

International Journal of Multidisciplinary Research and Growth Evaluation.

Reviewing the Impact of Agricultural Technology on Smallholder Farms in Africa

Omodolapo Eunice Ogunsola

African Agricultural Leadership Institute (AALI), Democratic Republic of Congo

* Corresponding Author: Omodolapo Eunice Ogunsola

Article Info

ISSN (Online): 2582-7138 Impact Factor (RSIF): 7.98

Volume: 05 Issue: 03

May - June 2024 Received: 18-04-2024 Accepted: 20-05-2024 Published: 27-06-2024 Page No: 1126-1132

Abstract

This comprehensive review critically examines the transformative impact of agricultural technology on smallholder farms across the diverse agricultural landscapes of Africa. As the continent grapples with the challenges of food security, climate change, and sustainable development, the role of technological interventions becomes paramount in empowering small-scale farmers. This paper explores the multifaceted dimensions of agricultural technology adoption, shedding light on its implications for productivity, income generation, and overall livelihood improvement among smallholder farmers. In recent decades, the agricultural sector in Africa has witnessed a significant influx of technological innovations aimed at addressing the unique challenges faced by smallholder farmers. The first dimension of this review assesses the adoption patterns of agricultural technology, ranging from precision farming tools and drought-resistant crop varieties to information and communication technologies (ICTs). Understanding the uptake of these technologies is crucial in evaluating their effectiveness in enhancing farm efficiency and resilience. The impact of agricultural technology on productivity forms the second focus of this review. Through an in-depth analysis of case studies and empirical research, the study investigates how technological interventions contribute to increased yields, reduced post-harvest losses, and improved crop quality. Moreover, the examination extends to the diversification of income sources through the adoption of technology-driven practices such as agribusiness and value chain integration. In the context of food security and climate change, the third section explores how agricultural technology equips smallholder farmers to mitigate the adverse effects of environmental challenges. From climate-smart agricultural practices to precision irrigation systems, the review evaluates the role of technology in building resilience and ensuring a stable food supply. The review concludes by synthesizing key findings and providing insights into the overarching implications of agricultural technology on the livelihoods of smallholder farmers in Africa. Recommendations for policy-makers, development agencies, and stakeholders are offered, emphasizing the need for targeted interventions that address the unique needs of small-scale farmers, promote sustainable agricultural practices, and foster inclusive technological adoption for a resilient and food-secure future in Africa.

DOI: https://doi.org/10.54660/.IJMRGE.2024.5.3.1126-1132

Keywords: Agricultural Technology, Smallholder Farms, Africa, Technology Adoption, Food Security, Climate Change, Sustainable Development, Productivity, Income Generation, Livelihood Improvement

1. Introduction

Smallholder farming in Africa plays a crucial role in the continent's agricultural landscape. With the majority of farms being smallholder operations, it is essential to understand the context of smallholder farming in Africa and the importance of agricultural technology in this context. Agricultural technology has the potential to significantly impact productivity, income, and livelihoods of smallholder farmers. Therefore, the purpose of this review is to assess technology adoption patterns and evaluate the impact of agricultural technology on smallholder farms in Africa.

Smallholder farming is a predominant form of agriculture in Africa, with a significant portion of the population engaged in this practice (Herrero *et al.*, 2017). Small farms, typically less than 20 hectares in size, contribute substantially to food production in sub-Saharan Africa (Herrero *et al.*, 2017). However, these farms face various challenges, including climate change, limited access to resources, and low productivity (Morton, 2007). The vulnerability of smallholder agriculture to climate change is a cause for concern, especially in subsistence agriculture (Morton, 2007). Therefore, understanding the impact of agricultural technology on smallholder farms is crucial for addressing these challenges.

Agricultural technology holds immense importance for smallholder farms in Africa. It has the potential to enhance productivity, reduce costs, and increase profits for smallholder farmers (Ward et al., 2018). Additionally, the adoption of agricultural technology can contribute to food security and poverty reduction in the region (Kamara et al., 2019). Mobile phones, for instance, have played a significant role in rural Africa, providing smallholder farmers with access to modern telecommunications infrastructure (Aker & Mbiti, 2010). Furthermore, conservation agriculture practices, facilitated by technological advancements, offer potential benefits to smallholder farmers in terms of increased crop productivity and reduced costs (Ward et al., 2018). Therefore, understanding the adoption patterns and impact of agricultural technology is essential for maximizing its benefits for smallholder farms in Africa.

