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Abstract 
Background: The distribution of vaccines, especially during a pandemic, is a complex logistical 

challenge that must be addressed with a strategy that considers both efficiency and 

equity. Traditional methods often overlook the significant heterogeneity within populations, 

resulting in distribution networks that do not adequately serve high-risk subgroups. This study 

introduces a novel approach that integrates multi-source geospatial data with advanced 

demographic risk models to optimize vaccine distribution networks. This approach aims to 

provide a more nuanced and equitable framework for resource allocation, ensuring that vaccine 

rollout strategies are both effective and just. 

Methods: By utilizing Geographic Information Systems (GIS), spatial statistics, and 

operational research techniques, this research transcends the limitations of a one-size-fits-all 

model. The proposed framework dynamically integrates population density, vulnerability 

metrics, healthcare access, and logistical constraints to prioritize resource allocation 

effectively. This paper delineates the key components of this integrated approach, explores 

methodological considerations, and underscores its potential to enhance public health outcomes 

during mass vaccination efforts. 

Results: The optimized distribution strategy not only allocates resources based on population 

density but also on vulnerability and access metrics, ensuring that the most at-risk communities 

are reached. This refined approach enables the effective deployment of mobile vaccination 

centers and the strategic placement of fixed vaccination sites. By reaching underserved 

populations, it addresses both accessibility and equity challenges in vaccine 

distribution. Furthermore, this approach moves beyond simplistic population-based allocation 

strategies to consider epidemiological risk factors and socio-economic determinants, aiming to 

ensure that vaccine distribution does not exacerbate existing health disparities. 

Conclusion: The integration of microplanning, which may involve certain planning 

components used to identify population size and location, further refines these strategies, 

especially in settings where resources are limited. 
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1. Introduction 

The COVID-19 pandemic has been a shining example of how current vaccine distribution plans are incredibly 

suboptimal. Advances in medical research and development have been highly successful at producing vaccines at an impressive 

speed, however, lack in certain areas that have now been grossly exposed by the distribution process (Bubar et al., 2021). A key 

aspect of that was the heterogeneity of the population being distributed to. Differences in rates of susceptibility and transmission, 

as well as potential medical and other types of care, are not the same across every community.

https://doi.org/10.54660/.IJMRGE.2023.4.6.1223-1230
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Fig 1: A flow diagram illustrating the three core components and their inputs/outputs. 

 

Therefore, a "best fit" distribution method in a homogenous 

population is inefficient and unfair when applied to the real 

world, heterogeneous population. 

The rapidly developing tools of geospatial technology and 

data analytics, coupled with the time-tested tools of 

operations research is an area where the research in this field 

has an incredible opportunity to make an impact. The central 

thesis of this work is that by thoughtfully combining data on 

location, such as healthcare facility location, transportation 

infrastructure and other components with relevant population 

risk factors (age, pre-existing conditions, socioeconomic 

status, etc.) then we can construct a more efficient and 

equitable vaccine distribution network. 

 

2. Core Components of the Integrated Framework 

2.1. Geospatial Data Integration 

The backbone of the first framework is high-resolution, 

multi-layered geospatial data. 

• Population: The denominator of the population for 

planning is the primary layer. The base geospatial data 

for the population is provided by census tracts, but these 

may not be specific enough to distinguish differences in 

population at different times (day vs. night) or during 

travel (Oliver et al., 2020). These additional population 

shifts, such as by analyzing anonymized mobile phone 

data, may be helpful for understanding commuting 

patterns in identifying potential pop-up clinic  
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sites. Reliable and granular data for where the population 

of interest resides is also a key step in the design of a 

micro plan: a site-specific plan with highly accurate 

population estimates and location data (Chaney et al., 

2021) [2] (Rocha et al., 2021) [17]. This is of particular 

importance in low resource settings, where geospatial 

data are often scarce or unreliable. Existing micro plans, 

which may not be to scale and lack important layers such 

as distance or barriers to travel, can be expanded upon 

using new digital mapping methods to more completely 

and accurately map unreachable settlements. 

