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Abstract

Background: The distribution of vaccines, especially during a pandemic, is a complex logistical
challenge that must be addressed with a strategy that considers both efficiency and
equity. Traditional methods often overlook the significant heterogeneity within populations,
resulting in distribution networks that do not adequately serve high-risk subgroups. This study
introduces a novel approach that integrates multi-source geospatial data with advanced
demographic risk models to optimize vaccine distribution networks. This approach aims to
provide a more nuanced and equitable framework for resource allocation, ensuring that vaccine
rollout strategies are both effective and just.

Methods: By utilizing Geographic Information Systems (GIS), spatial statistics, and
operational research techniques, this research transcends the limitations of a one-size-fits-all
model. The proposed framework dynamically integrates population density, vulnerability
metrics, healthcare access, and logistical constraints to prioritize resource allocation
effectively. This paper delineates the key components of this integrated approach, explores
methodological considerations, and underscores its potential to enhance public health outcomes
during mass vaccination efforts.

Results: The optimized distribution strategy not only allocates resources based on population
density but also on vulnerability and access metrics, ensuring that the most at-risk communities
are reached. This refined approach enables the effective deployment of mobile vaccination
centers and the strategic placement of fixed vaccination sites. By reaching underserved
populations, it addresses both accessibility and equity challenges in vaccine
distribution. Furthermore, this approach moves beyond simplistic population-based allocation
strategies to consider epidemiological risk factors and socio-economic determinants, aiming to
ensure that vaccine distribution does not exacerbate existing health disparities.

Conclusion: The integration of microplanning, which may involve certain planning
components used to identify population size and location, further refines these strategies,
especially in settings where resources are limited.
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1. Introduction

The COVID-19 pandemic has been a shining example of how current vaccine distribution plans are incredibly
suboptimal. Advances in medical research and development have been highly successful at producing vaccines at an impressive
speed, however, lack in certain areas that have now been grossly exposed by the distribution process (Bubar et al., 2021). A key
aspect of that was the heterogeneity of the population being distributed to. Differences in rates of susceptibility and transmission,
as well as potential medical and other types of care, are not the same across every community.
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Fig 1: A flow diagram illustrating the three core components and their inputs/outputs.

Therefore, a "best fit" distribution method in a homogenous
population is inefficient and unfair when applied to the real
world, heterogeneous population.
The rapidly developing tools of geospatial technology and
data analytics, coupled with the time-tested tools of
operations research is an area where the research in this field
has an incredible opportunity to make an impact. The central
thesis of this work is that by thoughtfully combining data on
location, such as healthcare facility location, transportation
infrastructure and other components with relevant population
risk factors (age, pre-existing conditions, socioeconomic
status, etc.) then we can construct a more efficient and
equitable vaccine distribution network.

2. Core Components of the Integrated Framework

2.1. Geospatial Data Integration

The backbone of the first framework is high-resolution,

multi-layered geospatial data.

e Population: The denominator of the population for
planning is the primary layer. The base geospatial data
for the population is provided by census tracts, but these
may not be specific enough to distinguish differences in
population at different times (day vs. night) or during
travel (Oliver et al., 2020). These additional population
shifts, such as by analyzing anonymized mobile phone
data, may be helpful for understanding commuting
patterns in identifying potential pop-up clinic
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sites. Reliable and granular data for where the population
of interest resides is also a key step in the design of a
micro plan: a site-specific plan with highly accurate
population estimates and location data (Chaney et al.,
2021) @ (Rocha et al., 2021) 271, This is of particular
importance in low resource settings, where geospatial
data are often scarce or unreliable. Existing micro plans,
which may not be to scale and lack important layers such
as distance or barriers to travel, can be expanded upon
using new digital mapping methods to more completely
and accurately map unreachable settlements.
Infrastructure: Highly accurate and specific locations
of all known hospitals, clinics, pharmacies, and potential
mass vaccination sites, such as stadiums or schools. As
noted above, the transportation network is also highly
relevant and can be modeled as a layer to understand the
time required to travel to sites as a key access
barrier. Geographic information systems can create and
interact with all of these layers to effectively model the
population of interest and what is available within the
operational environment. Micro plans that provide
accurate estimates of population size and location can be
used where available, which can address shortfalls in
established targets for health coverage (Rocha et al.,
2021) (81,

Environmental and Socioeconomic: Satellite and land-
use imagery can help identify hard-to-reach or
underserved locations. In addition, information about the
Area Deprivation Index (ADI) or CDC’s Social
Vulnerability Index (SVI) at the community level
provides insight into community resilience spatially
(Kind & Buckingham, 2018). In sum, many of the
datasets are geospatial or can be made into geospatial
information. They can be used to create a digital twin of
the operational environment and identify highly specific
target populations and logistical constraints. It also
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creates detailed and high-resolution spatial intelligence
for use in the next step of this framework, a refined
approach to vaccine allocation.

