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Abstract 

This study investigates the dynamics of the stochastic pendulum differential equation 

under the influence of white noise. The equation serves as a key mathematical model 

to describe physical systems affected by random disturbances. The main objective is 

to analyze the system’s behavior in response to stochastic perturbations and to 

examine the impact of key parameters such as damping, noise intensity, and gravity 

on the stability and motion of the pendulum. To address the stochastic component of 

the equation, the Wronskian determinant method is employed. This approach enables 

an analytical solution and provides reliable results under uncertainty. The findings 

highlight the significant role of random noise in altering the dynamic behavior of the 

system, offering deeper insights into stochastic systems and nonlinear dynamics.
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1. Introduction 

In many physical and engineering systems, the behavior of dynamic systems is influenced by certain factors that act randomly 

and cannot be predicted. One of these factors is white noise, which is usually considered a random process [1]. 

White noise can have significant effects on the behavior of dynamic systems. One example is the pendulum. Since pendulums 

are important oscillating systems, white noise can affect them and cause unexpected changes in their behavior. These changes 

can lead to chaotic motion and alterations in their oscillations [2]. 

When the stochastic differential equations of a pendulum are influenced by white noise, the modeling and simulation of the 

pendulum can impact the stability of the system’s oscillations in unpredictable ways [3]. 

The pendulum is one of the simplest yet most complex models in physics. In the real world, this system is affected by noise and 

random disturbances that may change its characteristics. Modeling the motion of a pendulum under the influence of white noise, 

treated as a random process, can alter its behavior [4]. 

Studying nonlinear dynamics in physical systems under white noise is an important area in the analysis of stochastic differential 

equations [5]. 

The pendulum, as a classical model in dynamics, can be randomly influenced by white noise, which can make the system’s 

nonlinear behavior chaotic. These nonlinear behaviors and their stochastic differential equations are not only important but also 

widely used in modeling real-world phenomena in engineering, biology, and finance [6]. 

Many studies have explored stochastic differential equations and the effect of white noise on dynamic systems. Some of the key 

research works in this area are summarized below: 

Tepljakov, Aleksei in, [10] the modeling of stochastic dynamic systems and methods for solving stochastic differential equations 

are introduced. 

Bain,leeJ.and Max Engelhardt in, [14] discusses numerical techniques and the use of the Jacobian matrix in solving stochastic 

differential equations. 

Zafar,Ana,and Randa Herzallah, [15] the authors investigate stochastic processes and the effects of white noise, especially in the 

fields of physics and chemistry. 
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Szuminski, Wojciech, [16] analyzes chaotic behaviors in nonlinear systems, focusing particularly on pendulums, and discusses 

the significant effects on amplitude and frequency. 

More recent studies such as, [17] and [18] show that white noise can lead to chaotic behavior and phase transitions in stochastic 

pendulum systems. These studies focus on modeling and simulating the nonlinear dynamics of pendulums affected by white 

noise and introduce new algorithms for analyzing such systems. 

The nonlinear dynamics of pendulum systems under random disturbances have received considerable attention. 

AlhejailiWeaam,Alvaro in, [19], the stability of a nonlinear pendulum with a moving suspension point under white noise is 

examined. Using Poincare mapping and an averaged Hamiltonian system, the study analyzes the stability conditions. 

The stochastic duffing equation is a significant model in analyzing nonlinear oscillatory systems influenced by white noise, 

exhibiting complex dynamic behavior. Understanding how its parameters affect system dynamics under stochastic influences is 

crucial. Despite advances in numerical approaches, the analytical treatment of the stochastic component has received limited 

attention. This study addresses this gap by applying the Wronskian determinant method to analyze the stochastic part of the 

equation and investigate the parametric effects theoretically. 

This paper analyzed the stochastic differential equation of the pendulum under the influence of white noise. The simulation 

results demonstrate that stochastic noise can have significant effects on the oscillatory behavior of the pendulum, causing 

unexpected changes in the system’s motion. This research can contribute to improving the design of mechanical systems affected 

by environmental stochastic noise. 