• Infrastructure: Highly accurate and specific locations 

of all known hospitals, clinics, pharmacies, and potential 

mass vaccination sites, such as stadiums or schools. As 

noted above, the transportation network is also highly 

relevant and can be modeled as a layer to understand the 

time required to travel to sites as a key access 

barrier. Geographic information systems can create and 

interact with all of these layers to effectively model the 

population of interest and what is available within the 

operational environment. Micro plans that provide 

accurate estimates of population size and location can be 

used where available, which can address shortfalls in 

established targets for health coverage (Rocha et al., 

2021) [18]. 

• Environmental and Socioeconomic: Satellite and land-

use imagery can help identify hard-to-reach or 

underserved locations. In addition, information about the 

Area Deprivation Index (ADI) or CDC’s Social 

Vulnerability Index (SVI) at the community level 

provides insight into community resilience spatially 

(Kind & Buckingham, 2018). In sum, many of the 

datasets are geospatial or can be made into geospatial 

information. They can be used to create a digital twin of 

the operational environment and identify highly specific 

target populations and logistical constraints. It also 

creates detailed and high-resolution spatial intelligence 

for use in the next step of this framework, a refined 

approach to vaccine allocation. 

 

2.2. Demographic Risk Modeling 

Mapping age alone limits the resolution to geography, so it is 

important to calculate an overall risk score for the sub-

populations. 

• Vulnerability Score: What is the risk of bad 

outcomes? This can be measured with age structure, 

comorbidities (diabetes, heart conditions) and 

congregate living (nursing homes, jails). On the other 

hand, a community's resilience or adaptive capacity to 

any of the aforementioned factors can also be considered 

by including socioeconomic factors like income, 

education, and proximity to or access to critical 

services. As such, the most vulnerable members of a 

population to the disease and who are least able to adapt 

to the impact of the disease can be identified. (Saidu et 

al., 2023) [20]. 

• Transmission Risk Score: What is the risk of being 

infected? This can be calculated based on housing 

density, types of essential work, and community 

mobility patterns. For example, using overall risk 

models would include other types of epidemiological 

historical data and real-time surveillance to understand 

potential emerging outbreak hot spots and proactively 

identify priority areas before an outbreak for vaccine 

allocations rather than a reactive response. In addition, 

when integrated with real-time geospatially referenced 

data sets these models can also be set up to make 

dynamic adjustments to the distribution plans when 

changes to potential risks areas can be identified and 

vaccine resources redirected to respond to the most 

emergent needs in the state. (Greenough & Nelson, 

2019) [8].
 

Table 1: A table summarizing the factors and potential data sources for each score 
 

Score Component Description Key Factors Example Data Sources 

Vulnerability Score 
Risk of severe outcomes if 

infected. 

Age, comorbidities (diabetes, heart 

disease), congregate living (nursing 

homes). 

Census data, health records, facility 

registries. 

Transmission Risk Score 
Risk of being infected and 

spreading the virus. 

Housing density, essential worker 

density, community mobility patterns. 

Mobile phone data, employment 

statistics, land-use data. 

Accessibility Score 
Barriers to accessing 

vaccination services. 

Travel time to nearest site, vehicle 

ownership, digital literacy for online 

registration. 

Transportation networks, census data 

on vehicle ownership, survey data. 

Priority Index Composite weighted score 

Weighted sum of Vulnerability, 

Transmission, and Accessibility 

scores. 

Output from the combined model. 

• Accessibility Score: How easy is it to access a 

vaccine? This can be based on the actual time needed to 

travel to the closest location, if they have a personal 

vehicle and the access to or understanding of technology 

for registration in an online portal for vaccine 

appointment scheduling. This would allow for a multi-

faceted scoring of neighborhood and community sub-

populations that could be used to allocate vaccines to the 

most high-risk communities. (Rader et al., 2022) [16] This 

method would also provide a more spatially specific 

analysis that can move beyond traditional age-based 

vaccine prioritization to account for different risk levels 

for each city. (Hong et al., 2022) [9]. 

