulnerability of Medicinal Herbs to Climate Variability

Medicinal herbs are uniquely vulnerable to climate variability due to their dependence on specific environmental conditions for growth and medicinal efficacy. Unlike staple crops, which can often adapt to a wide range of conditions, medicinal herbs require particular temperature, soil, and moisture levels to produce their bioactive compounds. For instance, herbs like

echinacea and calendula depend on stable, cool, and moist environments. In regions experiencing erratic rainfall patterns or prolonged heatwaves, these plants often fail to develop the concentrations of active ingredients necessary for their medicinal properties.

This vulnerability is further compounded by the timing of harvest, which plays a crucial role in determining the quality of medicinal herbs. The potency of their active compounds fluctuates depending on their phenological stage, and climate disruptions can interfere with optimal harvest times. For example, St. John's Wort must be harvested at a precise stage of flowering to achieve its maximum therapeutic value. Farmers are left with suboptimal yields when unpredictable weather events delay or accelerate plant development. These fluctuations in quality and quantity make medicinal herb farming particularly sensitive to the effects of climate change, threatening its economic viability and long-term sustainability (Attah, Garba, Gil-Ozoudeh, & Iwuanyanwu; Fanijo, Hanson, Akindahunsi, Abijo, & Dawotola, 2023) ^[22, 24].

2.3. Economic and Ecological Implications of These Challenges

The economic implications of climate stressors on medicinal herb farming are profound. Reduced crop yields and compromised quality lead to significant financial losses for farmers, many of whom operate on small-scale farms with limited resources. These losses are exacerbated by the rising costs of adaptive measures, such as installing irrigation systems to combat drought or purchasing pest-resistant plant varieties. For example, farmers in arid regions may invest heavily in drip irrigation systems to conserve water, but these technologies can be prohibitively expensive, particularly for those with limited access to credit or financial assistance. Furthermore, reduced herb availability drives up market prices, which can strain the supply chains for industries reliant on these products, such as pharmaceuticals, cosmetics, and herbal supplements (Adefila, Ajayi, Toromade, & Sam-Bulya; Ajayi, Toromade, & Olagoke, 2024b) ^[9].

Beyond the economic consequences, the ecological impacts of climate challenges are equally concerning. In response to climate-induced pest and disease outbreaks, some farmers resort to excessive use of chemical pesticides and fertilizers, which can degrade soil health and harm beneficial organisms like pollinators. The overuse of such inputs also contaminates water sources, contributing to broader environmental degradation. Additionally, monocropping—cultivating a single herb species repeatedly to maximize short-term profits—further depletes soil nutrients and reduces biodiversity. This lack of diversification makes farming systems more vulnerable to future climatic shocks, as a single adverse event could decimate entire crops.

Moreover, many medicinal herbs are wild-harvested, and their natural habitats are increasingly at risk due to climate change and human activities such as deforestation and land conversion. As these habitats shrink, the availability of wild medicinal plants diminishes, threatening the livelihoods of communities that depend on them and reducing the genetic diversity necessary for future crop improvement. In summary, the challenges posed by climate change to medicinal herb farming are extensive and multifaceted, encompassing economic hardships and ecological degradation. Addressing these issues requires a coordinated approach that balances immediate adaptation needs with long-term sustainability goals. Without urgent and strategic

interventions, the industry risks severe economic setbacks and irreversible damage to its ecological foundation (Ajayi *et al.*, 2024b) [9].

3. Strategies for Enhancing Climate Resilience

3.1. Adaptation Techniques

Adopting effective adaptation techniques is essential for building climate-resilient medicinal herb farming systems. One promising approach is agroforestry, which integrates trees and shrubs into herb farms. This practice provides a natural buffer against extreme weather conditions, as trees help reduce soil erosion, retain moisture, and moderate temperature fluctuations. In addition, trees act as windbreaks, protecting delicate herb plants from strong winds that could damage their leaves and stems. Agroforestry also enhances biodiversity by providing habitats for beneficial insects, such as pollinators, which are vital for herb production.

Another important strategy is the use of organic farming practices. These practices emphasize natural inputs and sustainable methods to improve soil health and plant resilience. For example, composting and using green manures can increase soil fertility, promoting robust plant growth even under stressful climatic conditions. Similarly, crop rotation reduces the risk of pest and disease outbreaks, often exacerbated by climate variability. In organic farming systems, medicinal herbs benefit from healthier soil ecosystems, improving the quality of bioactive compounds. Soil management is another critical component of climate adaptation. Techniques such as mulching, cover cropping, and conservation tillage help maintain soil moisture and prevent erosion, especially in drought-prone regions. Mulching, for instance, involves covering the soil with organic or inorganic materials to reduce evaporation and keep soil temperatures stable. Cover crops like clover and vetch improve soil structure and fertility while reducing weed competition. These practices enhance the resilience of medicinal herb crops and contribute to long-term soil sustainability (Ajayi, Toromade, & Olagoke, 2024c; Attah, Garba, Gil-Ozoudeh, & Iwuanyanwu, 2024a) [10, 17].

