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1. Introduction

The world energy system is in the midst of a transition as decarbonisation and decentralisation emerge as dual imperatives.
Photovoltaic (PV) solar energy systems are being implemented quickly and they play a significant role in many countries'
renewable-energy plans, globally (Xiang et al., 2025). Concurrently, the legacy electric grid system has transformed into what
is commonly referred to as “smart grid” architecture — a design with bidirectional energy and data flows facilitated by digital
communication infrastructure, advanced metering, Internet of Things (IoT) sensors and distributed energy resources (DERS)
(SAP, 2024). While these advancements provide numerous opportunities for clean, flexible and resilient energy systems, they
also bring new cyber-physical security challenges.

1.1. Smart solar: systems and vulnerabilities

Smart solar energy systems, that is to say the photovoltaic (PV) plants associated with digital monitoring and control and
communication structures are spreading more and more. Such systems may comprise intelligent inverters, a cloud monitoring
solution, sensor platforms generating 10T readings of environmental and operational variables, or cloud-based analytics.
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The application of Al and machine learning (ML) into smart
grid and renewable energy is well-documented: these
technologies to solve variability in renewables, ensuring the
optimized dispatch, the prediction of maintenance schedules
and enhancing overall system efficiency are employed (SAP,
2024; Xiang et al., 2025). But extending solar systems into
the digital realm also poses major cybersecurity and
resilience challenges.

Studies indicate that PV systems and DERs are becoming
more likely to be a focus of cyber-attacks. For instance,
Harrou [2023] @ cites a range of cybersecurity challenges
faced by photovoltaic systems such as false- data injection,
tampering of inverter set points, unauthorised access and
replay attacks. Rahim et al. (2023) propose a threat-
modelling for smart grids with solar PV, highlighting the
critical threats (information disclosure, elevation attacks and
tampering with protected form of storage) using STRIDE and
DREAD modeles. These examples demonstrate how the
merging of operational technology (OT) and information
technology (IT) in solar systems increases the attack surface,
which can ultimately put grid stability, energy availability
and data integrity at risk.

1.2. Why do we need Al in the smart solar systems’
cybersecurity resilience?

Traditional cyber security mechanisms such as rule-based
intrusion detection systems, firewalls and static signature
based anti-malware tools are inadequate to protect the new
generation of threats for smart grids and DERs. Vintage tools
are pushed to the limit as data flows become more complex,
heterogeneous, voluminous and fast. In this regard, artificial
intelligence (Al) capabilities such as adaptive anomaly
detection, pattern recognition in large operational datasets,
predictive modelling of attacks, automated response and
autonomous self-healing show promise (Paul et al., 2024).
For instance, Munir, Shetty, & Rawat (2023) ! recommends
a trusted Al architecture that is used for proactive detection
and risk explanation of cyber-attacks in smart grid DERs
highlighting the importance of explainability, transparency
and dynamic risk quantification.

The Opportunities, challenges And Responsibilities of Al in
Cybersecurity For Solar Energy In essence, the marriage of
these two is an opportunity and a need. On the opportunity
side, Al can check many distributed devices (inverters,
sensors, gateways), identify anomalies (indicative of
malware, lateral movement, tampering), evolve to new
threats and bolster system resiliency (the ability to keep
functioning when under attack and recover fast). On the push
side, the increasingly deep penetration of solar systems
itself—usually with connections to 10T, cloud services and
third-parties—implies hyper-scalability of vulnerabilities and
potential consequences when breached not only within a
single installation but also throughout grid-scale effects.

1.3. Scope, aims and contributions of this paper

Against this background, in this paper we explore how Al can

improve the cybersecurity resiliency in smart solar energy

systems. Its main aims are to:

e Develop a framework that combines Al based detection,
prediction, response and self-healing solutions with
customization for solar integrated smart grids.

e Design acceptable machine learning/deep learning
architectures for the purpose of intrusion and anomaly
detection in solar systems networks (e.g., mixed models
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such as convolutional with recurrent neural networks,
hybrid).

e Assess, through simulation or benchmark dataset (or
referring to the literature), the ability of similar Al-based
cyber-security systems to monitor PV/inverter/SCADA
networks in real-time.

e Characterize barriers (e.g., data access, interpretability of
Al models, edge deployment) and propose strategies for
implementation, policy incorporation, and research
going forward.