Then a final Priority Index can be calculated from weighting 

and summarizing the scores and mapping to have a granular 

map-based prioritization of neighborhoods to target for 

vaccines and site placements. 

 

2.3. Network Optimization Modeling 

Facility location-allocation modeling takes the information 

from the first two steps as input data, in the form of geospatial 

mapping and risk assessment, to solve an operational research 

model. With these, the number of sites, their locations, and 

capacity size can be optimized to achieve a network that 

provides the maximum coverage at the lowest cost. Popular 

methods for vaccination site selection are as follows: 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    1226 | P a g e  

 

➢ P-Median Models: These are distribution center 

location-allocation models that seek to minimize the 

overall travel time of the population to the nearest 

vaccination site. This is typically done by choosing 

facility locations such that the sum of demand-weighted 

travel distances between demand points (population 

centers) and their closest assigned facility is 

minimized. - Set Covering Models: 

▪ In contrast, set covering models, as their name 

implies, instead try to cover all demand points at a 

set maximum travel distance, with the objective of 

minimizing the overall number of vaccination 

facilities needed to provide this coverage (Chen et 

al., 2022) [3]. 

▪ This model is used to determine where to open a 

fixed number of facilities across a service area to 

best cover its population centers. More recent 

methods apply multi-objective optimization, which 

can optimize vaccination site deployment for a 

combination of coverage, equity, and logistical 

efficiency metrics (Santos et al., 2023) [21]. It is also 

applicable to resource allocation with heterogeneous 

population distributions and varying levels of 

infrastructural capacity (Goodson et al., 2022) [7]. 

 
Table 2: Table comparing the objectives, strengths, and weaknesses of each model. 

 

Model Type Primary Objective Key Strengths Key Weaknesses / Considerations 

P-Median 
Minimize total travel 

distance/time for the population. 

Maximizes overall system efficiency and 

convenience. 

May neglect remote or low-density, 

high-risk areas. 

Set Covering 

Cover all demand points within a 

max distance with the fewest 

facilities. 

Guarantees a baseline level of access for 

everyone. 

Can be resource-intensive; may 

require many facilities in sparse 

regions. 

Maximal Covering 

Location Problem (MCLP) 

Cover the maximum number of 

people (weighted by priority) 

within a distance, with a limited 

number of facilities. 

Ideal for this framework. Directly 

incorporates the Priority Index to 

maximize impact. 

Requires defining the number of 

facilities in advance. 

Multi-Objective 

Optimization 

Simultaneously optimize 

multiple goals (e.g., equity, cost, 

coverage). 

Most realistic; can balance competing 

priorities. 

Computationally complex; can be 

difficult to implement rapidly. 

➢ Maximal covering location problem (MCLP): This is a 

location-allocation model that selects sites that cover the 

greatest number of people (weighted by the Priority 

Index) within a specified travel time or distance, given 

that the number of facilities is limited (ReVelle & 

Church, 1974). An extension of this model can be done 

to include mobile vaccination clinics, which are 

optimized to reach the largest number of people in 

underserved and hard-to-reach areas that may be more 

spatially fragmented (Goodson et al., 2022) [7]. As with 

location-allocation models, this type of modeling can 

also account for resource constraints like available 

vaccine supply, cold-chain capacity, and human 

resources to produce a set of feasible and efficient clinic 

deployment strategies (Díaz-Quijano et al., 2023) [4]. 

➢ Multi-objective optimization: More advanced models 

may seek to simultaneously optimize for multiple (and 

potentially competing) objectives, such as maximizing 

equity of access to vaccination sites for high-risk 

subpopulations, minimizing overall logistical costs, and 

minimizing vaccine wastage (Goodson et al., 2022) 