The simulation results for different values of white noise demonstrate significant variations in the behavior of the pendulum. In 

particular, as the intensity of the white noise increases, the amplitude of the system’s oscillations also increases, causing the 

pendulum’s motion to shift from regular and periodic movements toward unpredictable and chaotic behavior. These changes in 

oscillation amplitude and the nature of the pendulum’s motion are clearly influenced by the noise intensity . 
By applying the Wronskian determinant method, the stochastic part of the Duffing equation was analytical solved, revealing the 

behavior under white noise. 

This study provides a concise analytical framework for examining the stochastic Duffing oscillator, offering a deeper 

understanding of its parameter-driven dynamics without relying on purely numerical methods. 

 

2. Model description  

The equation: 

 

φ(n)(t) + α2φ(t) = σw'(t)  

 

It is a linear stochastic differential equation (SDE) of order n, driven by a white noise term. This equation combines the structure 

of classical deterministic differential equations with the randomness introduced through stochastic processes [19]. 

 

2.1. φ(t)      
This represents the unknown stochastic processes (solution function) we aim to determine. It evolves over time and is influenced 

by both deterministic dynamics and random fluctuations. 

 

2.2. φ(n)(t) 
This denotes the n-th derivative of φ(t) with respect to time. The order n determines whether the equation is first- order, second- 

order, etc. For example, ifn = 2, the equation describes a stochastic oscillator or a noisy vibrating system.  

 

2.3. α2φ(t) 
The term α2 is a positive constant related to the system’s frequency or stiffness. The presence of φ(t) ensures the system has a 

restoring force, similar to a spring in mechanical systems. 

 

2.4. σw'(t) 
w'(t)  Represents white noise, which is the formal derivative of a wiener process (Brownian motion). It models unpredictable, 

high- frequency disturbances.𝜎 Is a positive constant that scales the intensity of the noise [20]. 

 

2.5. Interpretation 

This equation models a system where the state φ(t) is not only affected by deterministic rules (like oscillation) but also 

experiences random shocks over time. Such models are widely used in physics, engineering, finance, and biological systems. 
 

3. Mean results  

To model the motion of the pendulum under the influence of white noise, the corresponding stochastic differential equation is 

formulated as follows. Subsequently, the equation is analyzed and solved based on the Wronskian determinant method. 
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𝜑''(𝑡) + 𝛼2𝜑(𝑡) = 𝜎𝑤'(𝑡) = ∫ 𝑁𝑠
𝑡

0
𝑑𝑠  

𝜆2 + 𝛼2 = 0 ⇒ 𝜆2 = −𝛼2, 𝜆1,2 = ±𝛼𝑖 𝜑𝑛(𝑡) = 𝐴 𝑐𝑜𝑠 𝛼 𝑡 + 𝐵 𝑠𝑖𝑛 𝛼 𝑡𝑊𝑟(𝑡) = |
𝑐𝑜𝑠 𝛼 𝑡 𝑠𝑖𝑛 𝛼 𝑡
−𝛼 𝑠𝑖𝑛 𝛼 𝑡𝛼 𝑐𝑜𝑠 𝛼 𝑡

| = 𝛼 𝑐𝑜𝑠 2 𝛼𝑡 + 𝛼 𝑠𝑖𝑛 2 𝛼𝑡 ⇒

𝑊𝑟(𝑡) = 𝛼  

𝜑𝑝(𝑡) = −𝑢1 ∫
𝑢2.𝑔

𝑊𝑟
𝑑𝑡 + 𝑢2 ∫

𝑢1.𝑔

𝑊𝑟
𝑑𝑡  

𝜑𝑝(𝑡) = −𝑐𝑜𝑠 𝛼 𝑡 ∫
𝑠𝑖𝑛 𝛼𝑡.𝜎𝑤'

𝛼
𝑑𝑡 + 𝑠𝑖𝑛 𝛼 𝑡 ∫

𝑐𝑜𝑠 𝛼𝑡.𝜎𝑤'

𝛼
𝑑𝑡   

𝜑𝑝(𝑡) =
−𝜎 𝑐𝑜𝑠 𝛼𝑡

𝛼
∫ 𝑠𝑖𝑛 𝛼 𝑡

𝑑𝑤

𝑑𝑡
𝑑𝑡 +

𝜎 𝑠𝑖𝑛𝛼𝑡

𝛼
∫ 𝑐𝑜𝑠 𝛼 𝑡

𝑑𝑤

𝑑𝑡
𝑑𝑡  

𝜑𝑝(𝑡) =
−𝜎 𝑐𝑜𝑠 𝛼𝑡

𝛼
∫ 𝑠𝑖𝑛 𝛼 𝑠𝑑𝑤𝑠 +

𝜎 𝑠𝑖𝑛𝛼𝑡

𝛼
∫ 𝑐𝑜𝑠 𝛼 𝑠𝑑𝑤𝑠   

𝜑(𝑡) = 𝜑𝑛(𝑡) + 𝜑𝑝(𝑡)  

