
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1437 | P a g e

Fighting Living off the Land Attacks – Where they are not

Anand Athavale

Independent Researcher, Decades of Industry experience in Data Management, USA

* Corresponding Author: Anand Athavale

Article Info

ISSN (Online): 2582-7138

Impact Factor (RSIF): 7.98

Volume: 06

Issue: 04

July - August 2025

Received: 22-06-2025

Accepted: 23-07-2025

Published: 26-08-2025

Page No: 1437-1440

Abstract

This article explores an approach for security analysts to reduce the burden of looking

for LOLBINs. Given attackers these days do not place malware in the target

environments and instead orchestrate attacks living off the land, the detection of these

is a massive undertaking for security analysts. Since the LOLBINs are common day

and trusted binaries, the attacker tools are basically inseparable from legitimate daily

use tools. Even if there is a known list of LOLBINs, keeping an eye on every use of

these for legitimate vs. suspicious use is a daunting task. The devices to look for such

behaviors needs to be narrowed down. A different approach for the process of

elimination can help identify a narrowed list of devices to focus on when looking for

suspicious behaviors of LOLBINs. At minimum, prioritizing the list of devices to go

after, with a “red team” mentality can help.

DOI: https://doi.org/10.54660/.IJMRGE.2025.6.4.1437-1440

Keywords: Leaving Off the Land, LOLBINs, Threat Hunt, CVE, KVE, Blue Team/Red Team

1. Introduction

The term “Living off the land” means surviving using resources already in the environment. The term LOLBIN was coined by

the security researchers who often played the role of an attacker, often referred to as “Red Team” members. The attackers have

pivoted to this method because the use of existing tools allows them to download payload, execute code, move laterally, dump

credentials while making the detection extremely hard if not impossible. While there are many tactical rules and tools to get

alerts for LOLBINs, they are prone to false positives. In large environments, collection of telemetry is challenged and not

guaranteed. This is why it needs to be approached from another angle besides brute force. This paper tries to give a different

perspective on where to start.

LOLBINs and use of LOLBINs by attackers

LOLBINs are executable binaries where each one is shipped for a specific purpose. These are the choice of attackers because

most of these are trusted binaries pre-installed by the operating systems and historically whitelisted by security tools. As an

example, consider certutil.exe. It is trusted pre-installed binary whitelisted and trusted by security tools and used by sysadmins

frequently for routine tasks like viewing and installing certificates, checking certificate revocations and online status and similar

tasks [1]. While it is meant for such tasks, attackers use it because it can download files and decode them. Another example is

powershell.exe. While the purpose is Command-line shell and scripting for task automation and configuration management, it

can be also used for remote management and Active Directory Management. Attackers use powershell.exe because it can

download and execute payloads directly in memory (fileless attacks) bypassing writing to disk thus avoiding detection. These

are the typical characteristics of any LOLBINs [2]. These binaries are trusted and can be used for unintended purposes while

avoiding detection because those are frequently used for legitimate purposes.

To give an analogy, a car without a license plate will definitely raise suspicion and has a high chance of getting caught when

used for committing a crime or theft. But a registered ambulance will be difficult to spot and differentiate whether it is being

https://doi.org/10.54660/.IJMRGE.2025.6.4.1437-1440

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1438 | P a g e

used to transport a patient, or a fugitive. This is why

LOLBINs are one of the popular tools for attackers and one

of the toughest challenges for security teams to track and

catch when used for malicious purposes.

One important fact should be noted here. The examples

discussed may point to Windows binaries only. But

LOLBINs are not limited to Windows alone. Linux built in

binaries such as bash, find, awk, curl, scp can be similarly

abused to bypass restrictions, escalate privileges and

movement of data [3]. The bad news is that even clouds are

not immune to this issue. As an example, Azure has various

custom extensions to serve thousands of administrators to

orchestrate their Azure fleet. These Azure built-in

capabilities can be abused to bypass any network defense

lines which could be looked at as another type of LoLBins [4].

Fig 1: Possible Device Types/Locations for LOLBINs

Use of LOLBIN however requires an initial compromise

using human compromise methods like vishing, password

leak or, use of CVE exploit to gain initial access. LOLBINs

themselves are not vulnerabilities allowing compromise. This

is important to note because LOLBINs should not be

approached or looked at from an initial compromise

perspective. It is not wise to only focus on internet facing

devices when looking for illegitimate LOLBIN activities.