[7]. These models can be further refined using real-time 

information on vaccine supply chains and demand 

surges, thus allowing for adaptive deployment strategies 

in the event of unforeseen disruptions. On the other 

hand, the greater the number of decision variables and 

constraints, the more computationally intensive these 

sophisticated optimization models will be. As such, they 

may have limited real-world applicability and usefulness 

for rapid deployment during public health 

emergencies. Instead, simpler heuristic approaches or 

approximation algorithms are often preferred and used, 

along with sensitivity analyses to understand the trade-

offs between model fidelity and operational 

efficiency. Ultimately, the optimization model chosen 

for a project will need to be carefully calibrated to the 

specific circumstances of the public health intervention 

at hand, to ensure that it is not only analytically rigorous 

but also practically implementable (Li et al., 2023) 

[14]. This modeling can find ideal vaccination site 

locations by using preexisting public facilities, such as 

public schools and hospitals, as initial candidate sites 

(Cabanilla et al., 2022) [1]. 

 

3. Methodology 

 

 
 

Fig 2: A Detailed flowchart 
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Step 1: Data Collection & Fusion: Integrate census data, 

health records, mobility patterns, and infrastructure maps into 

a comprehensive GIS platform. This includes population 

demographics, current healthcare facilities, and real-time 

vaccine availability and uptake rates (Rader et al., 2022) 

[16]. This rich data fusion provides a contextual backdrop for 

understanding population vulnerabilities and logistical 

challenges, essential for informed decision-making in 

vaccine distribution strategies (Shayegh et al., 2023) [23]. 

 

Step 2: Risk Stratification: Calculate the Priority Index 

composite score for each geographic subunit (e.g., census 

block groups). This index is a weighted combination of 

epidemiological risk factors (disease prevalence/incidence) 

and socioeconomic vulnerabilities (poverty, healthcare 

access) to form a comprehensive measure of community 

susceptibility and potential for severe outcomes. This 

stratification allows for a granular and targeted approach to 

resource allocation, ensuring that areas with the highest need 

are prioritized appropriately (Shayegh et al., 2023) [22]. 

 

Step 3: Demand Forecasting: Estimate the demand for 

vaccines for each subunit based on its population and Priority 

Index. The forecast should incorporate variable vaccine 

hesitancy and acceptance rates across different demographic 

segments, derived from community-specific surveys and 

historical health data (Lee et al., 2021) [13]. This step is critical 

for anticipating logistical needs and aligning supply with 

demand at a granular, local level. 

 

Step 4: Model Formulation & Solving: Choose an 

appropriate optimization model (MCLP, for instance), enter 

the constraints (number of sites, budget, cold storage 

capacities), and run the algorithms to produce candidate 

networks. This stage can include an integer programming 

formulation that considers both single and multiple vaccine 

types and their distribution across a multi-tier cold chain 

network (Sripada et al., 2023) [24]. Additionally, these 

mathematical models can be expanded to incorporate 

elements like vaccine wastage, storage capacities, and 

transportation constraints for increased realism and practical 

applicability (Ekşioğlu et al., 2023) [5]. 

 

Step 5: Scenario Analysis & Validation: Stress-test the 

optimized networks under various scenarios (supply 

shortages, new virus strains) and validate the model's efficacy 

against real-world outcomes or through agent-based 

simulation. This process is vital for evaluating the robustness 

of the optimized solutions against uncertainties such as 

fluctuating vaccine supply or unforeseen demand 

surges. This is achieved by presenting results to policy and 

decision-makers using the Traffic Light Analysis Tool to 

determine how key indicators for a target year change for 

each scenario when compared to a baseline scenario to reach 

consensus on optimized models and associated 

implementation roadmaps (Prosser et al., 2021) [15].  

 

This may include using a comprehensive systems design 

approach to carry out stakeholder engagement and modeling 

scenario identifications, which is then followed by in-depth 

data collection and analysis through document review and 

interviews of key informants to help optimize the supply 

chain performance. The evidence-based models generated 

from the process will require validation in a workshop setting 

with stakeholders and decision-makers to inform the 

decisions needed to determine the optimal design of the 

immunization supply chains. In essence, an iterative process 

of stakeholder engagement, model refinement, and validation 

is necessary to ensure the final design is theoretically sound, 

practically implementable, and aligned with national health 

priorities (Prosser et al., 2021) [15]. 