In this way, the paper also adds to the literature by zooming
in on solar energy systems (instead of generic smart grids)
and cybersecurity through Al optics — an emerging but still
insufficiently-tackled space in securing distributed
renewable-energy infrastructure.

1.4. Structure of the paper

The rest of the paper is organized as follows: Section 2
provides a background on smart solar energy systems, cyber-
physical architecture and threat-landscape for solar-
integrated grids; Section 3 reviews Al and machine learning
methods pertaining to cybersecurity in smart grids and DERS;
Section 4 describes the proposed Al-driven cyber-resilience
framework for smart solar systems; Section 5 presents
experimental design, simulation results or case-study
findings; Section 6 discusses challenges, limitations and
deployment considerations; finally concluding remarks and
future research directions are presented in section7.

2. Literature Review

2.1. Risk domain for smart solar and inverter-based
appliances

As photovoltaic (PV) resources have evolved into networked
cyber-physical systems—enabled by the deployment of smart
inverters, gateways, SCADAJ/EMS interfaces and cloud
telemetry—their attack surface increased. A recent survey on
PV security enumerates its threats as credential thefts,
replay/MAN-in-the-middle attacks over fieldbuses, rogue
firmware, and command injections; it lists false update FDI
that can result in the loss of output quality and lead to unsafe
operating point (abnormal volt/VVAR responses), with no
compensation or indication of an attack (Harrou et al., 2023)
121, 1t cites how architectural decisions (remote monitoring
portals, APl exposure permitting remote access of plant
controls and third-party clouds for example) focus systemic
risk on multiple plants. Frontiers

Outside of PV in particular, the power-system community has
documented cyber threats against ICS/SCADA for years.
NIST’s SP 800-82 Rev. 2 (which continues to be highly
referenced in 2023) discuss control system threat models,
constraints (e.g., availability, latency and safety), and defense
layering relevant to substation-verting PV fleet supervising
DEROPs. These restrictions determine how much detection
and response an Al component can perform in-line (e.g.,
strict real-time bounds, deterministic control loops) [Stouffer
et al 2015/2023 archival note. NIST Computer Security
Resource Center+1

FDI attacks are still relevant due to their evasion of traditional
bad-data detection and being able to generate physical (or
market) consequences while escaping residual-based tests.
Surveys and recent publications (2019-2023) illustrate FDI
design/defense such as DRL-based model-free detection and
physics-informed residuals integrated with learning
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models—phases of application in PV plants transmitting
sparse telemetry to estimate state (Aoufi et al., 2020; Lin et
al, 2023; Cooper et al, 2023) ® 1
ScienceDirect+2Frontiers+2

2.2. Policies, standards, and guidance for crafting cyber-
resilient solar pv_energy generation systems

Guidance has evolved for DERs and inverter-based assets.
The paper RISC/RSTC NERC Steering Committee Paper 23
(2022) clarifies responsibilities and roles among utilities,
aggregators, and OEMs stating that distribution-connected
DER/aggregator compromisation can potentially scale to
impose system-level impacts,1 and requires baseline controls
for the compromise (identity management, patching regimen
and network segmentation). nerc. com

Out of a device-perspective, NISTIR 8259A (2020) [
introduces basal 10T device cybersecurity capabilities (secure
update, identity, logging, configuration and data protection)
which can be directly transplanted onto smart inverters,
gateways and meters which are hardware objects used in PV
site infras. Compliance with 8259A specifies which Al-
monitorable events need to be thrown out at the device/edge
side to feed anomaly detection. NIST Publications+1

IEC 62351 standardizes authentication, confidentiality, and
integrity protections for power-system communications
protocols (e.g., MMS/IEC 61850, GOOSE, SV), while 2023
guidance pieces emphasize the protection of energy
management systems and telecontrol traffic—interfaces
commonly used by PV fleet data. ENISA also delivers on
sector reports, and Smart Grids security guidelines, which are
the counterpart to these standards for European Operators.
iec. ch+1

