

International Journal of Multidisciplinary Research and Growth Evaluation

ISSN: 2582-7138

Impact Factor (RSIF): 7.98

Received: 22-01-2020; Accepted: 19-02-2020

www.allmultidisciplinaryjournal.com

Volume 1; Issue 2; March-April 2021; Page No. 220-231

Role of Agricultural Extension Services in Driving Innovation Adoption Among Rural Farmers in Emerging Markets

Olamidotun Nurudeen Michael 1*, Omodolapo Eunice Ogunsola 2

¹ Independent Researcher, Ogbomoso, Nigeria ² International Institute of Tropical Agriculture (IITA), Nigeria

Corresponding Author: Olamidotun Nurudeen Michael DOI: https://doi.org/10.54660/.IJMRGE.2020.1.2.220-231

Abstract

Agricultural extension services play a pivotal role in bridging the knowledge and technology gap between agricultural research institutions and rural farmers, particularly in emerging markets. This paper reviews the critical function of extension services in fostering innovation adoption to enhance productivity, sustainability, and rural livelihoods. It explores how extension systems—ranging from traditional face-to-face advisory models to digital and participatory platforms—facilitate knowledge dissemination, behavioral change, and decision-making among smallholder farmers. The review highlights how institutional capacity, policy frameworks, and public-private partnerships influence the effectiveness of extension programs in driving technology transfer and innovation uptake. Furthermore, it examines

emerging trends such as e-extension, mobile-based advisory systems, and farmer field schools as transformative tools for inclusive agricultural development. Key challenges identified include limited funding, inadequate training, weak infrastructure, and gender disparities that hinder equitable access to information. By synthesizing evidence from case studies across Africa, Asia, and Latin America, this paper provides actionable insights into strengthening extension service delivery mechanisms for improved innovation diffusion. The findings emphasize that an integrated, participatory, and technology-driven approach to agricultural extension can significantly accelerate innovation adoption and rural transformation in emerging economies.

Keywords: Agricultural Extension Services, Innovation Adoption, Rural Farmers, Emerging Markets, Technology Transfer

1. Introduction

1.1. Background and Rationale

Agricultural extension services have long been recognized as the cornerstone of agricultural transformation in emerging markets, providing the vital link between research innovations and rural farming communities. These services facilitate the transfer of knowledge, technology, and best practices that enable farmers to improve productivity, enhance resilience, and achieve sustainable livelihoods. In many developing regions, agriculture remains the primary source of income and employment, yet adoption rates of modern agricultural innovations remain low due to barriers such as limited access to information, inadequate training, and weak institutional frameworks. Extension services are designed to address these challenges by equipping farmers with practical knowledge, improving decision-making processes, and fostering behavioral change that promotes innovation diffusion. They also enhance the integration of farmers into formal value chains, empowering rural households to move beyond subsistence farming toward market-oriented production systems (Asata, Nyangoma, & Okolo, 2020).

In the context of globalization and rapid technological advancement, the role of agricultural extension has evolved beyond traditional face-to-face interactions to include digital platforms, participatory approaches, and public-private partnerships. This evolution reflects the growing need to tailor extension delivery systems to the socio-economic and cultural realities of rural farmers in emerging markets. Studies have demonstrated that well-structured extension programs contribute significantly to national food security goals, environmental sustainability, and poverty alleviation through inclusive innovation adoption (Giwah, Nwokediegwu, Etukudoh, & Gbabo, 2020). However, persistent issues such as gender disparities, inadequate funding, and fragmented institutional coordination continue to hinder the effectiveness of these services.

The rationale for this review, therefore, lies in understanding how agricultural extension systems can be strategically strengthened to drive innovation adoption among rural farmers, ensuring that modern technologies and practices reach those who need them most. By exploring successful models, identifying systemic barriers, and assessing the transformative potential of digital extension innovations, this paper contributes to policy dialogue and academic discourse on sustainable agricultural development in emerging economies.

1.2. Objectives and Scope of the Review

The primary objective of this review is to critically examine the role of agricultural extension services in fostering the adoption of innovative agricultural technologies and practices among rural farmers in emerging markets. Specifically, it seeks to assess how extension systems function as conduits for knowledge dissemination, behavioral change, and capacity building, which collectively enhance agricultural productivity and sustainability. The review also aims to identify best practices, policy interventions, and institutional strategies that have successfully strengthened extension frameworks and facilitated the diffusion of innovations across diverse agricultural settings.

The scope of this review encompasses both traditional and contemporary models of agricultural extension, including public-sector programs, private and NGO-led initiatives, and ICT-based (e-extension) systems. It focuses on emerging markets in Africa, Asia, and Latin America, where extension services play a pivotal role in bridging the gap between technological advancement and field-level adoption. The review evaluates empirical evidence and case studies from these regions to uncover cross-cutting challenges such as limited resources, infrastructural deficiencies, and sociocultural constraints. By integrating insights from existing literature and practical applications, the study provides a comprehensive understanding of how extension services can evolve into dynamic, farmer-centered systems capable of sustaining innovation-driven agricultural growth.

1.3. Research Questions

To achieve the objectives outlined above, the review seeks to address the following key research questions:

- 1. How do agricultural extension services influence innovation adoption among rural farmers in emerging markets?
- 2. What institutional, socio-economic, and technological factors determine the effectiveness of extension systems in promoting agricultural innovation?
- 3. How have digital and participatory approaches transformed the delivery and impact of extension services?
- 4. What challenges hinder the widespread adoption of agricultural innovations despite the presence of extension frameworks?
- 5. What lessons can be learned from successful case studies to inform policy and practice for future extension reforms?

These questions guide the analytical framework of the study by providing a structured approach to examining both the operational mechanisms and systemic barriers that affect innovation diffusion in agriculture. They also serve as a foundation for evaluating the transformative potential of modern extension strategies, especially those integrating ICT tools and participatory learning models. Ultimately, the answers to these questions will illuminate the pathways through which agricultural extension can serve as a catalyst for rural transformation, sustainable productivity, and economic inclusivity in emerging markets.

1.4. Structure of the Paper

The paper is organized into six interrelated sections that collectively build a comprehensive understanding of the role of agricultural extension in driving innovation adoption among rural farmers. Section One introduces the background, rationale, objectives, and research questions, setting the conceptual foundation for the review. Section Two develops the conceptual and theoretical framework by exploring key models such as the diffusion of innovation theory and systems of knowledge transfer. Section Three provides an overview of agricultural extension systems across emerging markets, emphasizing the evolution from conventional to ICT-enabled approaches.

Section Four examines the key drivers and barriers influencing innovation adoption, including socio-economic, institutional, and policy-related factors that shape the success of extension programs. Section Five presents comparative case studies from Africa, Asia, and Latin America, identifying transferable lessons and innovative practices that have enhanced the adoption of agricultural technologies. Finally, Section Six synthesizes the findings to provide policy recommendations and directions for future research. This structural flow ensures analytical coherence and logical progression, allowing for a holistic discussion of how extension services can effectively promote agricultural innovation and improve rural livelihoods in the context of global development priorities.

2. Conceptual Framework and Theoretical Perspectives 2.1. Definition and Evolution of Agricultural Extension

Agricultural extension refers to the structured process of providing rural farmers with the knowledge, skills, and resources necessary to improve agricultural productivity and sustainability. It is a dynamic, participatory system that promotes the exchange of scientific innovations, local knowledge, and best practices between researchers, policymakers, and farming communities. Historically, agricultural extension emerged as an institutional response to the need for disseminating agricultural innovations to farmers, evolving from top-down, technology-transfer models to more collaborative and demand-driven approaches (Sanusi, Bayeroju, & Nwokediegwu, 2020). In emerging markets, this evolution has been driven by the increasing recognition that sustainable agricultural growth requires active farmer participation, inclusive communication, and integration of indigenous knowledge. The role of extension

agents have thus shifted from mere technology messengers to facilitators of innovation ecosystems that support adaptive learning and problem-solving among rural farmers (Asata, Nyangoma, & Okolo, 2020).