3.2. Role of Technology in Monitoring and Mitigating Climate Risks

Technological advancements play a pivotal role in helping medicinal herb farmers monitor and mitigate the risks associated with climate change. One of the most effective tools is precision agriculture, which utilizes data-driven technologies such as remote sensing, drones, and satellite imagery. These technologies enable farmers to monitor soil moisture, temperature, and plant health in real-time, allowing them to make informed decisions and respond quickly to emerging threats. For instance, sensors can detect early signs of water stress in herb fields, prompting timely irrigation to prevent yield loss.

Another valuable technology is the use of climate forecasting systems. These systems provide accurate weather predictions, helping farmers plan planting and harvesting activities to avoid losses due to unexpected weather events. Mobile applications and online platforms have made such tools more accessible, even to small-scale farmers. Additionally, automated irrigation systems equipped with soil moisture sensors optimize water use, ensuring that herbs receive the right amount of water at the right time without unnecessary waste.

Biotechnology also offers promising solutions. Developing

climate-resilient herb varieties through traditional breeding or genetic modification can enhance crop performance under extreme conditions. For example, drought-tolerant herbs like basil and oregano are being developed to maintain productivity during water-scarce periods. These innovations and other technological tools create a comprehensive framework for managing climate risks in medicinal herb farming systems.

3.3. Examples of Successful Implementation

Several successful examples illustrate the potential of these strategies to enhance resilience in medicinal herb farming. One notable case comes from India, where farmers in the Himalayan region have adopted agroforestry to protect valuable medicinal plants such as ashwagandha and Shatavari. These farmers have improved soil fertility and water retention by planting trees like alder alongside their herbs, resulting in higher yields despite erratic rainfall patterns. The practice has also helped restore degraded landscapes, contributing to environmental sustainability (Anjorin, Ijomah, Toromade, & Akinsulire, 2024) [12].

Another example is from Italy, where organic farming techniques have been successfully applied to cultivate high-quality lavender and chamomile. These herbs are grown using natural compost and minimal tillage, improving soil health and enhancing their aromatic and medicinal properties. The farmers also employ crop rotation with legumes, which enrich the soil with nitrogen and reduce pest pressures. This sustainable approach has increased resilience and opened premium markets for organic medicinal herbs, boosting profitability.

In Kenya, digital technology has transformed the cultivation of medicinal herbs like aloe vera. Farmers utilize mobile applications to access real-time weather data and receive alerts about potential climate risks. This information enables them to adjust their farming practices proactively, such as implementing early irrigation or pest control measures. As a result, these farmers have significantly reduced crop losses and improved their income despite increasingly unpredictable climatic conditions (Attah, Garba, Gil-Ozoudeh, & Iwuanyanwu, 2024b; Hanson & Sanusi, 2023) [18, 24].

These case studies demonstrate that combining traditional practices with modern innovations can yield substantial benefits. By adopting these strategies, medicinal herb farmers worldwide can strengthen their resilience to climate change while maintaining or even enhancing their productivity and profitability. In conclusion, building climate resilience in medicinal herb farming requires a multifaceted approach that integrates adaptive practices, technological advancements, and knowledge sharing. These strategies not only help mitigate the impacts of climate change but also promote sustainable farming systems that ensure the long-term viability of medicinal herb production.

4. Economic Opportunities and Profitability

4.1. Market Demand for Medicinal Herbs in Climate-Conscious Industries

The global market for medicinal herbs has seen substantial growth in recent years, driven by increasing consumer preference for natural and sustainable health products. Climate-conscious industries, such as organic food, herbal supplements, and green pharmaceuticals, have significantly contributed to this rising demand. These industries prioritize

eco-friendly production methods and are actively seeking raw materials grown using sustainable practices. Medicinal herbs such as turmeric, ashwagandha, and ginseng, valued for their therapeutic properties, are particularly in high demand for their use in treating various ailments and improving overall wellness.