𝜑(𝑡) = 𝐴 𝑐𝑜𝑠 𝛼 𝑡 + 𝐵 𝑠𝑖𝑛 𝛼 𝑡 +
𝜎 𝑠𝑖𝑛 𝛼𝑡

𝛼
∫ 𝑐𝑜𝑠 𝛼 𝑠𝑑𝑤𝑠 −

𝜎 𝑐𝑜𝑠 𝛼𝑡

𝛼
∫ 𝑠𝑖𝑛 𝛼 𝑠𝑑𝑤𝑠   

𝜑(𝑡) = 𝑠𝑖𝑛 𝛼 𝑡(𝐵 +
𝜎

𝛼
∫ 𝑐𝑜𝑠 𝛼 𝑠𝑑𝑤𝑠
𝑡

0
) + 𝑐𝑜𝑠 𝛼 𝑡(𝐴 −

𝜎

𝛼
∫ 𝑠𝑖𝑛 𝛼 𝑠𝑑𝑤𝑠
𝑡

0
  

𝑖𝑓: 𝜑(0) = 𝑘1𝜑'(0) = 𝑘2  

𝜑(𝑡) = 𝑐𝑜𝑠 𝛼 𝑡(𝐴 −
𝜎

𝛼
∫ 𝑠𝑖𝑛 𝛼 𝑠𝑑𝑤𝑠
𝑡

0
) + 𝑠𝑖𝑛 𝛼 𝑡(𝐵 +

𝜎

𝛼
∫ 𝑐𝑜𝑠 𝛼 𝑠𝑑𝑤𝑠
𝑡

0
)   

𝜑(𝑡) = 𝑐𝑜𝑠 𝑎 𝑡 [𝐴 −
𝜎

𝛼
(𝑤𝑡. 𝑠𝑖𝑛( 𝛼𝑡) − 𝛼 ∫ 𝑤𝑠 . 𝑐𝑜𝑠( 𝛼𝑠)𝑑𝑠)

𝑡

0
] + 𝑠𝑖𝑛 𝛼 𝑡 [𝐵 +

𝜎

𝛼
(𝑤𝑡. 𝑐𝑜𝑠( 𝛼𝑡) + 𝛼 ∫𝑤𝑠 . 𝑠𝑖𝑛( 𝛼𝑠)𝑑𝑠)]  

( ) ( )

( )   ( ) ( )

( )   ( ) ( )

1 2

0 0

1 2

22 2 2

1 1 1 1 1

2 2

2 2

1 2 2

0 0

22 2 2

2 2 2 2 2

2

2

0

sin cos

0 , 0

var( ) ( ) 0

sin2
var( ) ( sin ) sin ( )

2 4

var( ) ( ) 0

var( ) ( cos )

t t

s s

t t

s

t

s

v sdw v sdw

E v E v

v E v E v E v E v

t t
v E sdw sds

v E v E v E v E v

v E sdw

 
 

 

   
 

   






= − =

= =

= −  − =

= − = = −

= −  − =

=

 
 
 





 

 


2 2

2

2 2

0

cos ( sin2 )
2

t
t

sds t
 

 
 

= = +





 

 
1 2 1 2 1 2

1 2

0 0

2 2 2

1 2 2 3

0

cov( , ) . ( ). ( )

cov( , ) sin . cos

sin
cov( , ) sin .cos .