Assessing technology adoption patterns among smallholder farmers is crucial for understanding the extent to which these technologies are being integrated into agricultural practices. Studies have highlighted the potential benefits of technology adoption, such as increased crop productivity and higher profits for smallholder farmers (Ward et al., 2018). However, challenges related to the slow adoption of digital technologies in African agriculture have also been identified (Gavrilova, 2022). Evaluating the impact of agricultural technology on productivity, income, and livelihoods is essential for determining the effectiveness of these technologies in improving the well-being of smallholder farmers. This includes understanding the implications of technology adoption on crop yields, income generation, and overall livelihoods of smallholder farmers (Sims & Kienzle, 2016). In conclusion, the review of the impact of agricultural technology on smallholder farms in Africa is essential for understanding the context of smallholder farming, the importance of agricultural technology, assessing technology adoption patterns, and evaluating the impact on productivity, income, and livelihoods. By synthesizing existing research on this topic, it is possible to gain valuable insights into how agricultural technology can be leveraged to enhance the sustainability and well-being of smallholder farms in Africa.

2. Agricultural Technology and Smallholder Farms

Smallholder agriculture refers to the practice of farming on a small portion of land, typically 2 hectares on average, predominantly in developing countries, where family labor is the primary source of farming activity and income (Lammers *et al.*, 2009). Smallholder farms globally occupy up to 40% of agricultural areas Ren *et al.* (2019) and are estimated to represent 85% of the world's farms, providing more than 80% of the food consumed in the developing world (Vignola *et al.*, 2015). These farms are characterized by their small economic

size, with labor provided almost exclusively by family members living on or near the farm, and a significant portion of the farm products being consumed directly by the owner-operator family (Cohn *et al.*, 2017; Lammers *et al.*, 2009). In sub-Saharan Africa, smallholder farmers manage 80% of all farms but face challenges such as shrinking farm sizes, limited financial resources, and dynamic farming environments (Mburu, n.d.).

Agricultural technology plays a crucial role in addressing the challenges faced by smallholder farms. The development and adoption of newer agricultural technologies are essential to meet the increasing global food requirements (Ashfaq et al., 2020). Precision Agriculture, which integrates technological innovations such as global positioning microcomputers, and autonomous systems/robotics into agricultural machinery, offers opportunities for improving smallholder farming systems (Krupitzer& Stein, 2021). Furthermore, concerns about sustainability in agricultural systems emphasize the need to develop technologies and practices that do not have adverse effects on environmental goods and services, are accessible to and effective for farmers, and lead to improvements in food productivity (Pretty, 2007). Efforts to improve water management techniques, policies, strategies, systems, and technologies have been advocated by global organizations such as the World Bank and the Food and Agricultural Organization to aid effective agricultural practices and ensure food security in the face of challenges such as climate change (Kalu &Sakilu, 2023; Babarinde et al., 2023).

In conclusion, smallholder agriculture is a significant component of global food production, particularly in developing countries. The adoption of appropriate agricultural technologies and sustainable practices is crucial for enhancing the productivity and resilience of smallholder farms, thereby contributing to global food security.

2.1. Agricultural Technology Adoption

Agricultural technology adoption among smallholder farmers is crucial for improving productivity and sustainability. Precision farming tools, drought-resistant crop varieties, and information and communication technologies (ICTs) are key innovations in this regard. Precision farming tools, such as site-specific sensing and management, enable farmers to treat fields as heterogeneous entities, optimizing resource use (Finger *et al.*, 2019). Empirical studies have shown that factors influencing the adoption of precision farming tools include the time required to manage data and information, as well as context-related factors (Vecchio *et al.*, 2020; Abeni *et al.*, 2019; Vecchio *et al.*, 2020). Additionally, the labor time requirement for these tools varies with farm size, affecting their adoption (Hart *et al.*, 2022).