PV-specific public-sector guidance is beginning to be
developed. NREL’s Cybersecurity in Photovoltaic Plant
Operations (2021) cites supply-chain risks (firmware, chips,
network gear) and advises road-mapping mitigations for
utility-scale PV O&M; DOE’s 2022 Cybersecurity
Considerations for DERs synthesizes grid-transformation
trends and actionable steps for distributed assets. Such
documents frame where Al analytics should reside (plant
LAN, aggregator or cloud) and the things it can influence.
NREL Docs+1

2.3. Al for intrusion/anomaly detection in smart grids and
PV contexts

Recent smart-grid IDS literature is dominated by machine
learning and deep learning (DL) techniques, including
supervised classification on labeled traffic telemetry
readings, unsupervised/one-class anomaly detection for zero-
day robust estimators of the process covariance/mean in data
preprocessing to extract features out of sequences. Illustrative
research includes multi-class IDS models on grid cyber
events and operational incidents (Yu et al., 2022) [ or
SCADA anomaly detection pipelines comparing signature-
based detection with ML/DL baselines showcasing feature
engineering on network, and process data (Anwar et al.,
2022). Frontiers+1

2023 A review of IDS for smart grids: attack taxonomies
(FDI, DoS, probing, malware, data exfiltration) and
algorithmic families (SVM, RF/GBM, CNN/LSTM hybrids,
autoencoders), acknowledges continued challenges (non-
stationary distributions; insufficient attack labels; portability
from lab datasets to live grid traffic). Such insights provide
strong motivation for the calibration of Al to be
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adaptive/online and domain adaption when applying across
heterogeneous PV fleets. ResearchGate

Al-driven methods for FDI detection have been proposed in
which the measurement physics are embedded, or RL/DRL is
used to modify thresholds and polices against strategic
adversaries (Lin et al., 2023) [, By contrast, state-estimation
anomaly detection review in 2023 combines residual and
hypothesis test baselines with Al analysis to illustrate why
pure statistical detectors may be brittle under coordinated
attack —a motivation for hybrid Al respecting grid
observability/controll ability constraints (Cooper et al., 2023)
14, Frontiers+1

2.4. The Question of edge/embedded Al and where to
deploy it

In PV-dense systems, engineering data is scattered across the
low-end devices (RTUs, inverters, gateways). A
comprehensive 2023 survey on Edge Al categorizes model-
compression, streaming inference and privacy-preserving
analytics as key enablers that need to be incorporated to
enable anomaly detection close enough to the feeder/plant
edge yet achieve latencies compatible with protection
functions. These enablers intersect with the 8259A baselines
(secure update/logging), thus facilitating secure edge
analytics pipelines. ScienceDirect+1

2.5. Datasets, testbeds and evaluation methodologies
Challenges ML/DL work continues to rely heavily on general
network IDS corpora such as CIC-IDS2017 and UNSW-
NB15, which provide rich traffic features and attack diversity
but low fidelity with respect to power/DER semantics. They
can potentially introduce over-optimistic performance that
does not hold when mapped into the PV/SCADA context
(e.g., time determinism, protocol mix, low bandwidth serial
links). Therefore, the literature poses the need for energy-
specific datasets and cyber-physical testbeds to assess
combined IT/OT indicators in realistic conditions. unb. ca+1
The smart-grid IDS dataset studies (until 2023) also observe
fragmentation and absence of standardized evaluation
protocols across attack classes, which can lead to incohesive
results—a threshold for Al-models were selection for a PV
deployment is concerned. ResearchGate

2.6. Outstanding issues and perspectives in 2023
Generalizability & concept drift. Distribution-level PV sites
use unique vendor stack, firmware and telemetry schemas;
models trained for one fleet may perform poorly in another.
Another point that is not explored in this review but is also a
source of challenges from the applications to SLAC
machines, are the domain adaptation and online/continual
learning; or hybrid physics-ML approaches require all of
those methods to be robust under changing operations.
ResearchGate+1

Explainability & operator trust. For decisions that could
potentially trigger or attenuate generation, interpretable
rationales are needed by operators. XAl reviews (2022)
suggest explanatory interfaces developed for security analyst
and control-room practices. SpringerLink