 

4. Results 

One of the major takeaways, however, is that while this data 

science approach seems to have some promise, it comes with 

many roadblocks. The first is data privacy. This method is 

obviously not usable with deidentified data, so the necessary 

sensitivity of medical and location information of the 

population must be safeguarded. Model limitations are also 

to be considered: while the spatial model is dependent on 

availability and quality of relevant data, it can have its own 

downstream dependencies, which will not only mirror the 

availability of data at hand but could also act as a blueprint 

for perpetuating preexisting biases in the underlying 

data. Models and algorithms should not be blindly trusted to 

the exclusion of community engagement and local public 

health expertise; certain decisions, such as in choosing spatial 

aggregation techniques to use, must be made with a focus on 

cultural competency and trust-building.  

Additionally, results of the model must be reported clearly 

and concisely to stakeholders; agreement and buy-in to the 

scenarios being modeled, after all, is essential for uptake and 

implementation. The final limitation is one that may seem, at 

first, to be false. Modeling itself is not an inherently powerful 

tool for making the "what's best" decision – that decision lies 

in the hands of stakeholder interpretation, with context from 

the actual country situation at hand. Quantitative evidence 

may be of major use in making complex trade-offs, but 

common sense and a solid understanding of the ground 

situation in the country under analysis should be used as a 

starting point for system design analysis (Prosser et al., 2021) 

[15]. An efficient and effective health supply chain (HSC) is 

one of the vital aspects to achieve public health targets since 

it enables an uninterrupted supply of the needed equipment 

(Krautmann et al., 2020) [10].  

In contrast, a poorly functioning immunization supply chain 

was found to be the cause of the inability to provide universal 

access and high immunization coverage rates; these supply 

chains are often outdated and inefficient, which leads to 

disruptions and stock-outs, wastages, and poor quality of 

vaccines. The immunization system has to be redesigned to 

be more resilient and responsive in addressing these 

persistent issues, especially in heterogeneous populations 

with disparities in health status and outcomes. As such, with 

its power in geospatial data integration and overlaying it with 

other factors, such as the demographic risk score model, it is 

a viable and systematic method for the decision-support 

problem of developing adaptive strategies for this entrenched 

issue in immunization and vaccine optimization in vaccine 

distribution in reaching vulnerable populations (Prosser et al., 

2021) [15].  
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Fig 3: A sequence of three small maps side-by-side. 

 

Furthermore, these types of operations research analytics and 

optimization applications are theoretically well-suited for the 

problem at hand, but practical considerations of current 

capacity, political and decision-making reality, and likely 

logistical and throughput impacts may limit the applicability 

and impact of analytics models developed within the 

country. A systematic approach to this problem will allow for 

more strategic use of scarce resources, so the vaccine 

distribution system is both more efficient and equitable. This 

will in turn reduce the overall system cost, improve dose 

delivery rates and increase throughput volume across all 

facilities in the cold chain as shown by the analysis and cost 

of various supply chain scenarios.  

Optimizing various parts of the vaccine supply chain also 

helps to improve the resilience of the cold chain so it can 

better and faster respond to both public health emergencies 

and routine needs. The quality of the decisions is not solely 

dependent on cost or computational optimality, and often 

more decision criteria are at play. These considerations 

include equity and other qualitative values, which are often 

difficult to integrate into mathematical programs. 

Decision-support frameworks can consider multiple 

optimizations, like minimizing inventory, ordering, and 

transportation costs, as well as associated factors such as 

workforce and personnel expenditures, potential shortages, 

and other complex real-world constraints across multiple 

layers of a vaccine cold chain network. For example, linear 

programming formulations have been used for vaccine 

allocation to maximize the number of fully immunized 

children, but these often have assumptions of at least a 

sufficient vaccine supply and do not account as much for 

transportation and/or potential staffing capacity. These 

models, however, are still often simplified for practical 

purposes, but do not always fully reflect the complexities of 

real vaccine supply chains with the multiple layers in the 

supply chain with uncertainties in vaccine production yields 

and/or fluctuating demand (Sripada et al., 2023) [24].  