2.2. Demographic Risk Modeling

Mapping age alone limits the resolution to geography, so it is
important to calculate an overall risk score for the sub-
populations.

Vulnerability Score: What is the risk of bad
outcomes? This can be measured with age structure,
comorbidities  (diabetes, heart conditions) and
congregate living (nursing homes, jails). On the other
hand, a community's resilience or adaptive capacity to
any of the aforementioned factors can also be considered
by including socioeconomic factors like income,
education, and proximity to or access to critical
services. As such, the most vulnerable members of a
population to the disease and who are least able to adapt
to the impact of the disease can be identified. (Saidu et
al., 2023) [20,

Transmission Risk Score: What is the risk of being
infected? This can be calculated based on housing
density, types of essential work, and community
mobility patterns. For example, using overall risk
models would include other types of epidemiological
historical data and real-time surveillance to understand
potential emerging outbreak hot spots and proactively
identify priority areas before an outbreak for vaccine
allocations rather than a reactive response. In addition,
when integrated with real-time geospatially referenced
data sets these models can also be set up to make
dynamic adjustments to the distribution plans when
changes to potential risks areas can be identified and
vaccine resources redirected to respond to the most
emergent needs in the state. (Greenough & Nelson,
2019) 81,

Table 1: A table summarizing the factors and potential data sources for each score

Score Component Description

Key Factors

Example Data Sources

Risk of severe outcomes if

Vulnerability Score infected.

Age, comorbidities (diabetes, heart
disease), congregate living (nursing

Census data, health records, facility

homes). registries.

Transmission Risk Score

Risk of being infected and
spreading the virus.

Housing density, essential worker
density, community mobility patterns.

Mobile phone data, employment
statistics, land-use data.

Barriers to accessing

Accessibility Score N A
vaccination services.

Travel time to nearest site, vehicle
ownership, digital literacy for online
registration.

Transportation networks, census data
on vehicle ownership, survey data.

Priority Index Composite weighted score

Weighted sum of Vulnerability,
Transmission, and Accessibility

Output from the combined model.

scores.

Accessibility Score: How easy is it to access a
vaccine? This can be based on the actual time needed to
travel to the closest location, if they have a personal
vehicle and the access to or understanding of technology
for registration in an online portal for vaccine
appointment scheduling. This would allow for a multi-
faceted scoring of neighborhood and community sub-
populations that could be used to allocate vaccines to the
most high-risk communities. (Rader et al., 2022) [*61 This
method would also provide a more spatially specific
analysis that can move beyond traditional age-based
vaccine prioritization to account for different risk levels
for each city. (Hong et al., 2022) [,

Then a final Priority Index can be calculated from weighting

and summarizing the scores and mapping to have a granular
map-based prioritization of neighborhoods to target for

vaccines and site placements.

2.3. Network Optimization Modeling
Facility location-allocation modeling takes the information

from the first two steps as input data, in the form of geospatial

mapping and risk assessment, to solve an operational research
model. With these, the number of sites, their locations, and
capacity size can be optimized to achieve a network that
provides the maximum coverage at the lowest cost. Popular
methods for vaccination site selection are as follows:
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» P-Median Models: These are distribution center

location-allocation models that seek to minimize the
overall travel time of the population to the nearest
vaccination site. This is typically done by choosing
facility locations such that the sum of demand-weighted
travel distances between demand points (population
centers) and their closest assigned facility s
minimized. - Set Covering Models:

www.allmultidisciplinaryjournal.com

facilities needed to provide this coverage (Chen et
al., 2022) 1,

= This model is used to determine where to open a
fixed number of facilities across a service area to
best cover its population centers. More recent
methods apply multi-objective optimization, which
can optimize vaccination site deployment for a
combination of coverage, equity, and logistical

= In contrast, set covering models, as their name
implies, instead try to cover all demand points at a
set maximum travel distance, with the objective of
minimizing the overall number of vaccination

efficiency metrics (Santos et al., 2023) 24, It is also
applicable to resource allocation with heterogeneous
population distributions and varying levels of
infrastructural capacity (Goodson et al., 2022) 7],

Table 2: Table comparing the objectives, strengths, and weaknesses of each model.