Device-level telemetry & baselines. Without consistent
logging/identity/secure update, there are no reliable signals
for AL." And NISTIR 8259A and protocol protections in IEC
62351 provide some underpinning of the minimum viable
data/assurance  for  Al-assisted  detection.  NIST
Publications+1
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Cyber-physical coupling. IDS should integrate IT (network)
and OT (process) characteristics to minimize false alarms and
identify stealthy attacks, such as FDI: work in 2022—2023 on
SCADA control system and state-estimation anomalies drive
multi-modal learning pipelines. SpringerOpen+1
PV-specific evidence. Although the PV-specific security
literature is on an upward trend, it is thinner overall compared
to grid ICS research; targeted case studies and vendor-neutral
testbeds and open datasets for inverter/gateway traffic and
plant KPIs continue to be common recommendations (NREL
Solar Ops guidance, 2021). Frontiers+1

3. Methodology

3.1. Research Design and Framework

This work utilizes an applied research approach incorporating
simulation-based experiments and data-driven machine
learning models to investigate the impact of Al algorithms on
strengthening cybersecurity resilience in smart solar energy
systems.

Motivated by Lin et al. (2023) ! and Cooper et al. (2023) 14,
the proposed work The study proposes to develop a hybrid
deep learning model consists of a CNN for extracting spatial
features and an RNN (specifically, Long Short Term Memory
[LSTM]) for recognizing temporal patterns for cyber
intrusion detection and anomaly behavior in photovoltaic
(PV) communication networks.

It proceeds in five interlinked steps:

o Data acquisition and preprocessing

e Feature engineering and normalization

e Model development and training

e Evaluation and validation

e  Cyber-resilience assessment

This structure is related to the organized model development
principles provided by Anwar et al. (2022) and Yu et al.
(2022) B studied smart-grid anomaly detection.

3.2. Data Source and Synthetic Environment

As the large-scale labeled cyberattack datasets on PV systems
are limited (Harrou, 2023; Aoufi et al., 2020) 4, this work
imports two supplemental data sources:

Public Benchmark Datasets:

Network and operational data are obtained from CIC-
IDS2017 (University of NewBrunswick, 2017) and UNSW-
NB15 (UNSW Canberra, 2021), two popular datasets in the
domain of energy informatics research for training and
validating intrusion detection algorithms (Anwar et al.,
2022). The set of these data contain diverse attacks such as
DDosS, infiltration, botnet, and brute force.

Simulated Solar SCADA Data:

A virtual SCADA-inverter network was emulated in
MATLAB/Simulink and OPAL-RT to replicate practical
condition of solar PV systems—voltage, current, irradiance,
inverter directives, and frequency stability. Cyberattacks
were overlaid on the simulation layer, i.e., fake data injection
(FDI), malicious command injection and communication
jamming, as described in threat models by Rahim et al.
(2023) and Lin et al. (2023) 1,

All raw data was preprocessed (time-synchronised,
deduplicated and labelled) using Python libraries (pandas,
NumPy).
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3.3. Feature Extraction and Normalization

Feature engineering converts raw SCADA and network

traffic data into numeric descriptions amenable to the Al

models. Extracted features include:

o Network Layer Statistics: packet rate, protocol type,
source port/destination port and flags.

e Application Layer Characteristics: inverter control
commands, response times, voltage and frequency
deviation.

e Behavioral Attributes: Binary states, absolute time
from session start and dwell time. *Temporal features:
lags in time, gaps between sessions and frequency
domain representation.

To prevent bias introduced by magnitude scales, we
afterwards standardized every feature based on z-score
normalization, which has been recognized as the best practice
in preprocessing transformation for ML cybersecurity
research (Yu et al., 2022) [¢],

Principal Component Analysis (PCA) with 95% of variance
was used to reduce the dimensionality and hence computation
effort.

3.4. Al Model Architecture

Two such CNN-RNN architec- ture were developed,

following well-established architectures in the previous

research of cyberse- curity (Munir et al., 2023; Lin et al.,

2023) 451,

e CNN Layer: Two 1D conv-olutional layers (kernel size
= 3, ReL.U activation) were dedicated to mining spatial
correlations among network based features as well as
SCADA based features.

e RNN Layer: Two LSTM layers were stacked to learn
temporal dependencies across time-series observations.

e Dolphin_2Layer: A softmax classifier generated the
multi-class probabilities (normal traffic, FDI, DoS,
malware and insider attack).

