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Abstract 

The fast expansion of solar implementations has dramatically changed electricity 

generation, but also the attack surface in smart grids. Existing cyber security tools are 

not able to defend against (and thereby mitigate) sophisticated and adaptive attacks 

which arise in PV grids, such as false data injection, DoS (denial-of-service), an 

inverter hack. This paper presents an ICDF which leverages the emerging AI, edge 

computing and blockchain technologies to offer robust security protection in DSNs. 

The machine learning-based intrusion detection system, which recognises anomalous 

communication behavior, combined with blockchain-enabled data integrity modules 

that protect the transactions and control commands among DERs. A hybridised threat 

response model which utilises deep-reinforcement learning to adapt protection levels 

based on the current state of system risk indicators. Simulation results show that the 

ICDF is effective in improving detection accuracy, reducing false alarm rate and 

mitigating response time as opposed to conventional rule-based methods. This study 

lays the foundation for autonomous and adaptive cybersecurity architectures targeting 

next-generation solar energy systems, showcasing reliability, privacy, and operability 

sustainability in the context of fast-paced evolving energy internet. 
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1. Introduction 

The rapid worldwide shift to renewable energy has made solar photovoltaic (PV) systems one of the most promising and fast-

growing ways to produce energy. Distributed solar installations (rooftop panels, community solar farms, and hybrid microgrids) 

for example are playing an increasingly important role in the production of global electricity supply (IEA, 2023) as they provide 

a cleaner, decentralised and economical means of producing power. But, this fast digitalisation and interlinking of PV systems 

with smart grid structures have created novel and substantial cyber security challenges (Kumar et al., 2022). The deployment of 

Internet of Things (IoT) devices; supervisory control and data acquisition (SCADA) applications; as well as cloud-based energy 

management systems, has increased the attack vectors of DERs, making them vulnerable to advanced persistent threats (APTs), 

ransomware attacks, and false data injection attacks (Al Garni et al., 2021). 

On solar systems and cyberattacks There is reason to believe that attacks aimed at destabilizing solar power installations can 

pose serious operational interruptions, financial damages, and grid instability. For example, affected communication channels 

between inverters and central control systems can result in unauthorized command execution, voltage unbalances or system 

blackouts (Anwar et al., 2022) [2]. 

The rest of the paper is organized as follows: Section 2 provides a detailed literature survey for existing cyber defense approaches 

in renewables. In Section 3 the proposed approach is described and in Section 4 we describe the implementation and experimental 

set up. Simulation results and comparisons are presented in Section 5. Finally, Section 6 focuses on research implications for 

the future intelligent grid cybersecurity studies. 

https://doi.org/10.54660/.IJMRGE.2023.4.6.1231-1238
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2. Literature Review 

Modern power systems have been transitioning from 

traditional centralized grid architecture to the distributed and 

intelligent energy system with high penetration of renewable 

generation such as solar photovoltaics (PV). But this 

transition has also unearthed new cyber vulnerabilities which 

will put the operational reliability, energy sovereignty and 

economic stability at risk. In this section, we discuss the 

existing literature in four cores areas: (1) cybersecurity 

threats to distributed solar networks and embedded systems, 

(2) machine learning–based IDSs, (3) blockchain-based data 

integrity schemes, and (4) integrated cyber defense system 

for smart grid. 

 

2.1. Cyber Threats in Distributed Solar Networks 

Hence, distributed solar energy operations heavily depend on 

networked communications from and to the field (i.e., for 

real-time monitoring and remote control through 

IoT/SCADA networks). Although these benefits enhance 

performance, they are susceptible to cyberattacks such as 

false data injection (FDI), denial-of-service (DoS) and 

malware dissemination and propagation (Al Garni et al., 

2021). A 2022 study by Anwar et al. showed that the slightest 

tampering of inverter information is capable to disrupt power 

regulation, and lead to the cascading failure across 

interconnected networks. Decentralized PV systems (such as 

community and industrial clusters) make it difficult for 

centralized threat detection and response schemes to mitigate 

attacks efficiently (Umar et al. 2023) [8]. 

Furthermore, the solar infrastructures are an example of 

cyber-physical systems and attacks may have effects in both 

the digital and physical environments. For instance, FDI 

attacks can modify the power output records which can 

deceive EMSs by forcing overactuation of load dispatch 

(Kumar et al., 2022). In those hybrid systems which have 

battery storage, such disturbances may lead to an energy 

unbalance or to a thermal runaway. These examples illustrate 

that traditional IT-centric security mechanisms are not 

suitable for energy CPSs requiring resilience, availability and 

low-latency response (Mollah et al., 2022). 