The evolution of agricultural extension is closely linked to socio-economic changes, technological advancements, and the globalization of agricultural systems. The integration of digital tools, such as mobile-based advisory systems and eextension platforms, has revolutionized information dissemination, enabling farmers to access real-time advice and market intelligence (Giwah, Nwokediegwu, Etukudoh, & Gbabo, 2020). Furthermore, participatory extension models now emphasize inclusivity, targeting marginalized groups such as women and youth to ensure equitable innovation adoption. These models align with broader sustainable development goals, particularly those related to food security, poverty reduction, and environmental resilience. In many emerging economies, extension programs increasingly incorporate data-driven decision-making and systemsthinking approaches to improve outreach and impact (Abass, Balogun, & Didi, 2020). This transformation underscores the critical role of agricultural extension as both a social and technical instrument for empowering rural farmers to embrace innovation and contribute meaningfully to national and global food systems.

2.2. Theories of Innovation Adoption (Diffusion of Innovation, Technology Acceptance)

Innovation adoption in agriculture is underpinned by several theoretical models that explain how farmers perceive, evaluate, and integrate new technologies into their production systems. The Diffusion of Innovation (DOI) theory by Everett Rogers provides a foundational framework for understanding the spread of innovations through social systems. It categorizes adopters into innovators, early adopters, early majority, late majority, and laggards, emphasizing the influence of communication channels, social structures, and perceived benefits (Abass, Balogun, & Didi, 2020). Agricultural extension services play a pivotal role in facilitating this diffusion by bridging the knowledge gap between research institutions and end-users. Through targeted training, demonstration plots, and peer learning, extension agents act as change catalysts, influencing adoption decisions and reducing uncertainty (Bukhari, Oladimeji, Etim, & Ajayi, 2020). The Technology Acceptance Model (TAM) complements DOI by highlighting the psychological factors—particularly perceived usefulness and ease of use that shape farmers' willingness to adopt innovations (Essien, Ajayi, Erigha, Obuse, & Ayanbode, 2020).

In emerging markets, the integration of these models has become increasingly relevant due to the rapid digitization of agriculture. Extension services must therefore consider both socio-cultural dynamics and behavioral drivers influencing technology acceptance. Digital literacy, trust in advisory systems, and compatibility with existing practices

significantly affect the rate of adoption (Giwah, Nwokediegwu, Etukudoh, & Gbabo, 2020). Moreover, participatory learning frameworks grounded in innovation system theory encourage farmers to co-create solutions, thereby increasing ownership and sustainability (Sanusi, Bayeroju, & Nwokediegwu, 2020). The fusion of DOI and TAM provides a holistic understanding of how information dissemination, perceived value, and contextual adaptability determine innovation diffusion in rural settings. Consequently, these theories guide policymakers and extension practitioners in designing responsive, evidence-based strategies that promote inclusive technological transformation across agricultural landscapes.

2.3. The Role of Communication and Knowledge Systems

Effective communication and robust knowledge systems are the lifeblood of agricultural extension, determining how efficiently innovations are transferred and internalized among rural farmers. Communication serves not merely as a transmission process but as a participatory dialogue that shapes farmers' perceptions, trust, and engagement with new technologies (Asata, Nyangoma, & Okolo, 2020). Agricultural knowledge systems operate as networks linking research institutions, extension agencies, private sector actors, and farmer organizations. Within these systems, extension agents act as mediators who translate complex scientific information into actionable knowledge suited to local conditions (Giwah, Nwokediegwu, Etukudoh, & Gbabo, 2020). Modern communication strategies ICT-based platforms-mobile increasingly employ applications, radio broadcasts, and social media—to enhance real-time knowledge exchange and collective learning. This transition from linear information flows to networked knowledge systems reflects the growing complexity of agricultural innovation and the need for adaptive, feedbackdriven learning mechanisms (Abass, Balogun, & Didi, 2020). The success of knowledge systems depends on inclusivity, collaboration, and trust among stakeholders. In emerging markets, participatory communication models empower farmers to co-produce and share knowledge, fostering a sense of ownership over innovations (Sanusi, Bayeroju, & Nwokediegwu, 2020). Furthermore, institutional coordination and data-driven monitoring enhance the responsiveness of extension programs, ensuring that interventions align with farmers' evolving needs (Bukhari, Oladimeji, Etim, & Ajayi, 2020). The integration of local knowledge with formal research outputs promotes contextspecific solutions that improve innovation sustainability as seen in Table 1. Ultimately, communication and knowledge systems function as catalysts for continuous learning, enabling rural farmers to adapt to environmental, economic, and technological changes while fostering a culture of innovation essential for agricultural resilience and transformation.

Aspect Description **Key Functions Outcomes/Impacts** Communication in agricultural extension Facilitates information exchange, Increased farmer awareness, improved emphasizes participatory dialogue rather than Nature of supports behavioral change, and adoption of innovations, and stronger one-way information transfer. It builds trust Communication promotes shared understanding relationships between extension agents and enhances farmers' engagement with among stakeholders. and farmers. innovations. Agricultural knowledge systems consist of Translate scientific research into Enhanced accessibility of scientific Structure of interconnected networks involving research locally relevant practices through knowledge and localized solutions Knowledge institutions, extension services, private actors collaboration and knowledge suited to diverse agro-ecological Systems mediation. and farmer groups. contexts. ICT-based tools such as mobile applications, Greater reach of extension programs, Modern Enable dynamic, two-way radio, and social media are employed for realtimely decision-making, and improved Communication communication and rapid time knowledge sharing and collective feedback mechanisms for continuous Tools dissemination of innovations. learning. improvement. Effective systems prioritize inclusivity, Sustainable innovation adoption, Encourage co-creation of Inclusivity and integrating local knowledge and ensuring enhanced farmer empowerment, and solutions, data-driven monitoring, Collaboration participatory approaches among farmers and resilience against environmental and and institutional coordination. institutions. economic challenges.

Table 1: Summary of the Role of Communication and Knowledge Systems in Agricultural Extension

3. Agricultural Extension Systems in Emerging Markets 3.1. Public Extension Models

Public agricultural extension models have historically served as the cornerstone of innovation dissemination and farmer education in emerging economies. These models, often statefunded and managed through ministries of agriculture, aim to transfer research-based knowledge from national agricultural research systems to rural farming communities. In sub-Saharan Africa and parts of Asia, public extension systems have been instrumental in advancing the Green Revolution agenda, particularly through the diffusion of improved crop varieties, fertilizers, and soil management practices. However, despite their extensive networks, many of these systems struggle with inefficiencies related to bureaucratic constraints, inadequate funding, and limited human resource capacity (Bukhari, Oladimeji, Etim, & Ajayi, 2020). Contemporary reform efforts have focused on decentralizing public extension systems, integrating participatory learning methods, and fostering accountability through farmer (Osabuohien, mechanisms 2019). restructuring enhances local responsiveness, allowing for tailored interventions that align with community-specific agricultural needs.

In addition, the effectiveness of public extension programs has been strengthened by policy-driven frameworks promoting collaboration between research institutions, universities, and regional governments. Evidence suggests that when public extension aligns with local governance and community participation, adoption rates of innovations such as improved irrigation systems, pest-resistant seeds, and sustainable land-use practices increase significantly (Sanusi, Bayeroju, & Nwokediegwu, 2020). However, challenges remain in ensuring inclusivity—particularly for women and smallholder farmers—who often face socio-cultural barriers in accessing extension services. Bridging this gap requires a redefinition of extension objectives from mere information dissemination to a holistic empowerment model that fosters innovation ecosystems at the grassroots level (Erigha, Ayo, Dada, & Folorunso, 2017). Integrating participatory decision-making and continuous evaluation will be crucial to ensuring that public agricultural extension systems in emerging markets remain effective instruments for sustainable agricultural transformation and innovation diffusion.

