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Abstract 

Coronary artery disease (CAD) remains a leading cause of mortality worldwide, 

necessitating accurate and timely diagnostic strategies. This study proposes an 

enhanced one-dimensional convolutional neural network (1D-CNN) model for the 

automated detection of CAD using 12-lead electrocardiogram (ECG) signals. The 

model is trained and evaluated on the publicly available PTB-XL dataset, comprising 

over 21,000 annotated ECG records. To optimize classification performance, the 

model architecture incorporates 10-second signal segments, adaptive convolutional 

layers, and strategic dropout regularization. Extensive experiments demonstrate the 

model’s robust performance, including five-fold cross-validation and ablation studies. 

It achieves an average accuracy of 94.2%, precision of 93.1%, sensitivity of 92.7%, 

specificity of 95.4%, and an AUC-ROC of 96.1%. Comparative analysis with existing 

models confirms the superiority of the proposed approach in balancing diagnostic 

accuracy with computational efficiency. This work contributes a scalable and 

interpretable deep learning framework for CAD detection, offering promising 

implications for intelligent cardiovascular screening and clinical decision support 

systems. 
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Introduction 

Coronary artery disease (CAD) is a leading cause of mortality worldwide, accounting for approximately 17.9 million deaths 

annually, which represents about 32% of all global deaths from cardiovascular diseases (World Health Organization, 2021). 

CAD is characterized by the narrowing or blockage of the coronary arteries due to atherosclerosis, leading to reduced blood flow 

to the myocardium and increasing the risk of myocardial infarction and sudden cardiac death (Shao et al., 2020) [12]. Early and 

accurate detection of CAD is crucial for initiating timely interventions and improving patient outcomes (Netala et al., 2024) [7]. 

Electrocardiography (ECG) is a well-known, non-invasive examination method of cardiac performance. Nevertheless, the 

classical interpretation of ECG is highly dependent on manual interpretation of clinicians, posing a risk of time selection and 

interobserver variability (Slomka et al., 2017) [13]. In addition, changes in ECG signals with the signs of early-stage CAD are 

not always obvious, which can lead to a missed diagnosis (Kutlu et al., 2016) [6]. These issues highlight the importance of an 

automatic, accurate, and efficient diagnostic solution. 
Recent advancements in deep learning (DL) have proven promising in the improvement of the analysis of biomedical signals 

such as ECG. Convolutional neural networks (CNNs), which belong to DL models, have shown impressive results in automated 

extraction of data-level hierarchical properties, thus enabling successful classification (Rafie et al., 2021) [10]. 

Previous studies have examined CNNs' use in detecting CAD, but it is not easy to create models that apply to various populations 

and signal standards.
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The smaller dataset sizes, the classification imbalance, and 

overfitting may slow the performance of the DL models in 

clinical practice. Thus, there is an urgent need to enhance the 

development of powerful models that can retain the high 

accuracy and reliability of any patient cohort and recording 

conditions. 

This article introduces a more enriched 1D-CNN way of 

classification in detecting CAD through ECG signals. To 

address the issues of generalization and overfitting, the model 

utilizes adaptive filter sizing, strategic dropout regularization, 

and multi-scale input analysis. We test our model on publicly 

accessible sets of ECGs, carefully cross-validate it, and 

measure its accuracy, sensitivity, specificity, and F1-score 

performance. 

 

The contributions of this work are: 

1. Development of a 1D-CNN model for CAD detection, 

with architectural enhancements to improve 

performance. 

2. Evaluation of the model using diverse ECG datasets to 

assess its robustness. 

3. Comparison to other models, showing the superiority of 

our approach concerning accuracy and computational 

cost. 

 

2. Related Work 

In recent years, the application of DL models, particularly 

CNNs, has demonstrated considerable potential in the 

automated analysis of ECG signals for CAD detection. Prior 

research has primarily focused on leveraging CNN 

architectures to capture morphological patterns indicative of 

CAD-related abnormalities. 