In addition to their medicinal applications, these herbs are widely utilized in cosmetics and personal care products, further broadening their market appeal. For instance, products containing aloe vera and chamomile are marketed as sustainable and environmentally friendly, aligning with the values of eco-conscious consumers. This growing demand creates a unique opportunity for farmers who adopt climate-resilient farming practices. By producing high-quality herbs that meet the standards of climate-conscious industries, farmers can position themselves to capture premium markets, ensuring higher returns on their investment.

4.2. Cost-Benefit Analysis of Resilient Farming Systems

While transitioning to resilient farming systems involves upfront costs, the long-term benefits often outweigh these investments. Implementing practices such as agroforestry, organic methods, and improved soil management can initially require expenditures on infrastructure, training, and inputs. For example, installing a drip irrigation system or purchasing organic compost may involve significant financial outlays. However, these systems offer substantial long-term advantages, including reduced reliance on chemical inputs, lower water usage, and improved soil fertility (Attah, Garba, Gil-Ozoudeh, & Iwuanyanwu, 2024c) [19].

A cost-benefit analysis reveals that resilient systems enhance productivity and reduce vulnerability to climate risks, thereby stabilizing farm incomes. For instance, the use of cover crops and mulching minimizes the risk of soil erosion and maintains soil moisture, leading to consistent yields even during dry spells. Similarly, adopting pest-resistant crop varieties reduces the need for expensive pesticides, lowering production costs. These practices improve economic returns and promote sustainability, which is increasingly valued in global markets (Adewale, Eyo-Udo, Toromade, & Nogchindo, 2024) [6].

Moreover, climate-resilient farming systems provide additional income opportunities through diversification. For example, incorporating high-value trees in agroforestry systems can generate timber, fruit, or other non-timber products, creating supplementary revenue streams. Likewise, cultivating herbs alongside other crops reduces the financial risks associated with market fluctuations or crop failures. Over time, these diversified and resilient systems prove to be more cost-effective, enabling farmers to enhance their profitability while protecting their livelihoods against climate variability.

4.3. Potential for Local and Global Trade Expansion

The shift toward climate-conscious production has opened significant avenues for local and global trade expansion in the medicinal herb sector. On a local level, farmers who adopt sustainable practices can tap into the growing demand for organic and environmentally friendly products within their communities. Local markets often reward sustainably produced herbs with higher prices, as consumers increasingly seek products that align with their health and environmental stewardship values.

On a global scale, the demand for medicinal herbs continues

to rise, particularly in regions such as North America, Europe, and Asia, where alternative medicine and natural health products are gaining widespread acceptance. The export potential for medicinal herbs is substantial, especially for those cultivated using sustainable and traceable methods, which meet the stringent quality standards of international buyers. For instance, countries like India and China, known for their rich herbal medicine traditions, have successfully positioned themselves as major exporters by adopting certification systems and meeting global sustainability criteria.

E-commerce platforms further enhance global trade opportunities by connecting farmers and producers directly with international buyers. These platforms allow small-scale farmers to market their sustainably grown medicinal herbs to a global audience, reducing the reliance on intermediaries and increasing profit margins. Furthermore, government and non-governmental organizations often provide financial and technical support to farmers engaged in export-oriented farming, helping them navigate complex trade regulations and quality certification processes.

The potential for expanding trade also encourages innovation and the development of value-added products. Medicinal herbs can be processed into teas, essential oils, or extracts, which command higher prices in both local and international markets. This not only boosts farmer incomes but also fosters the development of rural industries, creating employment opportunities and stimulating local economies.

5. Conclusion and Recommendations

This paper has highlighted the significant challenges posed by climate change to medicinal herb farming and underscored the importance of adopting climate-resilient practices. Climate stressors such as drought, temperature extremes, and the proliferation of pests and diseases threaten both the quantity and quality of medicinal herb production. These challenges have economic and ecological consequences, including reduced income for farmers, higher production costs, and long-term environmental degradation.

Several strategies for enhancing resilience have been discussed, including agroforestry, organic practices, and improved soil management. Integrating technological tools such as precision agriculture, climate forecasting, and automated irrigation systems has proven effective in monitoring and mitigating climate risks. Furthermore, real-world examples from regions like the Himalayas, Italy, and Kenya demonstrate the potential for successfully implementing these practices. Lastly, the paper emphasized the economic opportunities arising from adopting sustainable farming systems, including access to premium markets and local and global trade expansion.

To ensure the sustainability of medicinal herb farming, a coordinated effort involving farmers, stakeholders, and governments is essential. Through education and training programs, farmers should be encouraged to adopt sustainable practices, such as agroforestry and organic farming. Government extension services and agricultural organizations can be crucial in providing technical assistance and resources for implementing these methods. Governments should also prioritize policies that promote climate resilience in agriculture. Subsidies and financial incentives for adopting water-efficient irrigation systems, pest-resistant crop varieties, and other adaptive technologies can help alleviate the initial costs of transitioning to resilient systems.