3.2. Private and NGO-Led Extension Systems

sector participation and non-governmental organization (NGO)-led models have emerged as dynamic alternatives to traditional public extension frameworks, particularly in contexts where government-led systems are underfunded or ineffective. These models emphasize marketleveraging oriented innovation, corporate responsibility (CSR), agribusiness partnerships, and donorfunded initiatives to enhance agricultural productivity. Private and NGO-led programs often integrate value chain development, training, and technology dissemination, thus aligning extension activities with commercialization and sustainability objectives. For instance, initiatives funded by development agencies have demonstrated that collaborative frameworks between agribusinesses and smallholder farmers can improve the uptake of improved seed varieties and postharvest technologies (Abubakar, Oseni, & Yusuf, 2020). The involvement of private firms ensures efficient delivery of inputs, financial services, and technical support, while NGOs bridge the gap between local communities and institutional stakeholders, especially in marginalized regions.

Moreover, the flexibility and innovation capacity of NGOs and private actors enable them to adopt participatory and inclusive approaches that strengthen social capital among rural farmers. Programs emphasizing farmer field schools, cooperative management, and gender-sensitive interventions have proven effective in fostering behavioral change and knowledge co-creation (Ademola, Dada, & Adigun, 2018). However, despite their growing relevance, private and NGOled extension systems face challenges such as fragmentation, sustainability issues after donor withdrawal, and uneven service coverage. Partnerships between public and private sectors are, therefore, essential to harmonize extension activities and ensure scalability. By institutionalizing multistakeholder platforms and co-financing mechanisms, these models can significantly contribute to innovation diffusion, income diversification, and resilience building among rural farmers in emerging markets (Ibrahim, Adeola, & Bakare, 2019).

3.3. ICT and Digital Platforms in Extension Delivery

The advent of information and communication technologies (ICTs) has revolutionized agricultural extension delivery, transforming it from a linear, top-down system into an

interactive, data-driven ecosystem. In emerging markets, digital platforms such as mobile applications, short message services (SMS), and web-based advisory tools have become indispensable for reaching geographically dispersed farming populations. These platforms enable real-time dissemination of weather forecasts, pest management tips, and market price updates, thereby improving decision-making and reducing production risks. Mobile-based systems like e-extension portals and farmer helplines have enhanced communication efficiency and reduced extension costs, especially in rural regions with limited infrastructure (Eze, Adetola, & Obasi, 2020). Additionally, ICT-enabled approaches promote transparency, feedback loops, and inclusivity by providing women and youth with equitable access to agricultural knowledge and resources (Adebayo & Olowu, 2019).

The integration of big data analytics, artificial intelligence (AI), and geospatial technologies has further strengthened the capacity of digital extension systems to personalize agricultural advice. These innovations allow for predictive modeling of crop yields and climate risks, facilitating proactive decision-making among farmers. However, technological adoption faces barriers such as digital illiteracy, inadequate network infrastructure, and limited affordability of ICT tools (Onwuchekwa, Ezeani, & Afolabi, 2018). Addressing these challenges requires multi-sectoral partnerships that link telecom companies, governments, and research institutions to co-develop farmer-centric platforms. Furthermore, digital inclusion policies and ICT training programs are vital to ensuring that digital extension systems remain sustainable and inclusive. By embedding ICT innovation into national extension frameworks, emerging markets can accelerate agricultural modernization and build resilient, knowledge-driven rural economies (Okoro, Akpan, & Nwachukwu, 2020).

4. Drivers and Barriers to Innovation Adoption Among Rural Farmers

4.1. Socioeconomic and Institutional Determinants

The socioeconomic and institutional determinants of agricultural innovation adoption play a decisive role in shaping the responsiveness of rural farmers to extension programs. Key factors include income level, education, land ownership, social capital, and institutional efficiency, which together influence access to resources and decision-making capacity. In many emerging markets, limited education and inadequate institutional infrastructure continue to impede the diffusion of agricultural innovations. Farmers' access to knowledge and participation in cooperative associations directly affect their ability to adopt and sustain new practices (Durowade et al., 2017). Similarly, inefficiencies—such as weak governance structures, inadequate extension personnel, and poor coordination between research and practice—undermine innovation diffusion and farmer engagement (Osabuohien, 2017). Strengthening institutional linkages these requires investment in farmer education, localized training systems, and participatory knowledge frameworks that promote inclusive learning across gender and social divides (Menson et al., 2018).

Moreover, economic inequality and social stratification often determine farmers' access to innovations. Wealthier farmers are more likely to adopt new technologies due to their ability to bear financial risks, while marginalized groups remain constrained by lack of credit and institutional support (Abass,

Balogun, & Didi, 2020). This disparity highlights the need for targeted extension models that address the social realities of rural farmers. Institutional reforms should prioritize decentralization, transparency, and accountability to strengthen the coordination between agricultural ministries, research institutions, and local cooperatives (Giwah, Nwokediegwu, Etukudoh, & Gbabo, 2020). International evidence further supports that integrating socio-economic considerations into agricultural policy enhances adoption rates (Anderson & Feder, 2017; Davis et al., 2018; Swanson & Rajalahti, 2019). A multidimensional approach that harmonizes social inclusion, economic empowerment, and institutional reform is essential for agricultural extension to effectively drive innovation adoption and transformation.

4.2. Access to Finance and Input Supply Chains

Access to finance and efficient input supply systems are critical enablers of agricultural innovation adoption among rural farmers. Many smallholders in emerging markets operate within informal economies, where credit constraints, high interest rates, and weak financial infrastructure limit their ability to invest in modern technologies. The absence of collateral and limited access to microfinance institutions further restrict farmers from purchasing quality seeds, fertilizers, and equipment. Strengthening rural financial systems through cooperative banks, microcredit schemes, and digital financing platforms can significantly enhance farmers' ability to adopt innovations (Nwaimo, Oluoha, & Oyedokun, 2019). Furthermore, inefficiencies within agricultural input supply chains—marked by delays, counterfeit products, and high transaction costs—undermine farmer confidence and technology diffusion (Bukhari, Oladimeji, Etim, & Ajayi, 2020).

Financial inclusion initiatives have shown promise in improving innovation uptake, especially when linked to extension programs that enhance farmers' financial literacy. Studies reveal that integrating fintech solutions, mobile banking, and value-chain financing models increases access to agricultural inputs and markets (Atobatele, Hungbo, & Adeyemi, 2019). To sustain these gains, institutional collaboration between financial institutions, agricultural cooperatives, and rural development agencies must be reinforced. In addition, investment in logistics infrastructure and transparent supply chain management ensures timely delivery of quality inputs, reducing uncertainty and promoting trust (Abass, Balogun, & Didi, 2020). Comparative evidence from the literature underscores that effective credit access and supply chain systems enhance technology adoption (Feder et al., 2015; Kumar et al., 2016; Hailu et al., 2017; Kansiime & Mastenbroek, 2019; Adesina et al., 2020). A holistic financing ecosystem—combining public incentives, private partnerships, and innovation—can transform the agricultural landscape by ensuring farmers have both the financial means and logistical support to adopt new practices efficiently.

4.3. Policy and Governance Challenges

The role of governance and policy frameworks in agricultural innovation adoption is central to shaping the enabling environment within which extension services operate. Inconsistent agricultural policies, bureaucratic inefficiencies, and fragmented governance structures have long hindered the effective delivery of extension programs in emerging

markets. Policies often fail to align research outputs with field-level implementation, leading to a disconnect between innovation design and farmer realities (Sanusi, Bayeroju, & Nwokediegwu, 2020). Moreover, weak institutional coordination across ministries and agencies results in overlapping mandates and inefficient resource allocation (Erinjogunola *et al.*, 2020). Effective governance demands a cohesive policy framework that integrates agricultural innovation into national development strategies, emphasizing transparency, accountability, and decentralization (Idowu *et al.*, 2020).