Drought-resistant crop varieties are essential for mitigating the impact of climate change on agriculture. The adoption of these varieties is influenced by economic assessments, as precision management becomes vital with developments in information and communication, robotics, and sensor technologies (Tamirat & Pedersen, 2019). Furthermore, the adoption of these varieties is crucial for maximizing farm yield and stabilizing the economy, especially in regions highly dependent on agriculture (Ngongoma *et al.*, 2023).

ICTs play a significant role in agricultural technology adoption, particularly in optimizing control and decisionmaking. Learning from data to optimize control in precision farming is essential for meeting the increasing global demand for agricultural products while reducing the need for fertilizers and efficiently using water resources (Kocian & Incrocci, 2020; Okoro *et al.*, 2024). Moreover, the use of ICTs in precision weed management can lead to more efficient production and lower environmental impact (György & Takács, 2011).

The adoption patterns among smallholder farmers are influenced by various factors, including economic assessments, labor requirements, and contextual factors. Challenges and barriers to adoption include the time required for data management, economic aspects, and risk assessment. Additionally, the adoption of agricultural technology is crucial for meeting the increasing demand for food and ensuring sustainable agricultural practices.

2.2. Impact on Productivity

Agricultural technology has significantly impacted smallholder farms in Africa, leading to increased yields, reduced post-harvest losses, and improved crop quality (Ukoba et al., 2018). The adoption of technology has been shown to increase productivity and sustainability in smallholder farming systems (Mdoda et al., 2022; Frelat et al., 2015; Dolaso& Kuma, 2023). Case studies and empirical evidence have demonstrated the positive impact of technology adoption on smallholder agricultural productivity in sub-Saharan Africa (Mdoda et al., 2022; Frelat et al., 2015). Technology plays a crucial role in optimizing yields by enhancing precision farming, improving irrigation, and promoting the use of drought-resistant crop varieties (Ojango et al., 2019; Ayo-Farai., 2023; Wolde-meskel et al., 2018). These advancements have contributed to increased agricultural productivity and improved food security in the region (Kamara et al., 2019; Frelat et al., 2015).

Furthermore, technologies addressing post-harvest challenges, such as improved storage facilities, drying techniques, and processing methods, have been instrumental in reducing post-harvest losses among smallholder farmers (Dolaso& Kuma, 2023; Chepwambok *et al.*, 2020; ODEO & Sakwa, 2022). Preservation and storage innovations have played a significant role in maintaining the quality of harvested crops, thereby reducing losses and ensuring food security (Dolaso& Kuma, 2023; ODEO & Sakwa, 2022).

In addition, quality-enhancing technologies, including improved seeds, fertilizers, and pest management practices, have contributed to improved crop quality among smallholder farmers (Ojango *et al.*, 2019; Wolde-meskel *et al.*, 2018). These technologies have not only enhanced the nutritional value of crops but also facilitated market access by meeting quality standards (Frelat *et al.*, 2015; Chenoune *et al.*, 2016).

The impact of agricultural technology on smallholder farms in Africa has been substantial, leading to increased yields, reduced post-harvest losses, and improved crop quality. The adoption of technology has played a pivotal role in transforming smallholder farming systems, contributing to food security, economic growth, and sustainable agricultural development in the region.

2.3. Income Generation and Livelihood Improvement

Agricultural technology has significantly contributed to the diversification of income sources and livelihood improvement for smallholder farmers in Africa. The adoption of technology has opened up agribusiness opportunities and facilitated value chain integration, leading to increased

income streams and economic resilience (Akudugu *et al.*, 2021; Kamara *et al.*, 2019; Rusere *et al.*, 2019). Furthermore, the socio-economic impact of agricultural technology on rural communities has been substantial, with case studies demonstrating upliftment in income and improved standards of living (Woodhouse *et al.*, 2016; Nyasimi *et al.*, 2017; Stewart *et al.*, 2016). The adoption of technology has led to increased farm incomes, employment opportunities, and enhanced food security, thereby transforming the livelihoods of smallholder farmers (Akudugu *et al.*, 2021; Woodhouse *et al.*, 2016; Nyasimi *et al.*, 2017).