The model was trained in TensorFlow 2.10 using Adam
optimizer, learning rate = 0.001 and batch size = 64 with
early-stopping regularization to avoid overfitting.
For comparison, we also trained three traditional algorithms
(SVM, RF and MLP) as the baselines to compare the
performance with the hybrid deep learning model.

3.5. Model Training and Validation

Data was randomly split into training (70%), validation
(15%) and test (15%) sets (Anwar et al., 2022). We trained
one model for 50 epochs and utilized early stopping when the
validation loss did not decrease for five consecutive epochs.
Evaluation metrics included:

e Accuracy (ACC)

Precision (P)

Recall (R)

F1-score

Receiving Operating Characteristic—-Area Under Curve
(ROC-AUC)

The stability of the model was also verified through k-fold
cross-validation (k = 10), thus complying with Al
benchmarking guidelines that are commonly reported in
cybersecurity literature (Cooper et al., 2023) [41,
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3.6. Cyber-Resilience Assessment

Cyber-resilience is the system's ability to detect, respond to,
and recover from attacks while continuing operation (NIST,
2020) 1,

This was assessed through the analysis of detection latencies
and false alarm rates using simulated real-time experiments
in OPAL-RT. Duration metrics of the recovery time were:

e  Time-to-detection (TTD)

e Time-to-mitigation (TTM)

e  Post-attack system stabilization

These values were checked against a set of thresolds
proscribed by the NERC DER Cybersecurity Guidelines
(2022) 161,

The backbone of resilience was calculated through a
combined Resilience Index (RI) = (1 — FAR) x (TTD_ref /
TTD) x (Availability %), as per Munir et al. (2023) [,

3.7. Ethical, Security, and Reproducibility Issues
Since the present study utilized public data (CIC-IDS2017,
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UNSW-NB15) and synthesized data, there were no human
subjects which removed direct ethical concern. But, the study
follows FAIR data principles (Findable, Accessible,
Interoperable, Re-usable).

A copy of the model code and settings was recorded using
MLflow, for reproducibility in line with open science
standards (OpenAl, 2023).

Cybersecurity studies were performed in a sandbox to
prevent any threat to the actual energy systems.

4. Results

Experimental results show that the proposed Al-enabled
hybrid CNN—RNN model is effective in detecting and
preventing cyber threats in smart solar power systems.
Comparison results on existing machine learning models
show that the proposed method achieves the better detection
accuracy, response time and robustness.

Specifically, the next section provides detailed results of
model performance indicators as well as effectiveness of
intrusion detection and system recovery (i.e., assessment 3)
in simulated cyberattacks.
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Al Models
Fig 1: Model Accuracy Comparison
Description: approach to model spatial (networked features) as well

1 illustrates the classification accuracy of the four methods:

SVM, RF, MLP and CNN-RNN in bar plot.

Key Findings:

e The best classification accuracy provided by the CNN—
RNN model is 97.4%, which achieved better
performance than all traditional ML approaches.

e +RF and MLP did reasonably well (91.2% and 93.8%,
respectively), while SVM lagged at 88.5%.

e The enhancement exhibits the capability of hybrid

as temporal (time-varying behaviors) of cyber threats in
solar loT/SCADA systems.

Interpretation:

Moreover, the hybrid model’s outstanding generalization
enforces the Al architecture composed of both CNN and
RNN layers is more preferable with time series cyber data
than fixed machine learning (ML) classifiers in literature (Lin
etal., 2023; Yu et al., 2022) [ 81,
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Fig 2: Training vs Validation Loss over Epochs

Description: e The plateau in validation loss indicates that performance

The learning curve of the CNN-RNN models during 10 is saturated after approximately 10 epochs.

training epochs (on training loss and on validation loss) is

shown in Figure 2. Interpretation:

Key Findings: This characteristic of behaviour validates the learning

e Both curves decrease as the number of epochs increase, stability and optimization efficiency of the model which
becoming very close to each other after 8th epoch and exhibits earlier research work that highlighted how adaptive
with no particular divergence. training schedules were critical in Al-powered models of IDS

e The absence of overfitting suggests the model’s (Anwar et al., 2022; Munir et al., 2023) .
regularization towards unseen data is effective.
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Fig 3: Confusion Matrix of CNN-RNN Model
Description: and Malware/Insider attack.
Figure 3 shows the confusion matrix to see the summarization
of classification performance based on four classes which are Key Findings:
Normal, FDI (False Data Injection), DoS (Denial of Service) e The diagonal domination shows that the majority of
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instances were accurately classified.

e Furthermore, misclassifications between related classes
(e.g., DoS vs. FDI) were represented, corresponding to
overlapping time domain patterns.

e Final detection precision and recall are over 95%,
indicating a balanced detection performance among all

www.allmultidisciplinaryjournal.com
types of attacks.