One of the first frameworks that uses the architecture of 1D-

CNN to detect CAD using ECG signals was proposed by 

Acharya et al. (2017) [1]. This model outclassed their 

competitors in terms of competitive classification 

performance, and it did not require handcrafted features, 

which led to a future developmental field in this direction. A 

similar endeavor is also found in (2017). The same author 

also showed the deep CNN applicability in detecting 

myocardial infarction, which is effective when dealing with 

automated feature extraction of the ECG signals. 

Based on that, Phoemsuk and Abolghasemi (2024) [8] the 

effect of input segment length and dropout regularization on 

1D-CNNs performance in CAD detection was examined. The 

accuracy of their model obtained using ECG data in the 

MIMIC III and Fantasia databases was quite significant. 

However, due to the complexity of signal variation among the 

datasets, dataset complexity was a limitation. 

To further increase the variety of data, Elyamani et al. (2024) 
[3] developed a deep residual 2D-CNN cardiovascular disease 

predictor and applied it to the PTB-XL set. Their study 

demonstrated that their model offered a high rate of ECG 

classification accuracy in 23 various cardiovascular diseases, 

emphasizing the concept of CNN adaptability in matching 

nerve morphologies. In the same respect, Sayin et al. (2024) 
[3] used the InceptionV3 model on ECG imaging to detect 

myocardial infarction with significant diagnostic outcomes. 

Hybrid architecture has also developed the ability to capture 

spatial and sequential signal features. As an example, Tan et 

al. (2018) experimented with a CNNLSTM hybrid model 

merging convolutional layers to extract spatial features and 

LSTM networks to capture temporal sequence patterns on the  

MIMIC dataset, proving its advantageous use. Kolhar and Al 

Rajeh (2024) [5] introduced a hybrid DL model that consists 

of AlexNet and a dual-branch fusion network, which showed 

outstanding results in the accuracy of ECG classification. 

The same trend has been noticed in any disease in Ameen et 

al. (2023) [4] A critical review of the ML-based strategies to 

classify breast cancer was given, and the effectiveness of 

CNNs and other AI models in diagnosing any biological 

disease was also indicated. Their results show the 

generalizability of CNNs when manipulating various medical 

datasets. In the same way, Hasan (2023) [9] also examined 

shallow and DL models for feature extraction in image-

driven classification tasks and emphasized feature extraction 

schemes' role in improving models' performance in different 

AI-based applications. 

Despite these advances, challenges persist in ensuring model 

generalizability across diverse populations, addressing data 

imbalance, and reducing computational complexity for real-

time deployment. As the current study exemplifies, these 

gaps motivate the continued development of robust and 

efficient CNN-based models, which achieve superior 

performance on the PTB-XL dataset while maintaining a 

computationally efficient architecture. 

 

2. Materials and Methods 

2.1 Dataset Description 

The data used in this study is a publicly distributed large-

scale ECG database (PTB-XL) that the PhysioNet project 

maintains (Wagner et al., 2020). The compressed form 

dataset (21,837 clinical 12-lead ECG records, 10-second 

records each) includes data from 18,885 patients. Those are 

recorded at 100 and 500 Hz and labeled by cardiologists with 

the extensive taxonomy of the SCP-ECG standard. The 

diagnostic statements incorporated in this taxonomy are as 

follows: myocardial infarction (MI), ischemic ST-T changes, 

nonspecific ST-T abnormalities, and central CAD indicators.  

The paper concerns the classification of CAD-related 

ECGs/vs normal ECGs. According to the precedent in the 

literature (Elyamani et al., 2024) [3] and (Acharya, Fujita, Oh, 

et al., 2017) [1], CAD cases would be labeled with any of the 

following: myocardial infarction, ST-segment elevation, ST 

depression, or T-wave inversion. Records without a 

pathological marking and marked with normal sinus rhythm 

are considered non-CAD controls. 