Recent international reports by the International Energy Age 

ncy (IEA, 2023) highlight the growing complexity of cyber 

threats to renewable infrastructures and regi ster nation -state 

actors that are aiming their sights on critical grid assets for 

espionage – or worse. Thus, it is highly essential to adopt a 

domain specific approach to ensure the security of distributed 

solar systems with applications, which further relates AI for 

anomaly detection and real time decision. 

 

2.2. Machine Learning (ML)For IDS Before the 

development of ML-based IDS, Intrusion detection 

systems based on rule-set matching were commonly used 

for detecting cyber intrusion. 

Machine learning (ML) has become a fundamental tool in 

identifying cyber threats of smart grids. Compared with static 

rule-based IDS, ML-based detectors achieve higher detection 

accuracy and better portability by learning dynamic attack 

characteristics from enormous instances. For example, Sahu 

et al. (2022) [6] designed a hybrid deep learning intrusion 

detection system (IDS) based on convolutional neural 

networks (CNNs) and long short-term memory (LSTMs), and 

applied it to network anomaly recognition in power grids with 

over 97% of the detection accuracy. Similarly, Liu et al. 

(2023) [5] has shown that DRL could improve the 

responsiveness of an iris detector to various grid conditions 

by training a detection policy. 

Yet there are still the problems of unbalance issues of data, 

and drift of concept as well as generalization of model. 

Energy systems produce heterogeneous data streams, from 

inverter telemetry to weather forecasts, which make model 

training more difficult (Zhang et al., 2023) [10]. In order to 

deal with this challenge, recent literature have introduced 

federated learning approaches where distributed PV nodes 

collaboratively train local models without revealing sensitive 

data (Hossain et al., 2023). This decentralized learning model 

provides better privacy and scalability with system-wide 

situational awareness being preserved. 

In addition, the interpretability could remain as a major issue. 

Explainable models are often needed by operators to justify 

the rationale of automated action (such as in safety-critical 

settings). Recent works with the use on AM and FAM have 

increased our transparency into ML based cybersecurity 

models (Sharma & Singh, 2023) [7]. Notwithstanding the 

progress, limited number of solar systems are particularly 

optimised for distributed system as such this represents a 

research lacuna that Intelligent Cyber Defence Framework 

(ICDF) proposes to assist in bridging. 

 

2.3. Blockchain-Enabled Data Integrity and 

Decentralized Trust 

The use of block-chain technology introduces an additional 

dimension to smart defense, through personal data 

management by data subject consent recording immutable 

information that is provable as validated immutably 

decentralized trust. Its use in smart grids supports secure 

peer-to-peer energy trading, and tamper-proof event logging 

(Kouhdaragh et al., 2022) [3]. Such as, communication in solar 

networks can be secured by using blockchain to make it 

tamper-proof of data packets arrangement and its authenticity 

among inverters, smart meters and control centres (Qiu et al., 

2022). 

Some studies have addressed blockchain applications in the 

energy sector for cybersecurity. For example, Bansal et al. 

(2021) combined blockchain-based mechanism with 

intrusion detection to verify the anomaly alerts in order to 

prevent them from spreading through networks promising 

false alarms. Li et al. And (2023) also introduced a PoA 

consensus mechanism for low-latency microgrid transaction 

and it resolved the inherent scalability issues in traditional 

PoW based mechanisms. However, the widespread 

applications of blockchain in distributed PV systems are 

hampered by its high computational cost and compatibility 

issues (Ahmed and Luo 2022) [1]. 

However, hybrid architectures that integrate edge computing, 

AI, and blockchain have emerged as promising solutions for 

real-time and energy-efficient security. In this architecture, 

the edge nodes handle local analysis and blockchain ensures 

a decentralized trace of audit trail (Yuan et al., 2023) [9]. Such 

a multi-layered design accords with the concept of ICDF 

proposed in this work which employs blockchain to realize 

trust management for defence mechanisms. 

 

2.4.1. Smart Energy Systems and Integrated Cyber 

Defence Architectures 

Some good comprehensive security frameworks are defined 

for smart grid to improve resilience, detection and recovery 

in case of attack. Zhang et al. (2023) [10] proposed a self-

healing cyber defense system which automatically adapts 
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network routes after detecting incursions. Similarly, Umar et 

al. (2023) [8], where a multi-agent resilience model for 

renewable energy networks that centralizes defense efforts 

among the distributed agents is proposed. These approaches 

illustrate the transition from passive monitoring to active 

defense techniques supported by intelligent decision-makers 

and predictive modeling. 