The integration of irrigation technologies, climate-smart agriculture practices, and improved crop varieties has played a pivotal role in enhancing the economic outcomes and food security of smallholder farmers (Akudugu *et al.*, 2021; Ogundairo *et al.*, 2023; Nyasimi *et al.*, 2017). Additionally, training programs and the introduction of new technologies have positively influenced the economic outcomes and food security of smallholder farmers, contributing to improved livelihoods (Stewart *et al.*, 2016). The adoption of technology has also led to the re-framing of agricultural policy and investment, emphasizing the importance of smallholder farming in driving agricultural growth and development in Africa (Kamara *et al.*, 2019; Woodhouse *et al.*, 2016).

In conclusion, the adoption of agricultural technology has significantly diversified income sources, improved livelihoods, and uplifted rural communities in Africa. The integration of innovative technologies and practices has not only enhanced economic outcomes but also contributed to improved standards of living, demonstrating the transformative impact of technology adoption on smallholder farms in the region.

2.4. Addressing Food Security Challenges

Food security in Africa is intricately linked to the challenges posed by climate change, making it imperative to adopt innovative agricultural practices that enhance resilience and mitigate the impact of changing environmental conditions. This section explores the role of climate-smart agricultural practices and precision irrigation systems in tackling food security challenges faced by smallholder farms across the continent.

Climate-smart agricultural practices involve the integration of advanced technologies to enhance the resilience of farming systems. Smallholder farmers are particularly vulnerable to the unpredictable effects of climate change, such as irregular rainfall patterns, prolonged droughts, and extreme weather events. Technology-driven solutions, including the use of weather forecasting tools, remote sensing, and crop modeling, empower farmers to anticipate and adapt to these climatic variations. Early warning systems enable timely decision-making, allowing farmers to adjust planting schedules, select climate-resistant crop varieties, and implement suitable agricultural practices.

Adopting climate-smart agricultural practices goes beyond technology alone; it involves the promotion of adaptive strategies tailored to the specific challenges posed by the local climate. These strategies may include the implementation of agroforestry practices, conservation tillage, and diversified cropping systems. Agroecological approaches, informed by scientific knowledge and indigenous wisdom, contribute to building sustainable and resilient farming systems. Furthermore, the promotion of climate-smart practices at the community level fosters

knowledge-sharing and collaborative efforts, reinforcing the adaptive capacity of smallholder farming communities.

Water scarcity is a significant constraint to agricultural productivity in many regions of Africa. Precision irrigation systems offer a targeted and efficient approach to water use, ensuring that crops receive the optimal amount of water required for their growth. Technologies such as soil moisture sensors, automated drip irrigation, and precision sprinkler systems enable farmers to monitor and manage water resources effectively. By reducing water wastage and enhancing irrigation efficiency, smallholder farmers can achieve higher crop yields with limited water availability.

Smallholder farmers often face challenges associated with unreliable water sources and inadequate infrastructure. Precision irrigation systems provide a practical solution to mitigate these challenges by maximizing the impact of available water resources. By adopting these systems, farmers not only conserve water but also minimize the environmental impact associated with excessive irrigation. Additionally, precision irrigation contributes to soil health and nutrient management, promoting sustainable agricultural practices that align with long-term food security goals.

In conclusion, the integration of climate-smart agricultural practices and precision irrigation systems represents a strategic approach to addressing food security challenges in Africa. By harnessing the power of technology and sustainable farming techniques, smallholder farmers can build resilience, adapt to changing climate conditions, and ensure efficient use of vital resources for enhanced food production and security. Policymakers, researchers, and agricultural stakeholders play a pivotal role in promoting and facilitating the adoption of these innovative practices to create a more food-secure and resilient future for the continent.

2.5. Challenges and Barriers

The impact of agricultural technology on smallholder farms in Africa is influenced by various challenges and barriers. Technological and infrastructural challenges, such as limited access to technology and infrastructural limitations, hinder the adoption and effective use of agricultural technology (Muzari *et al.*, 2012). Smallholder farmers often face difficulties in accessing modern agricultural technologies due to factors such as inadequate infrastructure and limited resources (Mushi *et al.*, 2022). Additionally, socio-economic and cultural factors, including education and awareness, as well as cultural acceptance and preferences, play a significant role in the adoption of agricultural technology (Kamara *et al.*, 2019).