The stratified sampling is applied to divide the dataset into 

training (70%), validation (15%), and testing (15%) sets, and 

hence maintain the class distribution. 

 

2.2 Preprocessing 

Raw ECG data were subjected to a preprocessing pipeline 

designed to be consistent across the entire channel, maximize 

signal quality, and provide the means of a robust model 

operation. The steps address the possible problems of noise, 

patient-to-patient variability, and heterogeneity in the 

datasets without losing clinically meaningful features that are 

crucial in the detection of CAD. 

 

2.2.1 Resampling 

All the ECG signals were interpolated to an equal sampling 

rate of 100 Hz. This step normalizes the time resolution of all 

records, makes the calculations more computationally easy, 

and is consistent with standard research designs in ECG-

based DL research without losing content in diagnostics. 
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2.2.2 Filtering 

A band-pass filter eliminated inappropriate frequencies, such 

as image wander, and high-frequency noise. The passband of 

this filter was recorded as 0.5Hz to 40Hz, as per the clinical 

standards of obtaining the ECG to show the clinical 

characteristic values like the P waves, QRS complexes, and 

the T waves on the ECG. The band-pass filtering operation 

can be expressed as: 

 

𝑦(𝑡)  =  𝑥(𝑡)  ∗  ℎ(𝑡) (1) 

 

where: x(t) is the raw ECG signal, h(t) is the impulse response 

of the band-pass filter. 

 

2.2.3 Segmentation 

Each ECG recording spans 10 seconds and is treated as a 

single analysis segment. This decision preserves the complete 

temporal context of the cardiac cycle, capturing multiple 

heartbeats to encompass typical and pathological waveform 

variations. The input matrix for each sample thus maintains a 

shape of (1000, 12), corresponding to 1000 time points and 

12 leads. 

 

2.2.4 Normalization 

To mitigate the effects of inter-patient variability and signal 

amplitude differences across leads, z-score normalization 

was applied independently to each lead. This process 

transforms the data to zero mean and unit variance, 

stabilizing training and enhancing convergence. The 

normalization for each lead L is computed as: 

 

𝑥norm =
𝑥−μ

σ
 (2) 

 

where x is the original ECG signal, μ is the mean, and σ is the 

standard deviation of x. 

 

2.3 Model Architecture 

The proposed model is a 1D CNN (1D-CNN), specifically 

designed to capture temporal patterns across the 12-lead ECG 

signal. The architecture illustrated in Figure 1 comprises the 

following components: 

 

 
 

Fig 1: Model Architecture for CAD Detection 

• Input Layer: Multichannel input of shape (1000, 12) 

representing 10-second signals at 100 Hz. 

• Convolutional Blocks: Three convolutional layers with 

kernel sizes of 7, 5, and 3, respectively, followed by 

batch normalization, ReLU activation, and max-pooling. 

• Dropout Layers: Dropout with a rate of 0.2 after each 

convolutional block and an additional dropout of 0.5 

before the dense layer to mitigate overfitting. 

• Flattening Layer: Transforms the feature maps into a 

1D vector. 

• Dense Layer: Fully connected layer with 128 units and 

ReLU activation. 

• Output Layer: A Softmax layer with two units for 

binary classification (CAD, non-CAD). 

 

The architecture is optimized to balance accuracy with 

computational efficiency, making it suitable for research and 

clinical deployment.  

 

2.4 Training and Evaluation 

To optimize model learning and generalization, a 

comprehensive training protocol was implemented. The 

model was trained on the PTB-XL dataset using stratified 

sampling to maintain class balance across the training, 

validation, and test splits (70%, 15%, and 15%, respectively). 

All ECG signals were fed into the model as 12-lead, 10-

second segments resampled at 100 Hz. 