Model Type

Primary Objective

Key Strengths

Key Weaknesses / Considerations

P-Median

Minimize total travel
distance/time for the population.

Maximizes overall system efficiency and
convenience.

May neglect remote or low-density,
high-risk areas.

Set Covering

Cover all demand points within a
max distance with the fewest
facilities.

Guarantees a baseline level of access for
everyone.

Can be resource-intensive; may
require many facilities in sparse
regions.

Maximal Covering
Location Problem (MCLP)

Cover the maximum number of
people (weighted by priority)
within a distance, with a limited
number of facilities.

Ideal for this framework. Directly
incorporates the Priority Index to
maximize impact.

Requires defining the number of
facilities in advance.

Simultaneously optimize
multiple goals (e.g., equity, cost,
coverage).

Multi-Objective
Optimization

Most realistic; can balance competing

Computationally complex; can be

priorities. difficult to implement rapidly.

» Maximal covering location problem (MCLP): This is a

location-allocation model that selects sites that cover the
greatest number of people (weighted by the Priority
Index) within a specified travel time or distance, given
that the number of facilities is limited (ReVelle &
Church, 1974). An extension of this model can be done
to include mobile vaccination clinics, which are
optimized to reach the largest number of people in
underserved and hard-to-reach areas that may be more
spatially fragmented (Goodson et al., 2022) I']. As with
location-allocation models, this type of modeling can
also account for resource constraints like available
vaccine supply, cold-chain capacity, and human
resources to produce a set of feasible and efficient clinic
deployment strategies (Diaz-Quijano et al., 2023) [4],

Multi-objective optimization: More advanced models
may seek to simultaneously optimize for multiple (and
potentially competing) objectives, such as maximizing
equity of access to vaccination sites for high-risk
subpopulations, minimizing overall logistical costs, and
minimizing vaccine wastage (Goodson et al., 2022)
[, These models can be further refined using real-time
information on vaccine supply chains and demand
surges, thus allowing for adaptive deployment strategies
in the event of unforeseen disruptions. On the other
hand, the greater the number of decision variables and
constraints, the more computationally intensive these
sophisticated optimization models will be. As such, they
may have limited real-world applicability and usefulness
for rapid deployment during public health
emergencies. Instead, simpler heuristic approaches or
approximation algorithms are often preferred and used,
along with sensitivity analyses to understand the trade-
offs between model fidelity and operational
efficiency. Ultimately, the optimization model chosen
for a project will need to be carefully calibrated to the

specific circumstances of the public health intervention
at hand, to ensure that it is not only analytically rigorous
but also practically implementable (Li et al., 2023)
(141 This modeling can find ideal vaccination site
locations by using preexisting public facilities, such as
public schools and hospitals, as initial candidate sites
(Cabanilla et al., 2022) [,

3. Methodology
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Fig 2: A Detailed flowchart
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Step 1: Data Collection & Fusion: Integrate census data,
health records, mobility patterns, and infrastructure maps into
a comprehensive GIS platform. This includes population
demographics, current healthcare facilities, and real-time
vaccine availability and uptake rates (Rader et al., 2022)
1181, This rich data fusion provides a contextual backdrop for
understanding population vulnerabilities and logistical
challenges, essential for informed decision-making in
vaccine distribution strategies (Shayegh et al., 2023) %3],

Step 2: Risk Stratification: Calculate the Priority Index
composite score for each geographic subunit (e.g., census
block groups). This index is a weighted combination of
epidemiological risk factors (disease prevalence/incidence)
and socioeconomic vulnerabilities (poverty, healthcare
access) to form a comprehensive measure of community
susceptibility and potential for severe outcomes. This
stratification allows for a granular and targeted approach to
resource allocation, ensuring that areas with the highest need
are prioritized appropriately (Shayegh et al., 2023) (22,

Step 3: Demand Forecasting: Estimate the demand for
vaccines for each subunit based on its population and Priority
Index. The forecast should incorporate variable vaccine
hesitancy and acceptance rates across different demographic
segments, derived from community-specific surveys and
historical health data (Lee et al., 2021) 131, This step is critical
for anticipating logistical needs and aligning supply with
demand at a granular, local level.