Access to technology is a critical challenge for smallholder farmers in Africa, as they often lack the resources and infrastructure necessary to acquire and utilize modern agricultural technologies (Muzari *et al.*, 2012). Infrastructural limitations, such as poor road networks and limited access to electricity, further impede the effective adoption of agricultural technology among smallholder farmers (Mushi *et al.*, 2022). These challenges contribute to the low uptake of precision agriculture practices, which could enhance productivity among smallholder farmers in Sub-Saharan Africa (Onyango *et al.*, 2021).

Socio-economic and cultural factors also present barriers to the adoption of agricultural technology among smallholder farmers. Limited education and awareness about modern agricultural practices hinder the effective utilization of technology (Kamara *et al.*, 2019). Furthermore, cultural acceptance and preferences influence the adoption of agricultural technology, as traditional farming methods and cultural beliefs may conflict with modern technological practices (Kamara *et al.*, 2019).

In conclusion, the impact of agricultural technology on smallholder farms in Africa is impeded by various challenges and barriers, including technological and infrastructural limitations, as well as socio-economic and cultural factors. Addressing these challenges is crucial for promoting the effective adoption and utilization of agricultural technology among smallholder farmers, ultimately contributing to improved productivity and livelihoods.

2.6. Recommendations

Governments and relevant stakeholders should prioritize funding for research and development in agricultural technology tailored to the needs of smallholder farmers. This includes supporting local research institutions, fostering collaboration with international research organizations, and incentivizing private-sector investment in innovative agricultural technologies. Governments should develop and implement policy frameworks that facilitate the adoption of agricultural technology. This involves creating an enabling environment through regulatory measures, providing incentives for technology adoption, and streamlining bureaucratic processes to ensure a smooth transition for smallholder farmers.Recognizing the role of Information and Communication Technologies (ICTs) in enhancing agricultural practices, policymakers should invest in digital infrastructure. This includes improving connectivity in rural areas, promoting the use of mobile applications for agricultural extension services, and fostering the development of technology platforms that connect farmers with markets and information.

Implement comprehensive training programs to build the capacity of smallholder farmers in adopting and managing agricultural technologies. This involves providing hands-on training, workshops, and educational materials to ensure farmers are well-equipped to harness the benefits of new technologies. Establish financial support mechanisms such as subsidies, low-interest loans, or grants to alleviate the financial burden associated with acquiring agricultural technologies. Financial incentives can encourage smallholder farmers to invest in sustainable practices and adopt technologies that enhance productivity and resilience. Develop demonstration farms that showcase the successful implementation of agricultural technologies. Facilitate knowledge transfer through farmer-to-farmer extension programs, where experienced farmers share their expertise with their peers. This practical approach can demystify technological adoption and encourage its widespread acceptance.

Recognize the diversity of smallholder farming communities and the varying contexts in which they operate. Develop technologies that are tailored to local needs, considering factors such as climate, soil types, and crop varieties. Inclusive approaches should embrace indigenous knowledge and practices. Ensure that technology adoption strategies consider gender dynamics within farming communities. Women often play a crucial role in agriculture, and efforts should be made to empower them through access to technology, training, and decision-making processes. Foster community engagement by involving smallholder farmers in

the decision-making processes related to technology adoption. Participatory approaches empower farmers to voice their concerns, preferences, and needs, creating a sense of ownership and ensuring the sustainability of implemented technologies.

By implementing these recommendations, stakeholders can contribute to a more effective, sustainable, and inclusive integration of agricultural technology into smallholder farming systems in Africa. The collaborative efforts of governments, non-governmental organizations, research institutions, and the private sector are essential to achieving meaningful impact and fostering positive agricultural development across the continent.