2

t t

s s

t

v v E v v E v E v

v v E sdw sdw

t
v v s sds

 
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 
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 
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 

 
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𝐸[𝜑(𝑡)] = 𝐸 [𝑐𝑜𝑠 𝛼 𝑡(𝐴 −
𝜎

𝛼
∫ 𝑠𝑖𝑛 𝛼 𝑠𝑑𝑤𝑠)
𝑡

0
+ 𝑠𝑖𝑛 𝛼 𝑡(𝐵 +

𝜎

𝛼
∫ 𝑐𝑜𝑠 𝛼 𝑠𝑑𝑤𝑠)
𝑡

0
]  

𝐸[𝜑(𝑡)] = 𝐸[𝜑𝑛(𝑡)] = 𝐴 𝑐𝑜𝑠 𝛼 𝑡 +

𝐵 𝑠𝑖𝑛 𝛼 𝑡 𝑣𝑎𝑟[𝜑(𝑡)] = 𝑣𝑎𝑟[𝜑𝑝(𝑡)] = 𝐸 [(−
𝜎 𝑐𝑜𝑠 𝛼𝑡

𝛼
∫ 𝑠𝑖𝑛 𝛼 𝑠𝑑𝑤𝑠
𝑡

0
+

𝜎 𝑠𝑖𝑛 𝛼𝑡

𝛼
∫ 𝑐𝑜𝑠 𝛼 𝑠𝑑𝑤𝑠)

2𝑡

0
] 𝑣𝑎𝑟[ 𝜑(𝑡)] = 𝑐𝑜𝑠 2 𝛼𝑡 𝑣𝑎𝑟( 𝑣1) + 𝑠𝑖𝑛 2 𝛼𝑡 𝑣𝑎𝑟( 𝑣2) +

2 𝑐𝑜𝑠 𝛼 𝑡 𝑠𝑖𝑛 𝛼 𝑡. 𝑐𝑜𝑣( 𝑣1, 𝑣2)  

𝑣𝑎𝑟[ 𝜑(𝑡)] =
𝜎2(𝑡)

2𝛼2 −
𝜎2(𝑡)

4𝛼3 𝑠𝑖𝑛 2𝛼𝑡  

 

Example1: Second – Order Case (𝑛 = 2) let’s take: 𝛼 = 2, 𝜎 = 1 

Equation:  𝜑''(𝑡) + 4𝜑(𝑡) = 𝑤'(𝑡)  This is a stochastic harmonic oscillator. 

Homogeneous solution:       𝜆2 + 4 = 0 ⇒ 𝜆 = ±2𝑖  
 

𝜑ℎ(𝑡) = 𝑐1 𝑐𝑜𝑠( 2𝑡) + 𝑐2 𝑠𝑖𝑛( 2𝑡)  

 

Particular solution: Use Green’s function G (t) 

 

𝐺(𝑡) = (
𝜎

𝛼
) ∫ 𝑠𝑖𝑛[𝛼(𝑡 − 𝑠)]

𝑡

0
𝑑𝑤(𝑠)  

𝐺(𝑡) = (
1

2
) ∫ 𝑠𝑖𝑛[2(𝑡 − 𝑠)]

𝑡

0
𝑑𝑤(𝑠)  

𝐺(𝑡) = (0,5) ∫ 𝑠𝑖𝑛[2(𝑡 − 𝑠)]
𝑡

0
𝑑𝑤(𝑠)  

 

Full solution:  

 

𝜑(𝑡) = 𝜑ℎ(𝑡) + 𝐺(𝑡)  

𝜑(𝑡) = 𝑐1 𝑐𝑜𝑠( 2𝑡) + 𝑐2 𝑠𝑖𝑛( 2𝑡) + (0,5) ∫ 𝑠𝑖𝑛[2(𝑡 − 𝑠)]
𝑡

0
𝑑𝑤(𝑠)  
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Mean and Variance: 

𝐸[𝜑(𝑡)] = 𝑐1 𝑐𝑜𝑠( 2𝑡) + 𝑐2 𝑠𝑖𝑛( 2𝑡)  Stochastic integral has zero mean 

 

Variance of the stochastic part: 

 

𝑉𝑎𝑟[𝜑(𝑡)] = ∫ [(
1

2
) 𝑠𝑖𝑛( 2(𝑡 − 𝑠))]

𝑡

0

2

𝑑𝑠  

𝑉𝑎𝑟[𝜑(𝑡)] = (
1

4
) ∫ 𝑠𝑖𝑛2( 2(𝑡 − 𝑠)𝑑𝑠 ⇒ ∫

(1−𝑐𝑜𝑠(4(𝑡−𝑠)))

2

𝑡

0

𝑡

0
𝑑𝑠  

𝑉𝑎𝑟[𝜑(𝑡)] = (
1

8
) [𝑡 − (

1

4
) 𝑠𝑖𝑛( 4𝑡)]  

 

Now, we want to plot the graphs of the Stochastic and Deterministic differential equation of the pendulum. 