Nevertheless, most of the existing approaches are unsuitable 

for distributed solar systems, which play under dynamic 

energy generation and communication hierarchies rather than 

in those generalized smart grids. Classical designs frequently 

do not account for the temporal dynamics specific to PV, such 

as irradiance changes, inverter synchronization or grid-tied 

protection. Furthermore, intelligent adaptation absent 

frameworks can have a difficulty to detect the AI-generated 

adversarial attacks which are commonly used for deceiving 

ML models (Sharma & Singh, 2023) [7]. 

The Intelligent Cyber Defense Framework (ICDF) presented 

in this paper overcomes these limitations by integrating AI-

powered anomaly detection, blockchain-enabled trust 

assurance, and adaptive response capabilities. This 

integration enables data acquisition to control command 

execution end-to-end protection, shaping a comprehensive 

self-learning cybersecurity for distributed solar 

infrastructures. 

 

2.5. Summary of Literature Gaps 

Considerable advances have been achieved in the area of 

cybersecurity for smart grids, but there are a number of key 

shortcomings: 

Domain-specific optimization: Majority of ML based 

solutions are generic power networks which do not cater to 

distributed PV ecosystems. 

• Lack of real-time intelligence: Current systems are 

unable to learn and adapt to changing attack patterns. 

• Data accuracy guarantee: Some solutions use of 

blockchain for immutable event validation. 

• Cross-layer integration: Very few works integrate AI, 

blockchain and edge computing into integrated 

architectures. 

 

The remainder of this paper is organized as follows: Section 

2 attempts to address these research gaps by introducing an 

intelligent CD framework, which utilizes AI for prediction, 

blockchain for trust and reinforcement learning for dynamic 

defense collaboration in enterprise DW. 

 

3. Methodology 

The proposed ICDF in the form of distributed solar power 

systems leverages AI, blockchain and deep reinforcement 

learning (DRL) to preserve confidentiality, integrity and 

accessibility of cyber-physical energy resources. The 

methodology is composed of four main elements: (1) system 

architecture design, (2) AI-driven intrusion detection model, 

(3) blockchain-based data integrity layer and (4) adaptive 

response mechanism using reinforcement learning. 1 

(omitted) conceptualizes the design and data flow in this tool. 

 

3.1. System Architecture Design 

The ICDF is designed on a three-layer hybrid architecture of 

perception layer, network layer and application layer to meet 

the cybersecurity requirements in distributed PV system 

(Mollah et al., 2022). 

3.2. AI-Driven Intrusion Detection Model 

The IDS, introduced in the ICDF exploits a combined deep 

learning method via the use of CNN and LSTM networks. 

This aggregation manages to capture spatial-temporal 

relationships in multi-dimensional PV data streams (Sahu et 

al., 2022) [6]. 

 

Feature Extraction: 

The CNN layers then process the raw network traffic and 

inverter logs to obtain discriminative features such as packet 

timings, control commands and power anomalies (Sharma & 

Singh, 2023) [7]. 

 

Temporal Learning: 

The LSTM module learns temporal dependencies that exist 

in the sequence and can contribute towards early detection of 

dynamic attack patterns like slow DoS or anomalies which 

are associated with data injection (Anwar et al., 2022) [2]. 

 

Classification: 

The sequence of these feature vectors is then entered into a 

dense layer which uses the Softmax function to classify 

normal and malicious behaviors. To alleviate data imbalance, 

we use a weighted cross-entropy loss (Zhang et al., 2023) [10]. 

 

Training and Validation: 

Training the Model: The model is trained with a combined 

dataset devolved of NSL-KDD, CICIDS2017, and synthetic 

PV telemetry data produced in MATLAB/Simulink. The data 

is normalized and augmented by corrupting with Gaussian 

noise to generalize the model better (Bansal et al., 2021). 

 

Performance Metrics: 

The model is measured in precision, recall 

outlothFBM_rep1sensitivity, F1-score and AUC and the 

benchmark of Random Forest, SVM and k-NN classifiers are 

analyzed with respect to it (Liu et al., 2023) [5]. 

This methodology enables the IDS to have high accuracy and 

low false positive rates, which are limitations of classical 

rule-based systems. 

 

3.3. Experimental Setup and Simulation 

The developed ICDF was modeled in MATLAB/Simulink, 

TensorFlow, Hyperledger Fabric. A 25-node distributed PV 

microgrid with IoT enabled inverters and sensors was 

considered in the simulation. The attack scenarios considered 

were false data injection, denial-of-service and spoofing 

attacks (Anwar et al., 2022) [2]. The network traffic and 

system responses were recorded for comparison. 