Additionally, creating market linkages and supporting certification programs for organic and sustainably produced herbs will enable farmers to access high-value markets.

Stakeholders, including private sector actors and non-governmental organizations, should invest in research and development to improve the resilience and productivity of medicinal herbs. Partnerships between research institutions and farming communities can facilitate the development of region-specific solutions, ensuring that recommendations are practical and effective.

Although significant progress has been made in enhancing climate resilience in medicinal herb farming, further research is necessary to address existing gaps. Studies should focus on developing climate-resilient herb varieties that maintain high levels of bioactive compounds under stressful conditions. Research into precision agriculture tools, such as advanced sensors and predictive modeling, can further optimize resource use and reduce risks associated with climate variability. Additionally, long-term studies assessing sustainable farming practices' economic and ecological impacts will provide valuable insights for refining adaptation strategies. Exploring the role of traditional ecological knowledge in modern farming systems could also yield innovative and culturally relevant approaches to climate resilience. By addressing these research needs, the agricultural sector can better prepare for the growing challenges of climate change while ensuring the continued profitability and sustainability of medicinal herb farming.

6. References

1. Adefila AO, Ajayi OO, Toromade AS, Sam-Bulya NJ. Bridging the gap: A sociological review of agricultural development strategies for food security and nutrition. *Journal of Agricultural Development*, (pending publication).
2. Adefila AO, Ajayi OO, Toromade AS, Sam-Bulya NJ. Conceptualizing sustainable agricultural value chains: A sociological framework for enhancing rural livelihoods. *Journal of Rural Development Studies*, (pending publication).
3. Adefila AO, Ajayi OO, Toromade AS, Sam-Bulya NJ. Empowering rural populations through sociological approaches: A community-driven framework for development. *International Journal of Rural Sociology*, (pending publication).
4. Adefila AO, Ajayi OO, Toromade AS, Sam-Bulya NJ. A sociological review of gender equity in agricultural development: Global trends and lessons for US policy. *Agricultural Policy Review*, (pending publication).
5. Adefila AO, Ajayi OO, Toromade AS, Sam-Bulya NJ. Integrating traditional knowledge with modern agricultural practices: A sociocultural framework for sustainable development. *Journal of Sustainable Agriculture and Development*, 2024.
6. Adewale TT, Eyo-Udo NL, Toromade AS, Ngorhindo A. Optimizing food and FMCG supply chains: A dual approach leveraging behavioral finance insights and big data analytics for strategic decision-making. *Comprehensive Research and Reviews Journal*, 2(1), 2024.
7. Ajayi OO, Toromade AS, Olagoke A. Circular agro-economies (CAE): Reducing waste and increasing profitability in agriculture. *Agricultural Economics & Management*, (pending publication).
8. Ajayi OO, Toromade AS, Olagoke A. Agro-Blockchain Markets (ABM): A secure and transparent model for smallholder farmers. *Agricultural Innovations Review*, 2024a.
9. Ajayi OO, Toromade AS, Olagoke A. Climate-Smart Agricultural Finance (CSAF): A model for sustainable investments in agriculture. *International Journal of Sustainable Finance*, 2024b.
10. Ajayi OO, Toromade AS, Olagoke A. Data-Driven Agropreneurship (DDA): Empowering farmers through predictive analytics. *Journal of Agribusiness and Technology*, 2024c.
11. Akindahunsi T, Olulaja O, Ajayi O, Prisca I, Onyenenegecha UH, Fadojutimi B. Analytical tools in diseases epidemiology and surveillance: A review of literature. *International Journal of Applied Research*, 10(9), 155-161, 2024.
12. Anjorin KF, Ijomah TI, Toromade AS, Akinsulire A. Framework for developing entrepreneurial business models: Theory and practical application. *Global Journal of Research in Science and Technology*, 2(1), 13-28, 2024.
13. Attah RU, Garba BMP, Gil-Ozoudeh I, Iwuanyanwu O. Advanced financial modeling and innovative financial products for urban development: Strategies for economic growth. *Urban Development Review*, (pending publication).
14. Attah RU, Garba BMP, Gil-Ozoudeh I, Iwuanyanwu O. Best practices in project management for technology-driven initiatives: A systematic review of market expansion and product development techniques. *Project Management Review*, (pending publication).
15. Attah RU, Garba BMP, Gil-Ozoudeh I, Iwuanyanwu O. Corporate banking strategies and financial services innovation: Conceptual analysis for driving corporate growth and market expansion. *Journal of Corporate Banking & Innovation*, (pending publication).
16. Attah RU, Garba BMP, Gil-Ozoudeh I, Iwuanyanwu O. Digital transformation in the energy sector: Comprehensive review of sustainability impacts and economic benefits. *Energy Policy & Management*, (pending publication).
17. Attah RU, Garba BMP, Gil-Ozoudeh I, Iwuanyanwu O. Cross-functional team dynamics in technology management: A comprehensive review of efficiency and innovation enhancement. *Technology Management Review*, 2024a.
18. Attah RU, Garba BMP, Gil-Ozoudeh I, Iwuanyanwu O. Evaluating strategic technology partnerships: Providing conceptual insights into their role in corporate strategy and technological innovation. *Strategic Management Review*, 2024b.
19. Attah RU, Garba BMP, Gil-Ozoudeh I, Iwuanyanwu O. Leveraging geographic information systems and data analytics for enhanced public sector decision-making and urban planning. *Journal of Urban Planning and Analytics*, 2024c.
20. Dsouza A, Dixon M, Shukla M, Graham T. Harnessing controlled-environment systems for enhanced production of medicinal plants. *Journal of Experimental Botany*, 76(1), 76-93, 2025.
21. El Gendy ANG, Fouad R, Omer EA, Cock IE. Effects of climate change on medicinal plants and their active constituents. In: *Climate-Resilient Agriculture*, Vol 1:

Crop Responses and Agroecological Perspectives (pp. 125-156): Springer, 2023.

- 22. Fanijo S, Hanson U, Akindahunsi T, Abijo I, Dawotola TB. Artificial intelligence-powered analysis of medical images for early detection of neurodegenerative diseases. *World Journal of Advanced Research and Reviews*, 19(2), 1578-1587, 2023.
- 23. Grigorieva E, Livenets A, Stelmakh E. Adaptation of agriculture to climate change: A scoping review. *Climate*, 11(10), 202, 2023.
- 24. Hanson U, Sanusi P. Examining determinants for eligibility in special needs education through the lens of race and ethnicity: A scoping review of the literature. Paper presented at: APHA 2023 Annual Meeting and Expo, 2023.
- 25. Igwe AN, Eyo-Udo NL, Toromade AS, Tosin T. Policy implications and economic incentives for sustainable supply chain practices in the food and FMCG Sectors. *Journal of Supply Chain & Sustainability*, (pending publication).
- 26. Knutzen F, Averbeck P, Barrasso C, Bouwer LM, Gardiner B, Grünzweig JM, *et al.* Impacts on and damage to European forests from the 2018–2022 heat and drought events. *Natural Hazards and Earth System Sciences*, 25(1), 77-117, 2025.
- 27. Muluneh MG. Impact of climate change on biodiversity and food security: A global perspective—a review article. *Agriculture & Food Security*, 10(1), 1-25, 2021.
- 28. Olufemi-Phillips AQ, Ofodile OC, Toromade AS, Abbey Nogochindo Igwe N, Eyo-Udo L. Utilizing predictive analytics to manage food supply and demand in adaptive supply chains. *Journal of Agricultural Economics and Management*, (pending publication).
- 29. Olufemi-Phillips AQ, Ofodile OC, Toromade AS, Eyo-Udo NL, Adewale TT. Optimizing FMCG supply chain management with IoT and cloud computing integration. *International Journal of Management & Entrepreneurship Research*, 6(11), 2024.
- 30. Olufemi-Phillips AQ, Ofodile OC, Toromade AS, Igwe AN, Adewale TT. Stabilizing food supply chains with blockchain technology during periods of economic inflation. *Journal of Business & Supply Chain Management*, (pending publication).
- 31. Singh R, Machanuru R, Singh B, Shrivastava M. Climate-resilient agriculture: Enhance resilience toward climate change. In: *Global Climate Change* (pp. 45-61): Elsevier, 2021.
- 32. Srivastav AL, Dhyani R, Ranjan M, Madhav S, Sillanpää M. Climate-resilient strategies for sustainable management of water resources and agriculture. *Environmental Science and Pollution Research*, 28(31), 41576-41595, 2021.
- 33. Toromade AS, Chiekezie NR. Driving sustainable business practices in SMEs: Innovative approaches for environmental and economic synergy. *International Journal of Management and Entrepreneurship Research*, 6, 2637-2647, 2024.
- 34. Dr. Mahesh Chander. Impact of Organic Amendments on Soil Microbiome and Health Indicators. *Journal of Soil Future Research*. 2023;4(1):64-70.