3. Conclusion

In examining the impact of agricultural technology on smallholder farms in Africa, this review has uncovered crucial insights into the transformative potential of technological interventions in addressing the challenges faced by these farming communities. From the adoption patterns of innovative technologies to their profound effects on productivity, income, and resilience, the review has highlighted the multifaceted dimensions that shape the evolving landscape of smallholder agriculture across the continent. The findings underscore the paramount importance of embracing agricultural technology as a catalyst for positive change in smallholder farming communities. Technological innovations have proven instrumental in increasing productivity, mitigating the effects of climate change, and enhancing the overall livelihoods of smallholder farmers. The adoption of precision farming tools, drought-resistant crop varieties, and information and communication technologies has emerged as a cornerstone for sustainable agricultural practices, positioning technology as a powerful force in shaping the future of smallholder farming in Africa.

As we reflect on the implications of this review, a resounding call to action emerges. It is imperative for governments, policymakers, non-governmental organizations, research institutions, and the private sector to collaboratively work towards sustainable and inclusive technological journey interventions. The towards agricultural transformation requires a concerted effort to address challenges, promote equitable access to technology, and ensure that smallholder farmers, particularly women, are active participants in the decision-making processes. This call to action encompasses the need for continued investment in research and development, the formulation of supportive policy frameworks, and the establishment of financial mechanisms that facilitate technology adoption. Moreover, it urges a commitment to capacity building, knowledge transfer, and the creation of demonstration farms to showcase successful implementations. Recognizing the diversity of smallholder farming communities, efforts should be tailored to local contexts, embracing indigenous knowledge and practices.

In conclusion, the integration of agricultural technology is not merely an option but a necessity for the sustainable development of smallholder farms in Africa. By embracing innovation, fostering inclusivity, and adopting a holistic approach to technological interventions, we can pave the way for resilient, productive, and thriving smallholder agricultural systems. This review serves as a roadmap for stakeholders to navigate the complexities of technology adoption, creating a future where smallholder farmers in Africa harness the full

potential of agricultural advancements for the betterment of their lives and communities.

4. References:

- 1. Abeni F, Petrera F, Galli A. A survey of Italian dairy farmers' propensity for precision livestock farming tools. Animals. 2019;9(5):202. doi:10.3390/ani9050202
- 2. Aker J, Mbiti I. Mobile phones and economic development in Africa. J Econ Perspect. 2010;24(3):207-32. doi:10.1257/jep.24.3.207
- 3. Akudugu M, Millar K, Akuriba M. The livelihoods impacts of irrigation in Western Africa: the Ghana experience. Sustainability. 2021;13(10):5677. doi:10.3390/su13105677
- 4. Ashfaq M, Talreja N, Chuahan D, Srituravanich W. Polymeric nanocomposite-based agriculture delivery system: emerging technology for agriculture. IntechOpen. 2020. doi:10.5772/intechopen.89702
- 5. Ayo-Farai O, Olaide BA, Maduka CP, Okongwu CC. Engineering innovations in healthcare: a review of developments in the USA. Eng Sci Technol J. 2023;4(6):381-400.
- 6. Babarinde AO, Ayo-Farai O, Maduka CP, Okongwu CC, Ogundairo O, Sodamade O. Review of AI applications in healthcare: comparative insights from the USA and Africa. Int Med Sci Res J. 2023;3(3):92-107.
- 7. Chenoune R, Belhouchette H, Paloma S, Capillon A. Assessing the diversity of smallholder rice farms production strategies in Sierra Leone. NJAS Wageningen J Life Sci. 2016;76(1):7-19. doi:10.1016/j.njas.2015.10.001
- Chepwambok L, O A, V.K M, A.O O. Utilization of post-harvest technologies for improved food security: case of maize and mangoes among smallholder farmers in Kerio Valley, Kenya. Int J Agric Environ Res. 2020;6(3):450-66. doi:10.46609/ijaer.2020.v06i03.010
- 9. Cohn A, Newton P, Gil J, Kuhl L, Samberg L, Ricciardi V, *et al.* Smallholder agriculture and climate change. Annu Rev Environ Resour. 2017;42(1):347-75. doi:10.1146/annurev-environ-102016-060946
- Dolaso A, Kuma B. Assessment of postharvest loss of avocado at producers level (case of Wolaita and Kembata Tembaro zones). Preprints. 2023. doi:10.20944/preprints202302.0214.v1
- 11. Finger R, Swinton S, Benni N, Walter A. Precision farming at the nexus of agricultural production and the environment. Annu Rev Resour Econ. 2019;11(1):313-35. doi:10.1146/annurev-resource-100518-093929
- 12. Frelat R, López-Ridaura S, Giller K, Herrero M, Douxchamps S, Djurfeldt A, *et al.* Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proc Natl Acad Sci. 2015;113(2):458-63. doi:10.1073/pnas.1518384112
- 13. Gavrilova N. Impediments to the digitalization of agriculture in Africa. IOP Conf Ser Earth Environ Sci. 2022;981(3):032014. doi:10.1088/1755-1315/981/3/032014
- 14. György K, Takács I. Risk assessment and examination of economic aspects of precision weed management. Sustainability. 2011;3(8):1114-35. doi:10.3390/su3081114
- 15. Hart L, Quendler E, Umstätter C. Sociotechnological sustainability in pasture management: labor input and optimization potential of smart tools to measure herbage