The framework was compared with the baseline IDS systems 

in similar network settings. The results were discussed under 

the following heads: 

• Detection accuracy (%) 

• False positive rate (FPR) 

• Response latency (ms) 

• Blockchain transaction throughput (TPS) 

 

Experimental results showed that the ICDF enhanced 

detection accuracy by 14.7%, decreased false positive rate by 

23.2%, and preserved sub-second mitigation latency, 

demonstrating real-time distributed solar cybersecurity 

efficacy of the proposed system. 
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3.4. Methodological Validation 

To ensure validity and reproducibility: 

• Model stability was determined by cross-validation 

(k=10). 

• Ablation analysis quantified the contribution of each part 

of (AI, blockchain, DRL) to the whole system’s 

performance. 

• Sensitivity analysis was conducted to test the robustness 

of our model toward noise, delay and incomplete data 

stream (Zhang et al., 2023) [10]. 

 

These methodological precautions attested to the robustness 

and flexibility of the framework through different operating 

scenarios. 

 

4. Results 

The performance analysis of the designed ICDF reveals that 

the proposed framework is more effective in detecting and 

defending against cyber-attacks, for distributed solar power 

systems. Simulation results on comparative studies are 

presented to demonstrate the significant superiority of the 

proposed model in terms of detection accuracy, response 

latency and data integrity when compared with conventional 

ones. The next section provides an analysis of the 

effectiveness and robustness of the framework with 

supporting quantitative and graphical evidence. 

 

 
 

Fig 1: Detection Accuracy Comparison 

 

Description: 

Figure 1 depicts accuracy comparison between four models 

of Traditional IDS, CNN-IDS, LSTM-IDS and ICDF. 

 

Interpretation: 

The achieve a classification accuracy of 97.4% 

outperforming both standalone CNN (91.2%) and LSTM 

(93.7%) models as well as traditional IDSs (83.5%). The 

combination of CNN–LSTM hybrid architecture with 

blockchain-based registered data integrity helps the model 

really capture spatial and temporal patterns attacks. 

 

 
 

Fig 2: FPR between sessions. 

 

Description: 

Figure 2 shows the FPR of the traditional IDS and proposed 

ICDF over ten iterations for simulations. 

 

Interpretation: 

Evidently, as illustrated in Figure 6 the FPR of convenient 

IDS goes from 12% to 8%, while ICDF follows a steady and 

steepest decline—7% to 3% across both iterations. This 

illustrates the adaptive learning property of framework as 

reinforcement learning gradually adjusts detection thresholds 

by leveraging feedback information. 

 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    1235 | P a g e  

 

 
 

Fig 3: Attack Type Distribution in Test Dataset 

 

Description: 

We illustrate the distribution of cyber-attack types in the 

simulated testbed scenarios in Figure 3. The mother dataset 

contains four types of attacks,ade) (40%), Denial-of-

Service(Dos), Spoofing and Malware(10%). 

 

Interpretation: 

The prevalence of FDI attacks in this case is consistent with 

actual instances of the data manipulation attempts common 

in distributed solar systems, where actors leverage insecure 

data channels to change sensor readings or send false control 

commands (Anwar et al., 2022) [2]. 

The second most frequent attacks are Denial-of-Service 

attacks, which aim at communication denial. These attacks 

are effectively prevented using the ICDF model which filter 

live traffic and validate blockchain before performing any 

transaction. 

This dataset set-up constitutes an accurate testbed and 

corresponds to recent trends in cyber security issues 

according to IEA (2023) with data integrity attack as the 

dominant type of attack on renewable grids. 

 

 
 

Fig 4: Detection Time with respect to Response Latency 

 

Description: 

Figure 4 presents a scatter relationship of the detection time 

(seconds) as a function of response latency (seconds) to 

multiple attack events in the simulation space. 

 

Interpretation: 

The plot shows a positive, but rather tight correlation, that is 

faster detection times are typically associated with shorter 

response latencies. Typically, ICDF responses are performed 

in ~0.3−1.2 s, indicating the real-time defensive capacity. 

The low-latency performance is attributed to edge-computing 

architecture of the system and blockchain’s high-level 

transaction efficiency, which avoids network clogging, 

redundant verification steps. When compared to traditional 
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IDS models with a total response time usually longer than 2.5 

seconds, ICDF achieves a 40–60% better ability to mitigate 

threats rapidly. 

These findings are consistent with the results of Yuan and 

colleagues (2023) [9] and Li et al. (2023) [4], reveal the 

advantage of edge intelligence and lightweight consensus 

algorithm in alleviating the cyber-defense latency for smart 

energy systems. 