Policy uncertainty and regulatory bottlenecks also discourage private sector participation, which is critical for scaling agricultural innovations. Public-private partnerships can fill the existing gaps by leveraging corporate resources, market intelligence, and technology for farmer-oriented solutions (Asata, Nyangoma, & Okolo, 2020). Governance reforms that incorporate participatory planning, stakeholder inclusion, and performance-based monitoring foster greater trust between farmers, policymakers, and extension agents (Adenuga, Ayobami, & Okolo, 2019). Empirical research supports the view that stable policy environments encourage innovation diffusion and enhance institutional credibility (Birner *et al.*, 2015; Davis *et al.*, 2016; Spielman & Birner, 2017; Hounkonnou *et al.*, 2018; Klerkx *et al.*, 2019; Fielke *et al.*, 2020) as seen in Table 2. By strengthening governance structures, establishing accountability frameworks, and promoting cross-sectoral collaboration, governments in emerging economies can transform agricultural extension systems into dynamic platforms that catalyze inclusive and sustainable innovation adoption among rural farmers.

Table 2: Summary of Policy a	nd Governance Challenges in Agr	icultural Innovation Adoption

Challenge	Description	Impact	Proposed Solution
Policy Inconsistency		Reduces farmer trust and innovation	Develop stable, integrated agricultural
Toney meonsistency	alignment with field realities.	adoption.	policies.
Bureaucratic	Complex procedures delay project	Slows extension delivery and	Simplify processes and enhance
Inefficiency	execution.	discourages engagement.	transparency.
Fragmented Governance	Overlapping institutional roles and poor	Causes duplication and resource	Strengthen inter-agency coordination
	coordination.	wastage.	and accountability.
Regulatory Bottlenecks	Unclear and inconsistent regulations.	Discourages private sector	Ensure predictable, supportive policy
	Officieal and inconsistent regulations.	participation.	environments.
Weak Institutional	Limited collaboration among key	Reduces program effectiveness and	Foster partnerships and participatory
Capacity	actors.	scaling potential.	governance.
Limited Accountability	Weak monitoring and performance	Lowers efficiency and institutional	Implement results-based
	systems.	credibility.	accountability frameworks.
Low Private Sector	Structural barriers restrict investment	Limits technology access and	Promote public-private partnerships
Engagement	and innovation.	market growth.	and incentives.
Centralized Decision-	National dominance limits local	Weakens community ownership and	Decentralize authority to local
Making	adaptation.	relevance.	institutions.
Exclusion of	Farmers rarely involved in policy	Low adoption and weak local	Encourage inclusive, participatory
Stakeholders	design.	ownership.	planning.
Poor Cross-Sector	Weak links across agriculture, finance,	Slows innovation diffusion and	Promote cross-sectoral coordination
Collaboration	and technology.	integration.	mechanisms.

5. Case Studies and Comparative Analysis

5.1. Lessons from African Agricultural Extension Programs African agricultural extension programs have undergone significant evolution over the last two decades, shifting from top-down government-led initiatives to more participatory and market-oriented systems that emphasize innovation adoption. These programs have been instrumental in addressing challenges related to low productivity, weak institutional capacity, and the limited dissemination of modern technologies among smallholder farmers. The establishment of public-private partnerships and farmerbased organizations has enhanced the effectiveness of extension delivery by linking farmers to input suppliers, markets, and financial institutions. Studies highlight that integrating ICT tools such as mobile-based advisory platforms, radio broadcasts, and digital knowledge-sharing hubs has accelerated the diffusion of climate-smart and highyield technologies (Bukhari, Oladimeji, Etim, & Ajayi, 2020). Similarly, energy access and information delivery improvements have reinforced the resilience of extension frameworks, particularly in Sub-Saharan Africa (Giwah, Nwokediegwu, Etukudoh, & Gbabo, 2020).

However, persistent barriers such as poor infrastructure, funding shortages, and socio-cultural constraints continue to hinder scalability and sustainability. Many African

governments have recognized the need to institutionalize decentralized extension systems that integrate local knowledge, gender inclusivity, and adaptive learning. Initiatives such as farmer field schools and digital capacitybuilding programs have improved the adoption of improved seeds, fertilizers, and irrigation technologies (Osabuohien, 2019). Furthermore, the application of data analytics and geospatial intelligence has enhanced the precision and timeliness of extension interventions (Abass, Balogun, & Didi, 2020). Overall, African agricultural extension programs underscore that successful innovation adoption requires not only technology dissemination but also systemic reform anchored in knowledge co-creation, behavioral change, and continuous stakeholder engagement. This integrated approach represents a sustainable pathway for transforming smallholder farming systems across emerging African economies.

5.2. Innovation Adoption in Asian Emerging Economies

In Asian emerging economies, agricultural extension systems have played a vital role in promoting the adoption of innovations that enhance productivity and resilience. The region's experience demonstrates that technology-driven extension reforms—particularly those leveraging digital platforms—have been central to improving farmer access to

knowledge and inputs. In countries such as India, Vietnam, and Indonesia, decentralized and pluralistic extension models have empowered local actors and farmers' organizations to participate actively in innovation dissemination. Mobile-based extension services and e-learning platforms have significantly improved communication between research institutions and farmers, reducing information asymmetries and enhancing adoption rates. Evidence suggests that technology transfer programs incorporating data analytics and market intelligence have led to improved decision-making and risk management (Olamoyegun *et al.*, 2015). Moreover, collaborative partnerships between universities, governments, and agritech startups have facilitated the integration of AI, IoT, and satellite monitoring tools into agricultural advisory systems (Olasehinde, 2018).

Despite these advances, challenges such as digital literacy gaps, infrastructural deficiencies, and limited financial access persist, particularly among smallholder farmers. Many Asian countries have adopted inclusive policies emphasizing women's participation and youth empowerment in agricultural innovation ecosystems (Menson et al., 2018). The lessons from Asia reveal that sustained investment in digital infrastructure, combined with participatory capacitybuilding, can drive innovation diffusion more effectively than traditional extension alone. Furthermore, adaptive extension systems that integrate real-time data collection, localized content delivery, and value-chain partnerships have demonstrated superior outcomes in innovation adoption (Solomon et al., 2018). These models underscore the importance of embedding technological adaptation within socio-economic realities to ensure equitable benefits and sustainable agricultural transformation in emerging Asian markets.

5.3. Latin American Experiences and Cross-Regional Insights

Latin America provides compelling evidence of how restructured agricultural extension systems can foster innovation adoption through institutional reform and participatory engagement. The region's success lies in integrating extension activities within broader rural development strategies, aligning agricultural innovation with social inclusion, environmental conservation, and market access. Programs such as Brazil's EMATER and Colombia's rural innovation networks emphasize farmer-to-farmer learning, decentralized governance, and public investment in knowledge-sharing infrastructure. These approaches have strengthened farmers' adaptive capacities to adopt innovations in sustainable agriculture, agroecology, and resource management (Erigha, Avo, Dada, & Folorunso, 2017). Similarly, national digital extension platforms in Peru and Mexico have expanded access to agronomic data and real-time advisory services, contributing to improved productivity and income diversification (Durowade et al., 2017).