 

2.4.1 Optimization Strategy 

Training was conducted using the Adam optimizer, selected 

for its adaptive learning rate capabilities. The initial learning 

rate was set to 0.001 and was decreased by a factor of 0.1 

upon stagnation in validation loss for five consecutive 

epochs. The loss function utilized was binary cross-entropy, 

which is appropriate for this binary classification task. 

 

2.4.5 Batch Processing and Epochs 

The model was trained using mini-batches of size 64, which 

provided a balance between computational efficiency and 

gradient stability. Training was capped at 50 epochs, with 

early stopping applied if validation loss did not improve for 

10 consecutive epochs, thereby preventing overfitting and 

conserving computational resources. 

 

2.4.6 Data Augmentation 

During training, data augmentation techniques were 

employed to improve model robustness and mitigate 

overfitting. These techniques artificially expand the training 

dataset by introducing realistic variations in the ECG signals, 

simulating the diversity observed in real-world clinical 

scenarios. 

 

The following augmentation methods were applied: 

• Random Scaling: Each ECG segment was randomly 

scaled by up to ±10% to simulate variations in signal 

amplitude due to physiological or device-related factors. 

• Amplitude Perturbation: Gaussian noise with a 

standard deviation σ=0.01\sigma = 0.01σ=0.01 was 

added to each segment to mimic minor measurement 

artifacts. 

• Temporal Stretching/Compression: Temporal 

distortion within a ±5% range was applied to reflect 

natural variability in heart rate without altering 
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diagnostic patterns. 

 

These transformations can be summarized mathematically 

for an ECG signal x as: 

 

𝑥̂(𝑡) = α ⋅ 𝑥(β ⋅ 𝑡) + 𝑁(0, σ2) (3) 

 

where α is a random scaling factor within ±10%, β is a 

temporal stretch factor within ±5%, 𝑁(0, 𝜎2) represents 

Gaussian noise. 

 

2.4.7 Evaluation Metrics 

To comprehensively evaluate the model’s performance, we 

employed several well-established metrics: 

• Accuracy: Proportion of correctly predicted samples 

among all samples. 

• Precision: Proportion of true positive predictions among 

all positive predictions. 

• Sensitivity: Proportion of actual CAD cases correctly 

identified. 

• Specificity: Proportion of non-CAD cases correctly 

classified. 

• F1-score: Harmonic mean of precision and recall, 

especially informative under class imbalance. 

• AUC-ROC: Area under the Receiver Operating 

Characteristic curve, which measures the model’s ability 

to discriminate between classes. 

 

2.4.8 Cross-Validation 

Five-fold cross-validation was conducted to assess the 

model’s generalizability. The dataset was partitioned into 

five folds, each serving once as the validation set and the 

remaining four as the training set. Performance metrics were 

averaged across folds to ensure consistency. 

 

2.4.9 Experimental Setup 

All training and evaluation experiments were conducted 

using Python 3.8 and the TensorFlow 2.13 framework. The 

experiments were run on a workstation with an NVIDIA RTX 

3090 GPU (24GB). Training was conducted within Docker 

containers configured with fixed seeds and environment 

dependencies to ensure reproducibility. 

 

3. Results and Discussion 

This section comprehensively evaluates the proposed 1D-

CNN model for CAD detection using ECG signals from the 

PTB-XL dataset. Performance metrics are derived from both 

hold-out test evaluations and five-fold cross-validation. We 

also conduct ablation experiments to examine the effects of 

key architectural modifications, such as dropout 

configuration and segment length. 

 

3.1 Classification Performance 

The proposed model achieved robust performance across all 

test metrics. Table 1 summarizes the average results over five 

cross-validation folds. 

The high AUC-ROC score indicates strong discriminative 

capability between CAD and non-CAD classes. The recall 

value of 92.7% reflects the model’s capacity to correctly 

identify CAD-positive cases, a critical feature in clinical 

settings. 