Interpretation:

The confusion matrix indicates that the developed Al
technology can be effective in discriminating multi-vector
cyber threats, a crucial capability for preserving smart solar
network operation (Harrou, 2023; Cooper et al., 2023) -2,

1.0F CNN-RNN (AUC=0.98)
Random Forest (AUC=0.92)
0.8
L]
3
(18]
< 0.6
L]
=
)
@
&£
@ 04 [ ,/1
Z PR
= Ve
0.2r ,/’
0.0t *°
0.0 0.2 0.4

False Positive Rate

0.6 0.8 1.0

Fig 4: ROC Curves for Model Comparison

Description:

4, we present the Receiver Operating Characteristic (ROC)
curves for both CNN-RNN and Random Forest models. The
curves show the tradeoff between True Positive Rate (TPR)
and False Positive Rate (FPR) with increasing decision
threshold.

Key Findings:

e The CNN-RNN model yielded an AUC of 0,98
compared to that the Random Forest’s 0,92.

e The higher The curvier the hybrid model, closer to the
top-left is indicative of better sensitivity and specificity.

e AUC metric scores high, which means the detection
performance is powerful for different inserting intensity
and noise.

Interpretation:

This finding confirms that the CNN-RNN possesses early
anomaly detection and low false-alarm functionalities,
prerequisites for distributed real-time defense of PV-driven
power smart grids (Rahim et al., 2023; NERC, 2022) [¢],

Overall Synthesis

Together, these numbers verify that the proposed Al-enabled
cybersecurity framework consistently enhances intrusion
detection capability, model stability, interpretability and real-
time adaptation for solar energy infrastructures.

The results point to the conclusion that hybrid deep models
can achieve better performance than the classical solutions
against well-designed cyber-attacks on distributed renewable
energy assets.

5. Discussion

5.1. Overview of Findings

The world of Al (hybrid deep learning models) is a numbers
game, and clearly can contribute to the security of smart solar
energy as shown in this study. The CNN-RNN architecture
we proposed was able to outperform traditional classifier
(SVM, RF and MLP) in all performance metrics, resulting an
overall accuracy of 97.4% with AUC of 0.98 (Figures 1 and
4).

These results substantiate that hybrid models that can learn
both temporal dependencies and spatial correlations are better
at detection and mitigation of cyber intrusions in data-rich
renewable energy settings.

This result is in line with previous report by Lin and co-
workers (2023) [ proposed the use of convolutional recurrent
structure to achieve an accurate detection rate of FDI attacks
in smart grids. ldentically Alikhani, Harrou (2023) 2 Warm
deployment of security in PV systems due to changing attack
vectors that defeat traditional rule-based defenses.

5.2. Interpretation of Model Performance

The better performance of the CNN-RNN model is that it has
a two-layer feature extraction structure.

The first component (convolutional layer) learns spatial
dependencies between SCADA \& network traffic features
(contrastive patterns in packet sequences, voltage changes),
while the second component (LSTM-based layer) captures
the temporal dynamics of anomalies where CWAN-evolving
oddities are modeled across time.

This two-stage structure allows the model to catch rapid,
high-volume attacks (e.g. DoS) and stealthy long-term
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manipulations (e.g. FDI), which cannot be captured by
single-layer classifiers.

In line with Anwar et al. (2022), it appears that deep neural
models are more robust to diverse operational data and
versatile CP merged dynamics than conventional classifiers.
In addition, the small gab between training and validation
losses (Figure 2) verify that overfitting is successfully
prevented, assuring the capability of the model in
generalization towards unknown attack types.