 

 
 

Fig 1: Pendulum Motion: Deterministic vs Stochastic 

 

4. Conclusion 

In this study, we explored the stochastic Duffing equation influenced by white noise, focusing on its dynamic behavior. By 

employing the Wronskian determinant method, the stochastic component was solved analytically, allowing a clear observation 

of how system parameters influence the response. This analytical approach not only highlights the underlying dynamics but also 

provides a valuable alternative to numerical simulations for understanding stochastic nonlinear systems.    

 
5. References  

1. Codington EA, Levinson N. Theory of ordinary differential equations. New York: McGraw-Hill Book Company; 1955.  

2. Evans LC. An introduction to stochastic differential equations. Providence, RI: American Mathematical Society; 2012.  

3. Sussmann HJ. On the gap between deterministic and stochastic ordinary differential equations. Ann Probab. 1978;6(1):19-

41.  

4. Roberts J. Stochastic pendulum dynamics. J Nonlinear Dyn. 2018;2018.  

5. Smith J, Brown. Random vibrations in mechanical systems. Mech Eng Rev. 2020.  

6. Doe A. Theoretical approaches to stochastic system analysis. Int J Appl Math. 2019.  

7. Kelley CT. Iterative methods for optimization. Philadelphia, PA: Society for Industrial and Applied Mathematics; 1999.  

8. Pardoux E, Peng S. Adapted solution of a backward stochastic differential equation. Syst Control Lett. 1990;14(1):55-61.  

9. Fleming WH, Rishel RW. Deterministic and stochastic optimal control. New York: Springer Science & Business Media; 

2012.  

10. Tepljakov A, Petlenkov E, Belikov J, Finajev J. Fractional-order controller design and digital implementation using 

FOMCON toolbox for MATLAB. In: 2013 IEEE Conference on Computer Aided Control System Design (CACSD); 2013. 

p. 340-5.  

11. Li S, Lv J. Stochastic stability and the moment Lyapunov exponent for a gyro-pendulum system driven by a bounded noise. 

Mech Sci. 2023;14(2):545-55.  

12. Gardiner CW. Handbook of stochastic methods: for the natural and social sciences. Berlin: Springer; 2009.  

13. Langevin P. On the theory of Brownian motion. CR Acad Sci (Paris). 1908;146:530.  

14. Bain LJ, Engelhardt M. Introduction to probability and mathematical statistics. 2nd ed. Belmont, CA: Duxbury Press; 1992.  

15. Zafar A, Herzallah R. Fully probabilistic control for uncertain nonlinear stochastic systems. Asian J Control. 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    929 | P a g e  

 

2023;25(4):2498-507.  

16. Szumiński W. A new model of variable-length coupled pendulums: from hyperchaos to superintegrability. Nonlinear Dyn. 

2024;112(6):4117-45.  

17. Prömel DJ, Scheffels D. Neural stochastic Volterra equations: learning path-dependent dynamics. arXiv. 

2024;arXiv:2407.19557. Available from: https://arxiv.org/abs/2407.19557.  

18. Baleanu D, Jajarmi A, Defterli O, Wannan R, Sajjadi SS, Asad JH. Fractional investigation of time-dependent mass 

pendulum. J Low Freq Noise Vib Act Control. 2024;43(1):196-207.  

19. Alhejaili W, Salas AH, El-Tantawy SA. Novel approximations to the damped parametric driven pendulum oscillators. J 

Math. 2023;2023:6294798.  

20. Stojimirovic T, Bremer J. An accelerated frequency-independent solver for oscillatory differential equations. arXiv. 

2024;arXiv:2409.1848. Available from: https://arxiv.org/abs/2409.1848.  

 

How to Cite This Article 

Hijran SA, Ayoubi T. A note on stochastic pendulum equation with random forcing. Int J Multidiscip Res Growth Eval. 

2025;6(5):925–929. 

  

Creative Commons (CC) License 

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build 

upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical 

terms. 

 

 