 

 

Table 1: Average Performance Metrics on the Test Set (Five-Fold 

Cross-Validation) 
 

Metric Value (%) 

Accuracy 94.2 

Precision 93.1 

Recall 92.7 

Specificity 95.4 

F1-score 92.9 

AUC-ROC 96.1 

 

3.2 Confusion Matrix and ROC Analysis 

Figure 2 presents the confusion matrix for a representative 

test fold. The matrix shows that the model correctly classified 

289 CAD-positive cases and 312 non-CAD instances, while 

misclassifying only 15 non-CAD samples as CAD (false 

positives) and 24 CAD cases as non-CAD (false negatives). 

 

 
 

Fig 2: Confusion matrix of the proposed model evaluated on the 

hold-out test set. 

 

In addition, Figure 3 illustrates the receiver operating 

characteristic (ROC) curve. The curve plots the true positive 

rate against the false positive rate, yielding an area under the 

curve (AUC) of 0.96, demonstrating excellent discrimination 

capability between CAD and non-CAD classes. 

 

 
 

Fig 3: The proposed model’s Receiver Operating Characteristic 

(ROC) curve. 
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3.3 Ablation Study 

To assess the impact of model design elements, we conducted 

ablation experiments focusing on dropout configuration and 

ECG segment duration. 

 

3.4 Dropout Configuration 

Table 2 compares the model’s test accuracy under different 

dropout settings. Including both convolutional and dense 

layer dropout significantly enhanced the model’s 

generalization. 

 
Table 2: Performance comparison under different dropout 

configurations. 
 

Configuration Accuracy (%) AUC-ROC (%) 

No dropout 88.4 90.3 

Dropout (0.2 after conv blocks) 91.7 93.5 

Dropout (0.2 conv + 0.5 dense) 94.2 96.1 

 

3.5 ECG Segment Length 

Table 3 summarizes the model performance with varying 

input segment durations. Using the whole 10-second segment 

provided the highest classification accuracy and F1-score, as 

it preserved the temporal features necessary for CAD 

diagnosis. 

 
Table 3: Effect of ECG segment duration on model performance. 

 

Segment Length (sec) Accuracy (%) F1-score (%) 

5 89.6 88.3 

7.5 92.1 91.2 

10 (full segment) 94.2 92.9 

 

3.6 Comparison with Existing Models 

Table 4 presents a comparative analysis with prominent CAD 

detection models from recent literature. The proposed model 

surpasses previous methods in classification accuracy while 

maintaining lower architectural complexity. 

 
Table 4: Accuracy comparison with state-of-the-art models. 

 

Model Dataset Accuracy (%) 

Acharya et al. (2017) [1] PTB 93.1 

Tan et al. (2018) (CNN-LSTM) MIMIC 94.0 

Phoemsuk & Abolghasemi (2024) [8] MIMIC 89.0 

Proposed Model PTB-XL 94.2 

 

4. Discussion 

The study's findings confirm the suggested one-dimensional 

CNN network's effectiveness in automated CAD detection 

according to ECG signals. The model is of high accuracy, 

recall, specificity, and AUC-ROC during internal tests and in 

five-fold cross-validation. These results confirm the 

effectiveness of the offered architecture and point out its 

further possible use in the clinic to diagnose CAD in its early 

stages with high probability. 

 

4.1 Comparison with Prior Work 

The model demonstrated superior classification performance 

as compared to known CAD detection models. Our model 

outperformed Acharya et al. (2017) [1] with an overall 

accuracy of 94.2 in comparison to the accuracy of 93.1 

reported by the other authors, who used a single-dimensional 

CNN architecture. Furthermore, in the accuracy rates, 

although hybrid architectures like the CNN-LSTM model by 

Tan et al. (2018) produced results with less accuracy 

(94.0%), our model produced competitive results with fewer 

parameters, less complexity in training, and better 

computational performance. 

The results provide an enhanced addition to Phoemsuk and 

Abolghasemi (2024) [8], who contoured different segment 

lengths and dropout schemes in detecting CAD identification. 