To handle some of these complexities, a robust optimization 

method has been developed and shows promise in reducing 

the cost while maintaining a level of effectiveness, even in 

the face of high uncertainty in its model parameters. This 

includes an advanced preprocessing step that can be 

automatically triggered when a maximum runtime is 

exceeded by the model. These robust frameworks can 

optimize many different aspects, like the set of cold chain 

facilities being ordered from and what vaccines, the quantity 

ordered, as well as vehicle, inventory, and staffing 

requirements across multiple tiers in the network. In these 

more comprehensive models, a mixed-integer linear 

programming formulation is often used to help represent the 

underlying relationships and dependencies of a multi-tier 

cold chain network, with facility transportation and storage 

costs often being differentiated between fixed and variable 

costs, along with decisions such as staffing at the vaccination 

sites.  

These robust optimization models have been shown to 

outperform their deterministic counterparts at varying levels 

of uncertainty in its modeled parameters, and acts as a more 

general, reliable tool for use by public health authorities to 

support their planning and capacity management in a multi-

tier cold chain network. The end-to-end, integrated system of 

decision support allows for optimization of facility set and 

ordering decisions, vaccine products and allocation 

quantities, transportation logistics, and capacity, as well as 

the cold chain link inventory and staffing levels throughout 

the entire vaccine cold chain.  

Additionally, these frameworks explicitly model vaccination 

personnel availability and their corresponding capacity to 

deliver doses, directly tying capacity planning for the supply 

chain to available staffing levels. This includes the 

development of a robust counterpart to account for 

uncertainty in the model, further enhancing the reliability of 

the network design, especially in the context of a vaccine 

supply chain (Sadjadi et al., 2019) [19]. This accounts for 

uncertainty in key parameters, such as ordering costs, holding 

costs, and others such as demand, and even potential 
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manufacturing capacity, and in turn is shown to be a more 

conservative but more effective solution compared to the 

deterministic version (Sripada et al., 2023) [24]. 

 

5. Conclusion 

The optimization of vaccine distribution networks is no 

longer a problem that can be solved with logistics alone. It’s 

a socio-technical one. Imagine a system that combines 

geospatial intelligence and nuanced demographic risk 

profiling with mathematical optimization. This would shift 

vaccine distribution from reactive and undifferentiated to 

proactive and precision public health. The result? A resilient 

and equitable public health framework for future crises, with 

limited vaccines going where they can have the most impact 

on reducing severe illness and transmission. This would be 

one way to optimize vaccine distribution based on effective 

decision-making (Yang et al., 2021). Inventory at different 

tiers of the cold chain can be flexed based on manufacturing 

capability to best meet storage and distribution costs. Adding 

a coverage index to the hub-and-spoke models helps in 

choosing which dispensing sites to prioritize first to improve 

accessibility and meet demand and address the challenges of 

having specialized storage requirements (Xu et al., 2021) 
[26]. Lastly, considering real-time data on vaccine efficacy and 

associated costs allows for dynamic decisions on vaccine 

procurement and distribution strategies, optimizing both 

health outcomes and economic efficiency (Sripada et al., 

2023) [24].  

The objective function can consider several elements, from 

supply chain management aspects (such as production yields 

and demand uncertainty) to determine optimal selling 

strategies for vaccines (advance, regular, or dynamic 

selling). The key takeaway here is that instead of using 

simplistic methods like cost minimization, the paper 

accounted for the nature of a vaccine supply chain, 

specifically in an area with potentially insufficient 

infrastructure and heterogeneous population (Ekşioğlu et al., 

2023) [5] (Trivedi & Gharib, 2023) [25]. To make the model 

more realistic, future studies may want to include a decision 

variable related to the delay experienced at each stage and its 

effect on the entire supply chain. This is because time delays 

could lead to a more complex problem, so the authors could 

consider heuristic models or learning approaches (Sarmad et 

al., 2023) [22]. Additionally, since multi-tier cold chains are 

common for public health programs, decision support 
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