 

5. Discussion 

The experimental results of this paper proved that the 

developed ICDF approach effectively improves the 

cybersecurity performance of the d-SPS owing to integration 

of AI, blockchain, and DRL technology. The experimental 

results show that: ICDF can provide a detection accuracy of 

97.4%, false positives in the rate as low as 3% and O.S 

(Response latency) less than one second is better than 

traditional IDSs. These results provide evidence that 

intelligent, adaptive and decentralized defenses are in 

demand to protect the future renewable energy 

infrastructures. 

 

5.1. Extensions of Intrusion Detection and Adaptivity 

The conventional rule-based IDS systems are inadequate in 

terms of identifying new and emergent cyber threats, 

especially when applied to volatile settings such as 

distributed solar grids. By contrast, the hybrid CNN–LSTM 

architecture of ICDF can exploit spatial and temporal 

correlations from data streams for accurate detection of 

complex multi-stage attacks. As with the method of Sahu et 

al. (2022) [6], in which higher performance of energy system 

anomaly detection was achieved through hybrid deep 

learning models, based on these benchmarks these findings 

confirm that feature extraction and temporal sequence 

learning contribute to improved pattern recognition accuracy 

and robustness. 

This adaptive learning ability based on deep reinforcement 

learning (DRL) represents a great change of passive 

identification to active cyber defense. Dynamically setting its 

detection thresholds and response plans, the ICDF can 

minimize false positives and make itself more robust to 

repetitious attacks as well as polymorphic attacks. This 

adaptive mechanism is in agreement with the report by Zhang 

et al. (2023) [10] who pointed out the necessity of self-healing 

cyber systems with adaptive capability to use operational data 

for maintaining stability in smart microgrids. 

 

5.2. Implication to Practice and Future Work 

The good combination of AI, blockchain and DRL under the 

ICDF framework can bring some practical benefits to 

renewable energy system stakeholders: 

• Providing utilities, the ability to have a view in real-time 

and response on alerts anomaly without centralized 

dependency. 

• Regulators such as lawmakers can be enabled to enforce 

visible audit trails and genuine compliance using 

blockchain loggings. 

• The grid controllers are able to apply the adaptive 

detection method in order to avoid cascading failures due 

to cyber-physical attacks. 

 

Extension of the present study could consider about 

lightweight blockchain protocol, such as Directed Acyclic 

Graphs for lower latency and energy consumption. 

Furthermore, trust and immunity to AI-generated attacks can 

be boosted through the introduction of explainable AI (XAI) 

and adversarial training (Sharma & Singh, 2023) [7]. 

Validation of the framework will be extended to real-world 

testbeds with solar farms, microgrids, and EV charging 

networks to achieve wider applicability as well as compliance 

with new standards (e.g., IEC 62443, NIST SP 800-82). 

 

6. Conclusion 

The transformation of distributed solar PV systems into 

digital electric power sources in silico has launched a new era 

of efficiency, automation, and data-guided control befitting 

the contemporary energy landscape. But these developments 

have also left solar networks vulnerable to increasingly 

sophisticated and fast-moving cyber-attacks capable of 

derailing operations, corrupting data, and destabilizing the 

grid. This paper focuses on these challenges, and presents the 

creation of an Intelligent Cyber Defense Framework (ICDF), 

combining AI, blockchain technology, and DRL to enable 

secure adaptation and autonomous operation in distributed 

PV systems. 

The experimental result showed that the ICDF was able to 

achieve excellent detection accuracy (97.4%) with only 3% 

of false positives and Internet sub-second response time, 

which far outperformed traditional IDS models and single-

layer AI systems. These results highlight the ability of the 

framework to provide real-time, context-sensitive 

cybersecurity that is necessary for distributed energy systems 

with renewable sources and in a dynamic networking 

environment. In a similar fashion to that of Sahu et al. (2022) 

[6] and Zhang et al. (2023) [10], by combining hybrid CNN–

LSTM architectures, we allow the model to better learn 

spatial and temporal attack signatures and by employing DRL 

the model remains adaptive against newer threat surfaces. 

Data integrity, transparency and decentralized trust were 

deeply strengthened in the system via blockchain integration. 

Through Proof-of-Authority (PoA) consensus, low latency 

transaction endorsement was enabled for energy systems with 

identified participants as the ICDF. These results are 

consistent with those of Kouhdaragh et al. (2022) [3] and Li et 

al. (2023) that proposed lightweight blockchain 

infrastructures for industrial microgrids. In addition, smart 

contracts automated event certification and access control, 

decreasing human reliance and response time for cyber-

attacks. The integration of AI-powered analytics with 

blockchain validation represents a departure from reactive to 

proactive cyber defense, guaranteeing both operational 

dependability and legal/accreditation compliance. 
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