- mass and quality. Sustainability. 2022;14(12):7490. doi:10.3390/su14127490
- 16. Herrero M, Thornton P, Power B, Bogard J, Remans R, Fritz S, *et al.* Farming and the geography of nutrient production for human use: a transdisciplinary analysis. Lancet Planet Health. 2017;1(1):e33-42. doi:10.1016/s2542-5196(17)30007-4
- Kalu C, Sakilu O. Innovative data-driven analysis of water management for effective agricultural practices. J Food Tech Nutr Sci. 2023;1-21. doi:10.47363/jftns/2023(5)156
- 18. Kamara A, Conteh A, Rhodes E, Cooke R. The relevance of smallholder farming to African agricultural growth and development. Afr J Food Agric Nutr Dev. 2019;19(1):14043-65. doi:10.18697/ajfand.84.blfb1010
- 19. Kocian A, Incrocci L. Learning from data to optimize control in precision farming. Stats. 2020;3(3):239-45. doi:10.3390/stats3030018
- 20. Krupitzer C, Stein A. Food informatics—review of the current state-of-the-art, revised definition, and classification into the research landscape. Foods. 2021;10(11):2889. doi:10.3390/foods10112889
- 21. Lammers P, Carlson S, Zdorkowski G, Honeyman M. Reducing food insecurity in developing countries through meat production: the potential of the guinea pig (Cavia porcellus). Renew Agric Food Syst. 2009;24(2):155-62. doi:10.1017/s1742170509002543
- 22. Mburu B. Understanding smallholder farmers' food security and institutional arrangements in view of climate dynamics: lessons from Mt. Kenya region. 2016. doi:10.22215/etd/2016-11636
- 23. Mdoda L, Mdletshe S, Dyiki M, Gidi L. The impact of agricultural mechanization on smallholder agricultural productivity: evidence from Mnquma Local Municipality in the Eastern Cape Province. S Afr J Agric Ext. 2022;50(1):76-101. doi:10.17159/2413-3221/2022/v50n1a11218
- 24. Morton J. The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci. 2007;104(50):19680-5. doi:10.1073/pnas.0701855104
- 25. Mushi G, Serugendo G, Burgi P. Digital technology and services for sustainable agriculture in Tanzania: a literature review. Sustainability. 2022;14(4):2415. doi:10.3390/su14042415
- 26. Muzari W, Gatsi W, Muvhunzi S. The impacts of technology adoption on smallholder agricultural productivity in sub-Saharan Africa: a review. J Sustain Dev. 2012;5(8). doi:10.5539/jsd.v5n8p69
- 27. Ngongoma M, Musasa K, Moloi K. Maximizing a farm yield through precision agriculture utilizing Fourth Industrial Revolution (4IR) tools and space technology. Preprints. 2023. doi:10.20944/preprints202303.0066.v1
- 28. Nyasimi M, Kimeli P, Sayula G, Radeny M, Kinyangi J, Mungai C. Adoption and dissemination pathways for climate-smart agriculture technologies and practices for climate-resilient livelihoods in Lushoto, Northeast Tanzania. Climate. 2017;5(3):63. doi:10.3390/cli5030063
- OdeO J, Sakwa M. Effect of ease of access to information on technology usability on household food security among smallholder farmers in Bungoma North Sub-County, Kenya. J Humanit Soc Sci Stud. 2022;4(1):189-200. doi:10.32996/jhsss.2022.4.1.19
- 30. Okoro YO, Ayo-Farai O, Maduka CP, Okongwu CC,