Where LOLBINs are present, is not something that indicates

a possible attack or, compromise. The way LOLBINs get

used is what determines the probability of an attack.

Existing methods and tools for LOLBINs unintended use

detection

The list of steps to address this problem starts with knowing

a list of such LOLBINs. Projects like LOLBAS give a static,

community-driven reference catalog of LOLBINs, scripts

and libraries. It documents the capabilities of LOLBINs in

terms of behaviors, mappings to TTPs and notes on detection.

This constitutes a list of what could be abused and how.

Alternately, or additionally, feeds like Google Threat

Intelligence bring real-world usage of LOLBINs adding

context with threat actor behavior, recent campaigns, and

indicators of compromise. This brings more up-to-date

information on which LOLBIN is being wrongly used by

specific ransomware families. Of course, the detection

mechanisms still need to be built with such rich intelligence.

There are EDR/XDR tools which help monitoring and

flagging illegitimate use of LOLBINs. Some track processes

(including LOLBINs), aggregates CPU, memory, disk, and

network usage across endpoints [5]. Built-in queries and

dashboards can show CPU usage per binary over time across

the fleet. Other track binaries like powershell.exe,

rundll32.exe, etc., with telemetry on resource usage and

execution context which are quarriable for hunting purposes.

Other than detection, some experts suggest simply

minimizing the administrative work to reduce the use of

legitimate use itself. This can make detection easier since the

use of LOLBINs itself will become rare.

Challenges with existing tools and methods

Monitoring arguments of LOLBIN arguments is easier said

than done. The challenge of capturing the arguments lies in

the volume.

On a single light office worker device, the number of

spawned processes per day is somewhere between 5,000 to

10,000. On a busy user device, it can get higher with 15,000

to 25,000 processes being spawned. Concurrent process

count can vary from 100 to 400 at a given moment. This gets

worse when a shared Virtual Desktop Infrastructure device

with more than a handful of users shares the host. Here, the

process count can touch a million. The corresponding log size

gets into MBs to GBs per day for a single device. For a large

enterprise, this gets multiplied by 5,000 to 15,000 and starts

becoming a daunting task for fast network transfers and

storage, where this load competes with regular business

applications load on the infrastructure.

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1439 | P a g e

Fig 2: Volume explosion for Detection

This is the base process spawn load. Detection requires

arguments and other context to be captured. No argument

event size for a single process spawn event is roughly 500 to

800 bytes. Adding arguments capture increases that by 50 to

200% and gets into 2K to 4KB occasionally reaching 8 KB

for LOLBINs. The raw event monitoring can be narrowed

with the help of threat feeds and static list. But this only helps

to a certain extent. LOLBIN binaries (like powershell.exe,

cmd.exe, certutil.exe) are used legitimately thousands of

times a day in many orgs. For example, in a fleet of 5,000

devices, powershell.exe alone can generate 50 to 100 K

spawning events.

While volume is one of the challenges, there are other

challenges with this method. Processes can be short lived and

too quick for an agent's user mode hook or kernel callback to

record it. Processes launched from kernel drivers, processes

started in suspended mode with code injection replacing

arguments and inherited handle by child process prevents

argument capture. There are other issues such as

containerized execution and use of nested VMs makes

detection difficult by traditional monitoring agents. Even

after capturing, the arguments can drop during compression

or fail to reach central EDR due to network drops. Attackers

also make copies of LOLBINs to escape this type of

detection. While some tools are advanced to detect such

copies based on context, argument capture and monitoring of

LOLBINs is anything but clean and guaranteed.

A complementary approach to look where attackers would

Threat intelligence feed-based narrowing of LOLBIN to

monitor is a good start. It can be augmented however with

many more prioritizations based on environmental

awareness. Here are examples of such environmental

considerations which can be used to prioritize and focus.

Some of the prioritization is from a defender’s perspective

and some of this prioritization stems from thinking like an

attacker, or, “Red team” mentality.

Monitoring of critical assets and devices:

Tier-0, Tier-1 assets like domain controllers, PKI

Infrastructures, backup servers along with critical finance,

health or similar regulated industry application hosts are the

ones which constitute these.