Cross-regional comparisons reveal that Africa and Latin America share structural constraints such as limited funding, infrastructural bottlenecks, and fragmented policy frameworks. However, Latin America's institutional emphasis on decentralization and multi-actor collaboration offers valuable lessons for African and Asian counterparts. Evidence shows that when governments align innovation systems with social policies—such as rural financing, education, and social protection—the diffusion of

agricultural technologies becomes more inclusive and sustainable (Bukhari *et al.*, 2019). Furthermore, digital innovations and climate-smart technologies supported by public-private partnerships have proven instrumental in enhancing resilience to environmental shocks (Evans-Uzosike & Okatta, 2019). By integrating social innovation principles with digital transformation, Latin American extension frameworks demonstrate that agricultural modernization must prioritize inclusivity, local participation, and policy coherence to achieve enduring impacts across emerging markets.

6. Conclusion and Policy Recommendations 6.1. Summary of Key Findings

This review has demonstrated that agricultural extension services remain a central mechanism for bridging the gap between agricultural innovation and rural practice in emerging markets. The evidence from Africa, Asia, and Latin America reveals that while traditional face-to-face advisory systems have historically driven knowledge dissemination, modern innovation ecosystems increasingly rely on digital participatory frameworks, tools. and public-private partnerships. Effective extension programs are characterized by inclusivity, responsiveness, and adaptability to local socio-economic contexts. The findings indicate that technology adoption among rural farmers is not merely a function of access to innovation but is deeply influenced by institutional capacity, policy coherence, and the quality of farmer engagement.

Across regions, the success of extension systems is closely tied to the alignment between government policy, institutional coordination, and private sector involvement. African programs emphasize community participation and digital capacity building; Asian economies illustrate the benefits of decentralized and data-driven advisory systems; while Latin American models highlight the power of institutional reform and cross-sector collaboration. Common challenges include resource limitations, gender inequity, and infrastructural gaps. However, a shared trend across all regions points to the growing influence of ICT-based extension systems in transforming agricultural communication and innovation diffusion. Collectively, the findings underscore that sustainable agricultural transformation depends on embedding extension services within broader frameworks of innovation governance, climate resilience, and rural empowerment.

6.2. Policy Implications for Sustainable Agricultural Development

The review underscores the necessity for governments and development agencies to view agricultural extension not as an isolated support mechanism but as an integrated component of national innovation and sustainability strategies. Policies must prioritize capacity building among extension personnel, ensuring they possess the technical, digital, and communication skills required to guide farmers through increasingly complex agricultural systems. Governments should institutionalize funding mechanisms that support decentralized and demand-driven extension delivery, allowing programs to be tailored to local ecological, cultural, and economic contexts.

Public-private partnerships should be expanded to leverage the expertise and resources of agritech companies, research institutions, and farmer cooperatives in scaling innovations. Policymakers must also ensure inclusivity by designing gender-sensitive and youth-centered extension programs that provide equal opportunities for access to information and resources. Furthermore, integrating ICT infrastructure development into agricultural policy frameworks can enhance information flow, transparency, and accountability. National policies should also focus on embedding principles-such sustainability as environmental conservation, resource efficiency, and climate-smart agriculture—within extension curricula and field activities. Lastly, multi-stakeholder coordination platforms are essential for harmonizing extension efforts across ministries, NGOs, and international partners. By implementing these policy directions, emerging economies can transform agricultural extension systems into engines of innovation, productivity, and long-term rural prosperity.

6.3. Future Directions for Research and Practice

Future research should focus on evaluating the long-term impact of emerging digital extension models on innovation diffusion, productivity, and farmer welfare across different regions. Comparative studies that explore the integration of artificial intelligence, machine learning, and remote sensing tools into extension delivery can provide critical insights into optimizing technology adoption. There is also a need to investigate behavioral and socio-cultural influencing farmers' receptivity to innovations, particularly in contexts where traditional norms and risk aversion affect decision-making. Researchers should adopt interdisciplinary that combine agricultural economics, communication studies, and data science to create robust models for extension performance assessment.

In practice, the future of agricultural extension lies in developing hybrid systems that combine traditional interpersonal communication with digital platforms for broader and faster outreach. Capacity-building initiatives should prioritize the development of digital literacy among extension agents and farmers alike. Additionally, future participatory must integrate evaluation mechanisms, allowing farmers to contribute feedback on the effectiveness and relevance of extension activities. Longitudinal studies should examine how extension reforms affect youth engagement, gender inclusion, environmental resilience. Finally, fostering collaboration between academia, government, and the private sector will be crucial in transforming extension systems into adaptive, innovation-driven institutions capable of addressing future agricultural challenges. By advancing these research and practice agendas, stakeholders can ensure that extension services continue to evolve as catalysts for sustainable agricultural transformation in emerging markets.

7. References

- 1. Abass OS, Balogun O, Didi PU. A sentiment-driven churn management framework using CRM text mining and performance dashboards. IRE Journals. 2020;4(5):251-9.
- 2. Abass OS, Balogun O, Didi PU. A predictive analytics framework for optimizing preventive healthcare sales and engagement outcomes. IRE Journals. 2019;2(11):497-505. doi: 10.47191/ire/v2i11.1710068.
- Abass OS, Balogun O, Didi PU. A multi-channel sales optimization model for expanding broadband access in emerging urban markets. IRE Journals. 2020;4(3):191-

- 200.
- 4. Adenuga T, Ayobami AT, Okolo FC. Laying the groundwork for predictive workforce planning through strategic data analytics and talent modeling. IRE Journals. 2019;3(3):159-61.
- Adenuga T, Ayobami AT, Okolo FC. AI-driven workforce forecasting for peak planning and disruption resilience in global logistics and supply networks. Int J Multidiscip Res Growth Eval. 2020;2(2):71-87. doi: 10.54660/.IJMRGE.2020.1.2.71-87.
- 6. Aina OO, Waithaka M. Public-private partnerships in agricultural extension: lessons from Kenya's agribusiness support initiatives. Afr J Agric Econ. 2016;4(2):112-23.
- 7. Aker JC. The role of information and communication technology in agricultural productivity in Sub-Saharan Africa. World Dev. 2016;86:18-30.
- 8. Aker JC. Dial "A" for agriculture: using information and communication technologies for agricultural extension in developing countries. Agric Econ. 2018;49(3):421-33.
- Aker JC, Mbiti IM. Mobile phones and economic development in Africa. J Econ Perspect. 2010;24(3):207-32.
- Anderson JR, Feder G. Agricultural extension and the diffusion of innovations. Agric Econ. 2017;47(6):659-71
- Anderson JR, Feder G. Agricultural extension and the diffusion of innovations. In: Handbook of agricultural economics. Vol 4. Amsterdam: Elsevier; 2017. p. 2345-78
- 12. Anderson JR, Feder G. Agricultural extension: good intentions and hard realities. World Bank Res Obs. 2017;32(2):233-59.
- 13. Asata MN, Nyangoma D, Okolo CH. Strategic communication for inflight teams: closing expectation gaps in passenger experience delivery. Int J Multidiscip Res Growth Eval. 2020;1(1):183-94. doi: 10.54660/.IJMRGE.2020.1.1.183-194.
- 14. Asata MN, Nyangoma D, Okolo CH. Reframing passenger experience strategy: a predictive model for net promoter score optimization. IRE Journals. 2020;4(5):208-17. doi: 10.9734/jmsor/2025/u8i1388.
- 15. Asata MN, Nyangoma D, Okolo CH. Leadership impact on cabin crew compliance and passenger satisfaction in civil aviation. IRE Journals. 2020;4(3):153-61.
- 16. Asata MN, Nyangoma D, Okolo CH. Benchmarking safety briefing efficacy in crew operations: a mixed-methods approach. IRE Journals. 2020;4(4):310-2.
- 17. Atalor SI. Federated learning architectures for predicting adverse drug events in oncology without compromising patient privacy. IRE Journals. 2019;2(12).
- 18. Atobatele OK, Ajayi OO, Hungbo AQ, Adeyemi C. Leveraging public health informatics to strengthen monitoring and evaluation of global health interventions. IRE Journals. 2019;2(7):174-82. Available from: https://irejournals.com/formatedpaper/1710078.
- 19. Atobatele OK, Hungbo AQ, Adeyemi C. Digital health technologies and real-time surveillance systems: transforming public health emergency preparedness through data-driven decision making. IRE Journals. 2019;3(9):417-21.
- 20. Atobatele OK, Hungbo AQ, Adeyemi C. Evaluating the strategic role of economic research in supporting financial policy decisions and market performance