Step 4: Model Formulation & Solving: Choose an
appropriate optimization model (MCLP, for instance), enter
the constraints (number of sites, budget, cold storage
capacities), and run the algorithms to produce candidate
networks. This stage can include an integer programming
formulation that considers both single and multiple vaccine
types and their distribution across a multi-tier cold chain
network (Sripada et al., 2023) [? Additionally, these
mathematical models can be expanded to incorporate
elements like vaccine wastage, storage capacities, and
transportation constraints for increased realism and practical
applicability (Eksioglu et al., 2023) [,

Step 5: Scenario Analysis & Validation: Stress-test the
optimized networks under various scenarios (supply
shortages, new virus strains) and validate the model's efficacy
against real-world outcomes or through agent-based
simulation. This process is vital for evaluating the robustness
of the optimized solutions against uncertainties such as
fluctuating vaccine supply or unforeseen demand
surges. This is achieved by presenting results to policy and
decision-makers using the Traffic Light Analysis Tool to
determine how key indicators for a target year change for
each scenario when compared to a baseline scenario to reach
consensus on optimized models and associated
implementation roadmaps (Prosser et al., 2021) [*5],

This may include using a comprehensive systems design
approach to carry out stakeholder engagement and modeling
scenario identifications, which is then followed by in-depth
data collection and analysis through document review and

www.allmultidisciplinaryjournal.com

interviews of key informants to help optimize the supply
chain performance. The evidence-based models generated
from the process will require validation in a workshop setting
with stakeholders and decision-makers to inform the
decisions needed to determine the optimal design of the
immunization supply chains. In essence, an iterative process
of stakeholder engagement, model refinement, and validation
is necessary to ensure the final design is theoretically sound,
practically implementable, and aligned with national health
priorities (Prosser et al., 2021) [,

4. Results

One of the major takeaways, however, is that while this data
science approach seems to have some promise, it comes with
many roadblocks. The first is data privacy. This method is
obviously not usable with deidentified data, so the necessary
sensitivity of medical and location information of the
population must be safeguarded. Model limitations are also
to be considered: while the spatial model is dependent on
availability and quality of relevant data, it can have its own
downstream dependencies, which will not only mirror the
availability of data at hand but could also act as a blueprint
for perpetuating preexisting biases in the underlying
data. Models and algorithms should not be blindly trusted to
the exclusion of community engagement and local public
health expertise; certain decisions, such as in choosing spatial
aggregation techniques to use, must be made with a focus on
cultural competency and trust-building.

Additionally, results of the model must be reported clearly
and concisely to stakeholders; agreement and buy-in to the
scenarios being modeled, after all, is essential for uptake and
implementation. The final limitation is one that may seem, at
first, to be false. Modeling itself is not an inherently powerful
tool for making the "what's best" decision — that decision lies
in the hands of stakeholder interpretation, with context from
the actual country situation at hand. Quantitative evidence
may be of major use in making complex trade-offs, but
common sense and a solid understanding of the ground
situation in the country under analysis should be used as a
starting point for system design analysis (Prosser et al., 2021)
1151, An efficient and effective health supply chain (HSC) is
one of the vital aspects to achieve public health targets since
it enables an uninterrupted supply of the needed equipment
(Krautmann et al., 2020) (X9,

In contrast, a poorly functioning immunization supply chain
was found to be the cause of the inability to provide universal
access and high immunization coverage rates; these supply
chains are often outdated and inefficient, which leads to
disruptions and stock-outs, wastages, and poor quality of
vaccines. The immunization system has to be redesigned to
be more resilient and responsive in addressing these
persistent issues, especially in heterogeneous populations
with disparities in health status and outcomes. As such, with
its power in geospatial data integration and overlaying it with
other factors, such as the demographic risk score model, it is
a viable and systematic method for the decision-support
problem of developing adaptive strategies for this entrenched
issue in immunization and vaccine optimization in vaccine
distribution in reaching vulnerable populations (Prosser et al.,
2021) (191,
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Furthermore, these types of operations research analytics and
optimization applications are theoretically well-suited for the
problem at hand, but practical considerations of current
capacity, political and decision-making reality, and likely
logistical and throughput impacts may limit the applicability
and impact of analytics models developed within the
country. A systematic approach to this problem will allow for
more strategic use of scarce resources, so the vaccine
distribution system is both more efficient and equitable. This
will in turn reduce the overall system cost, improve dose
delivery rates and increase throughput volume across all
facilities in the cold chain as shown by the analysis and cost
of various supply chain scenarios.