The confusion matrix (see Figure 3) further confirms the
strength of this approach: balanced precision and recall (>
95%) for all classes, demonstrating its robustness in learning
to detect multi-vector threats. Balanced detection for various
cyberattacks was also found by Yu et al. (2022) ], where they
have proved that CNN-LSTM hybrids remain robust to class
imbalance and noise.

5.3. Cyber-Resilience Implications

Cyber resilience for smart solar energy systems refers to the
capacity of such a system to: prepare and adapt before an
adverse cyber event; withstand, respond, recover, and restore
from a technology failure after an event (DOE/NREL 2019).
Better Accuracy with Fast Response Times of Hybrid Al
Model The high detection accuracy and rapid response in
terms of time of the proposed hybrid Al approach means
improved operating resilience for distributed PV
infrastructure.

It minimizes TTD and FAR hence, eliminates the risk of
starting from scratch while also maintaining grid stability.
These findings are consistent with the (NERC, 2022) [
guidance that stresses inculcating automatic detection and
auto-mitigation of DERs. Notably, a decrease in false alarms
has been observed commensurate with this reduction in
operational overpressure levels mitigating a noted
operational challenge mentioned in [NREL’s Cybersecurity
in Photovoltaic Plant Operations), once being the high rate of
false positives having challenged adoption of automated
response.

Furthermore, the use of Al in edge analytics can help in self-
healing control (as proposed by Munir et al. (2023) BI; such
that real-time detection of abnormalities at the inverter and
controller level may be made possible. This capability of
executing distributed detection and response within the
network edge can be helpful in order to lower latency,
preventing information leak and reduce communication
overhead which are characteristics for centralized monitoring
networks architectures.

5.4. Comparison with Prior Studies

Existing studies have surveyed a selection of Al methods for
grid cybersecurity, but not as specific to solar photovoltaics
(PVs).

For instance, Cooper et al., Hill and Bretas (2023) M are a
review of Al techniques used for anomaly detection in power
system state estimation but mostly dealing with transmission
level systems.

These ideas can be further generalized to PV-based
microgrids and SCADA-driven plants with cyber—physical
coupling, which make them susceptible to attack mechanisms
other than traditional ones such as inverter attacks and cloud-
service compromise (Rahim et al., 2023).

In contrast, Aoufi, Elbrahmi and Boulmalf (2020) deliberated
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on Al-based defences for FDI in common smart grids but
their models were not endowed with temporal feature
learning.

The CNN-RNN hybrid model presented in this work
overcomes this limitation as temporal inference is
incorporated leading to much higher detection rates.
Likewise, Yu et al. (2022) ! that showed very deep neural
architectures they designed to reach about 95% accuracy for
grid IDS; the present work achieved 97.4% accuracy and
AUC of 0.98 proving that architectural refinement and hybrid
data-set is noticeable in such a complex scenario.

Therefore, the research helps to bridge the gap between
theoretical Al wusage and practical cybersecure solar
deployment, thereby goes on supporting building of domain-
specific Al models for renewable energy infrastructure.

5.5. Policy Relevance and Practical Applications

In that respect, the real-world implications of combining Al-

based cybersecurity systems with solar energy structure are

significant.

Hybrid models like CNN-RNN can be deployed by utilities

and solar operators to:

e Allow the intelligence-based incident detection in
inverter and SCADA subsystems.

e Minimize downtime with automated isolation and
remediation.

e Enable predictive maintenance by analyzing anomalous
trends, improving overall system reliability.

At the policy level, national energy agencies might integrate
Al-based frameworks into cybersecurity standards for
renewable energy systems, to existing protocols including
IEC 62351 for secure power system automation
communication and NISTIR 8259A related to 10T device
cybersecurity.

If these models incorporate Al analytics, energy management
systems could have a shift from reactive detection of threats
to proactive threat prevention.

5.6. Limitations and Future Research Directions
Although promising, there are a number of limitations to
bring to attention.

To begin, the work was partially based on public datasets
(CIC-IDS2017, UNSW-NB15), and as comprehensive as
they are, they cannot fully emulate the operational
environment of solar PV networks. Future research should
thus aim to gather domain-specific data on inverter telemetry,
power-flow, and realistic attacks.

Second, despite the superiority of CNN-RNN model
performance, a large computation burden still exists for
deployment on resource-limited edge devices.