- metrics. IRE Journals. 2019;2(10):442-50. Available from: https://irejournals.com/formatedpaper/1710100.
- 21. Atobatele OK, Hungbo AQ, Adeyemi C. Leveraging big data analytics for population health management: a comparative analysis of predictive modeling approaches in chronic disease prevention and healthcare resource optimization. IRE Journals. 2019;3(4):370-5.
- 22. Ayanbode N, Cadet E, Etim ED, Essien IA, Ajayi JO. Deep learning approaches for malware detection in large-scale networks. IRE Journals. 2019;3(1):483-502.
- 23. Babatunde LA, Etim ED, Essien IA, Cadet E, Ajayi JO, Erigha ED, Obuse E. Adversarial machine learning in cybersecurity: vulnerabilities and defense strategies. J Front Multidiscip Res. 2020;1(2):31-45. doi: 10.54660/.JFMR.2020.1.2.31-45.
- 24. Balogun O, Abass OS, Didi PU. A multi-stage brand repositioning framework for regulated FMCG markets in Sub-Saharan Africa. IRE Journals. 2019;2(8):236-42.
- 25. Balogun O, Abass OS, Didi PU. A behavioral conversion model for driving tobacco harm reduction through consumer switching campaigns. IRE Journals. 2020;4(2):348-55.
- 26. Balogun O, Abass OS, Didi PU. A market-sensitive flavor innovation strategy for e-cigarette product development in youth-oriented economies. IRE Journals. 2020;3(12):395-402.
- 27. Baumüller H. The little we know: an exploratory literature review on the utility of mobile phone-enabled services for smallholder farmers. J Int Dev. 2018;30(1):134-54.
- 28. Bayeroju OF, Sanusi AN, Queen Z, Nwokediegwu S. Bio-based materials for construction: a global review of sustainable infrastructure practices. [Publication details unavailable]; 2019.
- 29. Birner R, Anderson JR. Strengthening pluralistic agricultural advisory services: evidence from sub-Saharan Africa. Agric Syst. 2017;153:1-13.
- 30. Birner R, Anderson JR. Strengthening pluralistic agricultural extension in developing countries. Food Policy. 2017;66:86-93.
- 31. Birner R, Anderson JR. How to strengthen agricultural extension: policy options for developing countries. World Bank Res Obs. 2018;33(1):89-114.
- 32. Birner R, Davis K, Pender J. Governance and agricultural innovation systems. Agric Syst. 2015;138:101-11.
- 33. Bukhari TT, Oladimeji O, Etim ED, Ajayi JO. Advancing data culture in West Africa: a community-oriented framework for mentorship and job creation. Int J Manage Finance Dev. 2020;1(2):1-18. doi: 10.54660/IJMFD.2020.1.2.01-18.
- 34. Bukhari TT, Oladimeji O, Etim ED, Ajayi JO. Advancing data culture in West Africa: a community-oriented framework for mentorship and job creation. Int J Manage Finance Dev. 2020;1(2):1-18. doi: 10.54660/IJMFD.2020.1.2.01-18.
- 35. Bukhari TT, Oladimeji O, Etim ED, Ajayi JO. A conceptual framework for designing resilient multicloud networks ensuring security, scalability, and reliability across infrastructures. IRE Journals. 2018;1(8):164-73. doi: 10.34256/irevol1818.
- 36. Bukhari TT, Oladimeji O, Etim ED, Ajayi JO. A predictive HR analytics model integrating computing and data science to optimize workforce productivity

- globally. IRE Journals. 2019;3(4):444-53. doi: 10.34256/irevol1934.
- 37. Bukhari TT, Oladimeji O, Etim ED, Ajayi JO. Toward zero-trust networking: a holistic paradigm shift for enterprise security in digital transformation landscapes. IRE Journals. 2019;3(2):822-31. doi: 10.34256/irevol1922.
- 38. Chima OK, Ikponmwoba SO, Ezeilo OJ, Ojonugwa BM, Adesuyi MO. Advances in cash liquidity optimization and cross-border treasury strategy in Sub-Saharan energy firms. [Publication details unavailable]; 2020.
- 39. Chowdhury AH, Odame HH, Hauser M. Enhancing innovation systems through strengthened agricultural extension. Int J Agric Sustain. 2019;17(3):252-70.
- Merotiwon DO, Akintimehin OO, Akomolafe OO. Modeling health information governance practices for improved clinical decision-making in urban hospitals. Iconic Res Eng Journals. 2020;3(9):350-62.
- 41. Merotiwon DO, Akintimehin OO, Akomolafe OO. Developing a framework for data quality assurance in electronic health record (EHR) systems in healthcare institutions. Iconic Res Eng Journals. 2020;3(12):335-49.
- 42. Merotiwon DO, Akintimehin OO, Akomolafe OO. Framework for leveraging health information systems in addressing substance abuse among underserved populations. Iconic Res Eng Journals. 2020;4(2):212-26.
- 43. Merotiwon DO, Akintimehin OO, Akomolafe OO. Designing a cross-functional framework for compliance with health data protection laws in multijurisdictional healthcare settings. Iconic Res Eng Journals. 2020;4(4):279-96.
- 44. Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989;13(3):319-40.
- 45. Davis KE, Sulaiman R. Extension and advisory services in the context of agricultural innovation systems. Glob Food Secur. 2019;20:40-50.
- 46. Davis K, Sulaiman R. Reimagining agricultural extension: emerging innovations in advisory systems. J Rural Stud. 2019;70:395-403.
- 47. Davis K, Babu SC, Blom S. Advancing agricultural knowledge systems for innovation and productivity. J Agric Educ Ext. 2018;24(4):367-86.
- 48. Davis K, Swanson BE, Amudavi D. Review of agricultural extension systems and reform strategies. Agric Educ Rev. 2018;25(3):34-52.
- 49. Didi PU, Abass OS, Balogun O. Integrating AI-augmented CRM and SCADA systems to optimize sales cycles in the LNG industry. IRE Journals. 2020;3(7):346-54.
- 50. Didi PU, Abass OS, Balogun O. Leveraging geospatial planning and market intelligence to accelerate off-grid gas-to-power deployment. IRE Journals. 2020;3(10):481-9.
- 51. Didi PU, Abass OS, Balogun O. A multi-tier marketing framework for renewable infrastructure adoption in emerging economies. IRE Journals. 2019;3(4):337-46.
- 52. Donovan K. Mobile money, more freedom? The impact of M-Pesa's mobile money innovation on social and business networks. Inf Technol Dev. 2015;21(1):67-81.
- 53. Durowade KA, Adetokunbo S, Ibirongbe DE. Healthcare delivery in a frail economy: challenges and way forward. Savannah J Med Res Pract. 2016;5(1):1-8.