Whole 10-second ECG segments were adopted and coupled 

with a dual dropout strategy; the proposed model allowed 

superior generalization over unseen data, with minimal 

computation. 

 

4.2 Impact of Architectural Decisions 

The ablation experiments proved that adding the dropout 

regularization, especially with a combination of 0.2 after the 

convolutional layers and 0.5 before the dense layer, improved 

the generalization and decreased overfitting. In addition, the 

segments' duration played a pivotal role in modelling the 

temporal dependency in ECG waveforms. As one would 

expect clinically, full-length segments had a steady 

advantage over abridged segments, in that longer windows 

provide better representations of ischemic changes, i.e., ST 

depression and T-wave inversion. 

The large AUC-ROC (96.1%) also supports the model's 

discriminative ability, efficiently differentiating 

abnormalities associated with CAD and normal cardiac 

rhythms. Such findings have aligned with the past literature 

that has emphasized the diagnostic ability of CNNs in 

identifying the subtle morphological trends of the ECG 

signals (Elyamani et al., 2024; Kolhar & Al Rajeh, 2024) [3, 

5]. 

 

4.3 Clinical and Practical Implications 

The proposed model has several clinical strengths. First, its 

sensitivity to identify the potential of CAD by short-duration, 

12-lead ECGs is in line with normal clinical practice. 

Therefore, it may be a part of decision-support systems 

within emergency departments or in primary care. Second, a 

high level of specificity of the model makes it extremely 

difficult to obtain false alarms, minimizing such unwanted 

processes as follow-ups and their associated anxiety in 

patients. 

Still, as a practical perspective, the simplicity of the model in 

solution calculation, which was produced by the small 

architecture and efficient dropout regularization, permits 

deployment on resource-limited devices, such as portable 

ECG machines and mobile diagnostics systems. 

 

4.4 Limitations and Future Work 

The model represents a good performance, but a number of 

limitations are worth discussing. To start with, PTB-XL is a 

rather large and diverse dataset, meaning that patient 

demographics and data acquisition methods may not be 

appropriate for depicting clinical populations worldwide. 

This could restrict the real-life application of generalizations. 

Second, the model was trained on binary classification (CAD 

vs. non-CAD); nevertheless, in clinical practice, CAD 

severity and subtype (e.g., stable angina vs. myocardial 

infarction) are important when it comes to diagnosis. 

The future work will concentrate on extending the framework 

to classification, where CAD subtypes will be characterized 

according to different classes. One may also use transfer 

learning and domain adaptation techniques to transfer the 

model to other datasets and real-time streaming ECG signals. 

Inclusion of patient history, symptoms, and comorbidities as 
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clinical metadata might also be useful to increase diagnostic 

performance and give interpretability to clinicians. 

 

5. Conclusion 

This study presented an enhanced one-dimensional 

convolutional neural network (1D-CNN) model for 

automatically detecting coronary artery disease (CAD) using 

ECG signals from the PTB-XL dataset. The proposed model 

effectively addressed key limitations observed in prior 

approaches by incorporating architectural refinements such 

as adaptive segment handling and strategic dropout 

regularization. These enhancements yielded superior 

performance in terms of accuracy (94.2%), sensitivity 

(92.7%), specificity (95.4%), and AUC-ROC (96.1%), 

surpassing several state-of-the-art models while maintaining 

computational efficiency. 

In the future, the model will be applied to multiclass 

classification models that can differentiate different subtypes 

of CAD among others. Future studies will also endeavor to 

confirm the model on the larger and more diverse groups 

using the cross-institutional data. Furthermore, the inclusion 

of supplementary patient information, such as clinical records 

and demographic characteristics, has the potential to improve 

the clinical significance of the proposed system. 

In conclusion, the study contributes a scalable, robust, and 

interpretable DL framework for CAD detection, supporting 

intelligent cardiovascular diagnostics and ongoing 

advancement in academic and clinical domains. 
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