User Privilege level and Account type:

Here the devices are chosen by not what is installed on the

devices, but instead who is using those devices. Typical

examples are devices used by Domain admins, local admin

users, and those used by DevOps and developers because the

LOLBIN usage is heavily skewed on these. The rationale is,

attackers may get caught easily if LOLBIN usage is found on

less probable devices like general office workers.

Heavy service account usage devices and automation hosts:

The devices where service accounts are used where the

passwords are not updated frequently are candidates for this

type along with hosts which are used for running homegrown

scripts and scheduled tasks.

RED Team mentality-based device identification:

Here, instead of thinking only from a defender angle where

focus is primarily on crown jewels and high privilege

activity, the tactics change to thinking like an attacker.

Hence, this category for example, constitutes devices where

a known CVE/KVE was found in the recent past, irrespective

of whether CVE/KVE was patched. Here, the underlying

reason is like physical security breach. Just because the door

was closed, does not mean the intruder is no longer present.

Monitoring the premise for any intruder activity is essential.

Along the same lines, even if the CVE/KVE was addressed,

it is important to monitor for any LOLBIN activity on such

devices. Devices, hosts, servers which are not patched

recently are another set to look at. Many times, applications

do not get upgraded to latest versions, or, for some reason,

may be running end of support versions. These types of

application hosts make such a group for LOLBIN monitoring.

Historical behavior with smart grouping:

Often, some tools employ AI/ML to look at current activity

to historical activity. However, storing history for even 30

days gets costly and complex. To address that, here is a

variation in behavior monitoring to consider. Keep the

historical data only for 7 days but instead of comparing each

device with its own history, consider creating groups of

devices based on above mentioned categories and then track

if any device is behaving differently than its peers within the

group.

Approaching the LOLBIN detection from this angle in

conjunction with existing tools and techniques can help solve

the volume and other detection challenges and can increase

the chances of catching illegitimate use of LOLBINs quicker.

Conclusion

Living off the land attacks are complex to detect and harder

to predict because the tools used for these attacks, referred to

as LOLBINs, hide in plain sight. The use of existing high

usage tools for illegitimate tools comes very close to taking

advantage of crowded places to avoid surveillance.

Monitoring the actions of each LOLBIN where the binary

appears harmless becomes tricky. Trimming down the list to

known LOLBIN use by attackers through feeds and projects

helps somewhat. But it is still a challenge given high volume

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1440 | P a g e

use of LOLBINs, the pipeline issues of capture and

propagation of such events and then segregation of good and

suspicious behavior. However, complementing it through

prioritization of devices through various other criterions

including the one which takes a “Read team” approach can

help improve efficacy and speed of detection of LOLBIN

illegitimate use.

References

1. Microsoft Learn. Windows Commands: certutil

[Internet]. 2025 May [cited 2025 Aug]. Available from:

https://learn.microsoft.com/en-us/windows-

server/administration/windows-commands/certutil

2. SentinelOne. What are LOLBins? How attackers use

LOLBins in fileless attacks [Internet]. 2020 Jul [cited

2025 Aug]. Available from:

https://www.sentinelone.com/blog/how-do-attackers-

use-lolbins-in-fileless-attacks/

3. GTFOBins. GTFOBins: a curated list of Unix binaries

that can be used to bypass local security restrictions in

misconfigured systems [Internet]. 2024 Oct [cited 2025

Aug]. Available from:

https://github.com/GTFOBins/GTFOBins.github.io/blo

b/master/README.md

4. Pliskin R. Azure LOLBins: protecting against the dual

use of virtual machine extensions [Internet]. Microsoft

Defender for Cloud. 2021 Mar [cited 2025 Aug].

Available from: https://www.microsoft.com/en-

us/security/blog/2021/03/09/azure-lolbins-protecting-

against-the-dual-use-of-virtual-machine-extensions/

5. Keshet Y. What are LOLBins and how do attackers use

them in fileless attacks? [Internet]. 2025 Jan [cited 2025

Aug]. Available from: https://www.cynet.com/attack-

techniques-hands-on/what-are-lolbins-and-how-do-

attackers-use-them-in-fileless-attacks/