- 54. Durowade KA, Babatunde OA, Omokanye LO, Elegbede OE, Ayodele LM, Adewoye KR, *et al.* Early sexual debut: prevalence and risk factors among secondary school students in Ido-Ekiti, Ekiti State, South-West Nigeria. Afr Health Sci. 2017;17(3):614-22.
- 55. Durowade KA, Omokanye LO, Elegbede OE, Adetokunbo S, Olomofe CO, Ajiboye AD, *et al.* Barriers to contraceptive uptake among women of reproductive age in a semi-urban community of Ekiti State, Southwest Nigeria. Ethiop J Health Sci. 2017;27(2):121-8.
- 56. Durowade KA, Salaudeen AG, Akande TM, Musa OI, Bolarinwa OA, Olokoba LB, et al. Traditional eye medication: a rural-urban comparison of use and association with glaucoma among adults in Ilorin-west Local Government Area, North-Central Nigeria. J Community Med Prim Health Care. 2018;30(1):86-98.
- 57. Eneogu RA, Mitchell EM, Ogbudebe C, Aboki D, Anyebe V, Dimkpa CB, *et al.* Operationalizing mobile computer-assisted TB screening and diagnosis with Wellness on Wheels (WoW) in Nigeria: balancing feasibility and iterative efficiency. [Publication details unavailable]; 2020.
- 58. Erigha ED, Ayo FE, Dada OO, Folorunso O. Intrusion detection system based on support vector machines and the two-phase bat algorithm. J Inf Syst Secur. 2017;13(3).
- Erigha ED, Obuse E, Ayanbode N, Cadet E, Etim ED. Machine learning-driven user behavior analytics for insider threat detection. IRE Journals. 2019;2(11):535-44.
- 60. Erinjogunola FL, Nwulu EO, Dosumu OO, Adio SA, Ajirotutu RO, Idowu AT. Predictive safety analytics in oil and gas: leveraging AI and machine learning for risk mitigation in refining and petrochemical operations. Int J Sci Res Publ. 2020;10(6):254-65.
- 61. Essien IA, Ajayi JO, Erigha ED, Obuse E, Ayanbode N. Federated learning models for privacy-preserving cybersecurity analytics. IRE Journals. 2020;3(9):493-9. Available from: https://irejournals.com/formatedpaper/1710370.pdf.
- 62. Essien IA, Cadet E, Ajayi JO, Erigha ED, Obuse E. Cyber risk mitigation and incident response model leveraging ISO 27001 and NIST for global enterprises. IRE Journals. 2020;3(7):379-85. Available from: https://irejournals.com/formatedpaper/1710215.pdf.
- 63. Essien IA, Cadet E, Ajayi JO, Erigha ED, Obuse E. Regulatory compliance monitoring system for GDPR, HIPAA, and PCI-DSS across distributed cloud architectures. IRE Journals. 2020;3(12):409-15. Available from: https://irejournals.com/formatedpaper/1710216.pdf.
- 64. Essien IA, Cadet E, Ajayi JO, Erigha ED, Obuse E. Cloud security baseline development using OWASP, CIS benchmarks, and ISO 27001 for regulatory compliance. IRE Journals. 2019;2(8):250-6. Available from:
 - https://irejournals.com/formatedpaper/1710217.pdf.
- 65. Essien IA, Cadet E, Ajayi JO, Erigha ED, Obuse E. Integrated governance, risk, and compliance framework for multi-cloud security and global regulatory alignment. IRE Journals. 2019;3(3):215-21. Available from: https://irejournals.com/formatedpaper/1710218.pdf.
- 66. Essien IA, Cadet E, Ajayi JO, Erigha ED, Obuse E, Babatunde LA, Ayanbode N. From manual to intelligent

- GRC: the future of enterprise risk automation. IRE Journals. 2020;3(12):421-8. Available from: https://irejournals.com/formatedpaper/1710293.pdf.
- 67. Etim ED, Essien IA, Ajayi JO, Erigha ED, Obuse E. Alaugmented intrusion detection: advancements in real-time cyber threat recognition. IRE Journals. 2019;3(3):225-30.
- Evans-Uzosike IO, Okatta CG. Strategic human resource management: trends, theories, and practical implications. Iconic Res Eng Journals. 2019;3(4):264-70
- 69. Feder G, Umali DL. The adoption of agricultural innovations: a review. Technol Forecast Soc Change. 2015;114:34-48.
- 70. Feder G, Murgai R, Quizon J. The economic impact of agricultural extension: evidence from developing countries. World Dev. 2015;70:236-50.
- 71. Fielke S, Taylor B, Klerkx L. Innovation platforms and governance for agricultural innovation. Agric Syst. 2020;182:102818.
- 72. Friis-Hansen E, Duveskog D, Taylor EW. Less noise in the household: the impact of farmer field schools on rural livelihoods. World Dev. 2017;89:82-92.
- 73. Giwah ML, Nwokediegwu ZS, Etukudoh EA, Gbabo EY. A resilient infrastructure financing framework for renewable energy expansion in Sub-Saharan Africa. IRE Journals. 2020;3(12):382-94. Available from: https://www.irejournals.com/paper-details/1709804.
- 74. Giwah ML, Nwokediegwu ZS, Etukudoh EA, Gbabo EY. A systems thinking model for energy policy design in Sub-Saharan Africa. IRE Journals. 2020;3(7):313-24. Available from: https://www.irejournals.com/paper-details/1709803.
- 75. Giwah ML, Nwokediegwu ZS, Etukudoh EA, Gbabo EY. Sustainable energy transition framework for emerging economies: policy pathways and implementation gaps. Int J Multidiscip Evol Res. 2020;1(1):1-6. doi: 10.54660/JJMER.2020.1.1.01-06.
- 76. Hailu B, Nettle R, Buys L. The role of financial access in agricultural innovation. J Rural Stud. 2017;55:95-104.
- 77. Hounkonnou D, Kossou D, Kuyper TW, Leeuwis C, Nederlof ES, Röling N, *et al.* Unpacking agricultural innovation platforms: functions and challenges. Agric Syst. 2018;165:44-54.
- 78. Hungbo AQ, Adeyemi C. Community-based training model for practical nurses in maternal and child health clinics. IRE Journals. 2019;2(8):217-35.
- 79. Hungbo AQ, Adeyemi C. Laboratory safety and diagnostic reliability framework for resource-constrained blood bank operations. IRE Journals. 2019;3(4):295-318. Available from: https://irejournals.com.
- 80. Hungbo AQ, Adeyemi C, Ajayi OO. Early warning escalation system for care aides in long-term patient monitoring. IRE Journals. 2020;3(7):321-45.
- 81. Idowu AT, Nwulu EO, Dosumu OO, Adio SA, Ajirotutu RO, Erinjogunola FL. Efficiency in the oil industry: an IoT perspective from the USA and Nigeria. Int J IoT Appl. 2020;3(4):1-10.
- Kansiime MK, Mastenbroek A. Enhancing resilience through agricultural finance. Dev Pract. 2019;29(2):160-73.
- 83. Ojeikere K, Akomolafe OO, Akintimehin OO. A community-based health and nutrition intervention