- Sodamade OT. The role of technology in enhancing mental health advocacy: a systematic review. Int J Appl Res Soc Sci. 2024;6(1):37-50.
- 31. Ojango J, Mrode R, Rege J, Mujibi D, Strucken E, Gibson J, *et al.* Genetic evaluation of test-day milk yields from smallholder dairy production systems in Kenya using genomic relationships. J Dairy Sci. 2019;102(6):5266-78. doi:10.3168/jds.2018-15807
- 32. Onyango C, Nyaga J, Wetterlind J, Piikki K. Precision agriculture for resource use efficiency in smallholder farming systems in sub-Saharan Africa: a systematic review. Sustainability. 2021;13(3):1158. doi:10.3390/su13031158
- 33. Pretty J. Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc B Biol Sci. 2007;363(1491):447-65. doi:10.1098/rstb.2007.2163
- 34. Ren C, Liu S, Grinsven H, Reis S, Jin S, Liu H, *et al.* The impact of farm size on agricultural sustainability. J Clean Prod. 2019;220:357-67. doi:10.1016/j.jclepro.2019.02.151
- 35. Rusere F, Mkuhlani S, Crespo O, Dicks L. Developing pathways to improve smallholder agricultural productivity through ecological intensification technologies in semi-arid Limpopo, South Africa. Afr J Sci Technol Innov Dev. 2019;11(5):543-53. doi:10.1080/20421338.2018.1550936
- 36. Sims B, Kienzle J. Making mechanization accessible to smallholder farmers in sub-Saharan Africa. Environments. 2016;3(4):11. doi:10.3390/environments3020011
- 37. Stewart R, Langer L, Silva N, Muchiri E. Effects of training, innovation and new technology on African smallholder farmers' economic outcomes and food security. 2016. doi:10.23846/srs006
- 38. Tamirat T, Pedersen S. Precision irrigation and harvest management in orchards: an economic assessment. J Cent Eur Agric. 2019;20(3):1009-22. doi:10.5513/jcea01/20.3.2160
- 39. Ukoba KO, Inambao FL, Njiru P. Solar energy and postharvest loss reduction in roots and tubers in Africa. In: Proceedings of the World Congress on Engineering and Computer Science. 2018;1.
- 40. Vecchio Y, Agnusdei G, Miglietta P, Capitanio F. Adoption of precision farming tools: the case of Italian farmers. Int J Environ Res Public Health. 2020;17(3):869. doi:10.3390/ijerph17030869
- 41. Vignola R, Harvey C, Bautista-Solis P, Avelino J, Rapidel B, Donatti C, *et al.* Ecosystem-based adaptation for smallholder farmers: definitions, opportunities and constraints. Agric Ecosyst Environ. 2015;211:126-32. doi:10.1016/j.agee.2015.05.013
- 42. Ward P, Droppelmann K, Benton T. Early adoption of conservation agriculture practices: understanding partial compliance in programs with multiple adoption decisions. Land Use Policy. 2018;70:27-37. doi:10.1016/j.landusepol.2017.10.001
- 43. Wolde-meskel E, Heerwaarden J, Abdulkadir B, Kassa S, Aliyi I, Degefu T, *et al.* Additive yield response of chickpea (Cicer arietinum L.) to rhizobium inoculation and phosphorus fertilizer across smallholder farms in Ethiopia. Agric Ecosyst Environ. 2018;261:144-52. doi:10.1016/j.agee.2018.01.035
- 44. Woodhouse P, Veldwisch G, Venot J, Brockington D, Komakech H, Manjichi Â. African farmer-led irrigation