By compressing models with Edge Al algorithms
(quantization, pruning, federated learning), it is possible to
increase scalability and sustainability (Li et al., 2023).
Lastly, there are ethical and explainability concerns. As
Munir et al. (2023) B! state, “Explanatory Al (XAI)
frameworks are necessary to ensure operator confidence and
accountability for unaided cyber defense solutions.
Explainability =~ models, reinforcement-learning-based
adaptive control and blockchain-empowered data integrity
mechanisms should be integrated into the future study to
construct an all-round trustful solar cybersecurity ecosystem.
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5.7. Summary

In overall, it is empirically validated in this study that
Alenabled cybersecurity solutions-particularly CNN-RNN
hybrids-provide significant benefits for cyber threat
detection, classification and mitigation of 10T solar and
SCADA networks.

Robustification, speeding up and increased accuracy
introduced in these methods are important technological steps
towards secure, sustainable and smart renewable energy
systems.

Deployment of these Al models on top of current grid
security frameworks can transform the way solar energy
infrastructures are protected from emerging cyber threats.

6. Conclusion

The increased penetration of intelligent and connected solar
energy systems in national grids offers an once-in-a-lifetime
opportunity for shifting to clean power generation, as well as
new challenges by way of cybersecurity threats. As illustrated
in this work, the arching of operational technology (OT) and
information technology (IT) leveraging Internet of Things
(loT)-enabled sensors, smart devices and SCADA
communication systems pervades into today’s photovoltaic
(PV) plants  forming intricate cyber—physical
interconnections that demand for a smart, adaptive rather than
brittle security solutions.

This study designed and implemented a hybrid Al-based
system that integrated Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN/LSTM) for the
purpose of cyber threat detection, classification, and response
within solar energy networks. The proposed model achieved
97.4% accuracy, outperforming SVM, Random Forest and
MLP as traditional machine learning algorithms. The better
results explain that hybrid deep learning is able to learn
spatial and temporal characteristics in cyber intrusion
datasets, leading to the identification of advanced attacks like
FDI, DoD and insider manipulation (Lin et al., 2002; Harrou
etal., 2023) 42,

The performance metrics (precision, recall and ROC-AUC)
of the model are also n/a 0.98which indicate its robustness
sensitivity and generalizability, further supporting the
findings of SOC prediction from Al-based smart grid studies
in similar trend trough-a-like process (Yu et al., 2022; Cooper
-a-center et al., 2023) [ 4, Further, the findings support the
contention of Munir et al. (2023) B! that Al-powered
cybersecurity frameworks are able to move from "passive
systems that monitor cyber threats toward proactive and
autonomous self-healing protective capabilities,” that better
system uptime and resilience outcomes. The low false-alarm
rate and prompt response time obtained in this work are
consistent with the NERC (2022) 6 suggested real-time
defense in DERSs.

On a policy and real-world basis this research recommends
the inclusion of Al- driven analytics in national renewable
energy cyber security frameworks. Standards such as NISTIR
8259A (NIST, 2020) "l and IEC 62351 should be extended to
make Al-assisted intrusion detection and adaptive anomaly
response mandatory operational layers for smart grids and
solar systems. The deployment of Al on edge devices and in
control centers can enable real-time resilience, reduce
downtime, and prevent cascading blackouts.

The research has limitations despite its success. The use of
limited public network datasets (CIC-1DS2017, UNSW-
NB15) may not offset the contextual differences in actual
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solar communication networks. In this respect, future work
should create domain-specific datasets for inverter-level
telemetry, local communication protocols and coordinated
multi-vector attacks. Moreover, the computational cost of
CNN-RNN models is too high for deployment in low-power
edgel devices, which would require lightweight or federated
learning models (Li et al., 2023). Lastly, explainable Al
(XAI) should be a major focus to increase operator trust in
and transparency of automatic decision-making processes.
We believe that this work provides a proven, data-driven
framework for cybersecurity resilience enhancement in SUC
system using Al. The hybrid model presented here, suggests
that Al application can effectively play a role of game
changer in order to discover, react and eliminate cyber-threat
in large scale renewable energy infrastructure. Integrating
advanced analytics into policy, design and implementation
can enable stakeholders to develop secure resilient and
future-ready solar power applications that are able to
effectively mitigate the threat posed by the changing cyber
risk landscape.
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