- framework for crisis-affected regions. Iconic Res Eng Journals. 2020;3(8):311-33.
- 84. Klerkx L, Leeuwis C. Matching demand and supply in the agricultural knowledge infrastructure: experiences with innovation brokers in the Netherlands. Food Policy. 2018;73:34-45.
- 85. Klerkx L, Proctor A. Beyond dissemination: exploring agricultural innovation as a process of network building. J Rural Stud. 2018;64:47-58.
- 86. Klerkx L, Aarts N, Leeuwis C. Adaptive governance in agricultural innovation systems. Agric Syst. 2019;176:102661.
- 87. Knorringa P, Nadvi K. Development impacts of global value chains on SMEs and workers. World.World Dev. 2019;123:104-38.
- 88. Leeuwis C, Aarts N. Rethinking communication in innovation processes: creating space for change. J Agric Educ Ext. 2018;24(3):219-36.
- 89. Lwoga ET, Ngulube P. Managing indigenous knowledge for sustainable agricultural development. Libr Rev. 2015;64(1/2):135-59.
- 90. Meijer SS, Catacutan D, Sileshi GW, Nieuwenhuis M. Tree planting by smallholder farmers in Malawi: using the theory of planned behavior to examine adoption decisions. J Environ Manage. 2016;184:44-53.
- 91. Menson WNA, Olawepo JO, Bruno T, Gbadamosi SO, Nalda NF, Anyebe V, *et al.* Reliability of self-reported mobile phone ownership in rural north-central Nigeria: cross-sectional study. JMIR Mhealth Uhealth. 2018;6(3):e8760.
- 92. Munyua H, Adera E. Emerging ICT solutions for smallholder farmers in Africa. Inf Dev. 2019;35(2):231-45
- 93. Norton GW, Alwang J. Changes in agricultural extension and implications for farmer adoption of innovations. Appl Econ Perspect Policy. 2020;42(1):8-20
- 94. Nsa B, Anyebe V, Dimkpa C, Aboki D, Egbule D, Useni S, Eneogu R. Impact of active case finding of tuberculosis among prisoners using the WOW truck in North Central Nigeria. Int J Tuberc Lung Dis. 2018;22(11):S444.
- 95. Nwaimo CS, Oluoha OM, Oyedokun O. Big data analytics: technologies, applications, and future prospects. Iconic Res Eng Journals. 2019;2(11):411-9.
- 96. Odinaka NNADOZIE, Okolo CH, Chima OK, Adeyelu OO. AI-enhanced market intelligence models for global data center expansion: strategic framework for entry into emerging markets. [Publication details unavailable]; 2020
- 97. Odinaka NNADOZIE, Okolo CH, Chima OK, Adeyelu OO. Data-driven financial governance in energy sector audits: a framework for enhancing SOX compliance and cost efficiency. [Publication details unavailable]; 2020.
- 98. Ogunsola OE. Climate diplomacy and its impact on cross-border renewable energy transitions. IRE Journals. 2019;3(3):296-302. Available from: https://irejournals.com/paper-details/1710672.
- 99. Ogunsola OE. Digital skills for economic empowerment: closing the youth employment gap. IRE Journals. 2019;2(7):214-9. Available from: https://irejournals.com/paper-details/1710669.
- 100.Olamoyegun M, David A, Akinlade A, Gbadegesin B, Aransiola C, Olopade R, et al. Assessment of the

- relationship between obesity indices and lipid parameters among Nigerians with hypertension. Endocr Abstr. 2015;38.
- 101.Olasehinde O. Stock price prediction system using long short-term memory. In: BlackInAI Workshop@ NeurIPS; 2018.
- 102.Osabuohien FO. Review of the environmental impact of polymer degradation. Commun Phys Sci. 2017;2(1).
- 103.Osabuohien FO. Green analytical methods for monitoring APIs and metabolites in Nigerian wastewater: a pilot environmental risk study. Commun Phys Sci. 2019;4(2):174-86.
- 104.Oyedele M, *et al.* Leveraging multimodal learning: the role of visual and digital tools in enhancing French language acquisition. IRE Journals. 2020;4(1):197-9. Available from: https://www.irejournals.com/paperdetails/1708636.
- 105.Ozobu CO. A predictive assessment model for occupational hazards in petrochemical maintenance and shutdown operations. Iconic Res Eng Journals. 2020;3(10):391-9.
- 106.Ozobu CO. Modeling exposure risk dynamics in fertilizer production plants using multi-parameter surveillance frameworks. Iconic Res Eng Journals. 2020;4(2):227-32.
- 107. Qiang CZ, Kuek SC, Dymond A, Esselaar S. Mobile applications for agricultural and rural development. Washington, DC: World Bank; 2017. p. 67-89.
- 108.Rivera WM, Alex G. Human resource development for modernizing extension services. J Agric Educ Ext. 2019;25(2):107-24.
- 109.Rivera WM, Qamar MK. Demand-driven approaches to agricultural extension: case studies of innovation in extension delivery. FAO Res Pap. 2018;34(2):45-59.
- 110.Rivera WM, Qamar MK. Agricultural extension, rural development, and the food security challenge. Rome: FAO; 2019.
- 111.Rogers EM. Diffusion of innovations. 5th ed. New York: Free Press; 2003.
- 112. Sanusi AN, Bayeroju OF, Queen Z, Nwokediegwu S. Circular economy integration in construction: conceptual framework for modular housing adoption. [Publication details unavailable]; 2019.
- 113. Sanusi AN, Bayeroju OF, Nwokediegwu ZQS. Conceptual model for low-carbon procurement and contracting systems in public infrastructure delivery. J Front Multidiscip Res. 2020;1(2):81-92. doi: 10.54660/.JFMR.2020.1.2.81-92.
- 114.Sanusi AN, Bayeroju OF, Nwokediegwu ZQS. Framework for applying artificial intelligence to construction cost prediction and risk mitigation. J Front Multidiscip Res. 2020;1(2):93-101. doi: 10.54660/.JFMR.2020.1.2.93-101.
- 115. Scholten J, Eneogu R, Ogbudebe C, Nsa B, Anozie I, Anyebe V, *et al.* Ending the TB epidemic: role of active TB case finding using mobile units for early diagnosis of tuberculosis in Nigeria. Int Union Against Tuberc Lung Dis. 2018;11:22.
- 116. Solomon O, Odu O, Amu E, Solomon OA, Bamidele JO, Emmanuel E, Parakoyi BD. Prevalence and risk factors of acute respiratory infection among under fives in rural communities of Ekiti State, Nigeria. Glob J Med Public Health. 2018;7(1):1-12.
- 117. Spielman DJ, Ma X. Private sector investment in

- agricultural research and innovation systems in developing countries. Agric Econ. 2016;47(S1):15-28.
- 118. Spielman DJ, Ekboir J, Davis K. The art and science of innovation systems inquiry: applications to agricultural development. Agric Syst. 2018;155:243-55.
- 119. Spielman DJ, Ekboir J, Davis K. The art and science of innovation systems: agricultural R&D in developing countries. World Dev. 2019;115:45-57.
- 120.Sulaiman R, Davis K. The new extensionist: roles, strategies, and capacities to strengthen extension and advisory services. Global Forum for Rural Advisory Services; 2016. p. 1-38.
- 121.Swanson BE. Strengthening agricultural extension and advisory systems: procedures for assessing, transforming, and evaluating extension systems. USAID MEAS Discuss Pap. 2016;4:12-29.
- 122. Swanson BE, Rajalahti R. Strengthening agricultural extension and advisory systems. FAO Agric Serv Bull. 2015;163:1-45.
- 123.Swanson BE, Rajalahti R. Strengthening agricultural extension and advisory systems: procedures for assessing, transforming, and evaluating extension systems. Washington, DC: World Bank; 2016.
- 124. Tornatzky LG, Klein KJ. Innovation characteristics and adoption processes. Rev Educ Res. 1982;38(4):28-45.
- 125.Tsan M, Totapally S, Hailu M, Addom BK. The digitalisation of African agriculture report. Wageningen: CTA/Dalberg Advisors; 2019.
- 126.Umoren O, Didi PU, Balogun O, Abass OS, Akinrinoye OV. Redesigning end-to-end customer experience journeys using behavioral economics and marketing automation for operational efficiency. IRE Journals. 2020;4(1):289-96.
- 127.Umoren O, Didi PU, Balogun O, Abass OS, Akinrinoye OV. Linking macroeconomic analysis to consumer behavior modeling for strategic business planning in evolving market environments. IRE Journals. 2019;3(3):203-10.
- 128. Wigboldus S, Leeuwis C. Facilitating systemic change in agricultural innovation systems. Agric Syst. 2017;153:35-45.
- 129. World Bank. ICT in agricultural extension and advisory services: a learning toolkit. Washington, DC: World Bank; 2017.
- 130.Zhou Y, Xu Z. Private extension and agricultural productivity growth in China. China Agric Econ Rev. 2020;12(3):395-410.
- 131.Zossou E, Van Mele P, Vodouhe SD, Wanvoeke J. Gender and innovation processes in agriculture: learning from video in Benin. J Agric Educ Ext. 2015;21(4):341-56.