Optimizing various parts of the vaccine supply chain also
helps to improve the resilience of the cold chain so it can
better and faster respond to both public health emergencies
and routine needs. The quality of the decisions is not solely
dependent on cost or computational optimality, and often
more decision criteria are at play. These considerations
include equity and other qualitative values, which are often
difficult to integrate into mathematical programs.
Decision-support  frameworks can consider multiple
optimizations, like minimizing inventory, ordering, and
transportation costs, as well as associated factors such as
workforce and personnel expenditures, potential shortages,
and other complex real-world constraints across multiple
layers of a vaccine cold chain network. For example, linear
programming formulations have been used for vaccine
allocation to maximize the number of fully immunized
children, but these often have assumptions of at least a
sufficient vaccine supply and do not account as much for
transportation and/or potential staffing capacity. These
models, however, are still often simplified for practical
purposes, but do not always fully reflect the complexities of
real vaccine supply chains with the multiple layers in the
supply chain with uncertainties in vaccine production yields
and/or fluctuating demand (Sripada et al., 2023) 241,

To handle some of these complexities, a robust optimization

method has been developed and shows promise in reducing
the cost while maintaining a level of effectiveness, even in
the face of high uncertainty in its model parameters. This
includes an advanced preprocessing step that can be
automatically triggered when a maximum runtime is
exceeded by the model. These robust frameworks can
optimize many different aspects, like the set of cold chain
facilities being ordered from and what vaccines, the quantity
ordered, as well as vehicle, inventory, and staffing
requirements across multiple tiers in the network. In these
more comprehensive models, a mixed-integer linear
programming formulation is often used to help represent the
underlying relationships and dependencies of a multi-tier
cold chain network, with facility transportation and storage
costs often being differentiated between fixed and variable
costs, along with decisions such as staffing at the vaccination
sites.

These robust optimization models have been shown to
outperform their deterministic counterparts at varying levels
of uncertainty in its modeled parameters, and acts as a more
general, reliable tool for use by public health authorities to
support their planning and capacity management in a multi-
tier cold chain network. The end-to-end, integrated system of
decision support allows for optimization of facility set and
ordering decisions, vaccine products and allocation
quantities, transportation logistics, and capacity, as well as
the cold chain link inventory and staffing levels throughout
the entire vaccine cold chain.

Additionally, these frameworks explicitly model vaccination
personnel availability and their corresponding capacity to
deliver doses, directly tying capacity planning for the supply
chain to available staffing levels. This includes the
development of a robust counterpart to account for
uncertainty in the model, further enhancing the reliability of
the network design, especially in the context of a vaccine
supply chain (Sadjadi et al., 2019) 'l This accounts for
uncertainty in key parameters, such as ordering costs, holding
costs, and others such as demand, and even potential
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manufacturing capacity, and in turn is shown to be a more
conservative but more effective solution compared to the
deterministic version (Sripada et al., 2023) 24,

5. Conclusion

The optimization of vaccine distribution networks is no
longer a problem that can be solved with logistics alone. It’s
a socio-technical one. Imagine a system that combines
geospatial intelligence and nuanced demographic risk
profiling with mathematical optimization. This would shift
vaccine distribution from reactive and undifferentiated to
proactive and precision public health. The result? A resilient
and equitable public health framework for future crises, with
limited vaccines going where they can have the most impact
on reducing severe illness and transmission. This would be
one way to optimize vaccine distribution based on effective
decision-making (Yang et al., 2021). Inventory at different
tiers of the cold chain can be flexed based on manufacturing
capability to best meet storage and distribution costs. Adding
a coverage index to the hub-and-spoke models helps in
choosing which dispensing sites to prioritize first to improve
accessibility and meet demand and address the challenges of
having specialized storage requirements (Xu et al., 2021)
261, |_astly, considering real-time data on vaccine efficacy and
associated costs allows for dynamic decisions on vaccine
procurement and distribution strategies, optimizing both
health outcomes and economic efficiency (Sripada et al.,
2023) 241,

The objective function can consider several elements, from
supply chain management aspects (such as production yields
and demand uncertainty) to determine optimal selling
strategies for vaccines (advance, regular, or dynamic
selling). The key takeaway here is that instead of using
simplistic methods like cost minimization, the paper
accounted for the nature of a vaccine supply chain,
specifically in an area with potentially insufficient
infrastructure and heterogeneous population (Eksioglu et al.,
2023) Bl (Trivedi & Gharib, 2023) 2°1. To make the model
more realistic, future studies may want to include a decision
variable related to the delay experienced at each stage and its
effect on the entire supply chain. This is because time delays
could lead to a more complex problem, so the authors could
consider heuristic models or learning approaches (Sarmad et
al., 2023) 21, Additionally, since multi-tier cold chains are
common for public health programs, decision support
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