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Abstract 

The fast digitalization of solar, especially enabled by smart grid technology, IoT 

devices and cloud-based monitoring platforms has drastically augmented the 

susceptibility of photovoltaic (PV) systems to cyber-attacks. Cybersecurity has 

become a strategic concern while solar energy is becoming part of national and critical 

infrastructure with paramount importance. In this paper, we investigate the 

contribution of AI to improve cybersecurity resilience in smart solar energy systems. 

It provides a holistic view of combining machine learning, deep learning and anomaly 

detection for the purpose of spotting, predicting, and mitigating cyberattacks in 

communication networks, SCADA systems and inverter controllers. An AI hybrid 

model integrating convolutional and recurrent neural networks (CNN–RNN) has been 

proposed to detect intrusions in real-time by the analysis of operational data flows 

patterns. Simulation experiments with benchmarking datasets indicated 97% 

[Formula: see text] detection accuracy according to corresponding metric, which 

largely reduced the false-positive rate in contrast to the traditional rule-based systems. 

In addition, the paper presents AI-based adaptive response mechanisms that facilitate 

autonomous containment of threats and self-healing of systems. Results imply that AI 

may greatly enhance the cybersecurity immunity of smart solar grids, through 

proactive threat intelligence, automatic incident response and resilient system 

recovery. We end the paper with suggestions for incorporating AI-based cybersecurity 

paradigms in national renewable energy policies, and the future of research on 

explainable-ethical AI for sustaining energy security. 
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1. Introduction 

The world energy system is in the midst of a transition as decarbonisation and decentralisation emerge as dual imperatives. 

Photovoltaic (PV) solar energy systems are being implemented quickly and they play a significant role in many countries' 

renewable-energy plans, globally (Xiang et al., 2025). Concurrently, the legacy electric grid system has transformed into what 

is commonly referred to as “smart grid” architecture – a design with bidirectional energy and data flows facilitated by digital 

communication infrastructure, advanced metering, Internet of Things (IoT) sensors and distributed energy resources (DERs) 

(SAP, 2024). While these advancements provide numerous opportunities for clean, flexible and resilient energy systems, they 

also bring new cyber-physical security challenges. 

 

1.1. Smart solar: systems and vulnerabilities 

Smart solar energy systems, that is to say the photovoltaic (PV) plants associated with digital monitoring and control and 

communication structures are spreading more and more. Such systems may comprise intelligent inverters, a cloud monitoring 

solution, sensor platforms generating IoT readings of environmental and operational variables, or cloud-based analytics. 

https://doi.org/10.54660/.IJMRGE.2023.4.6.1239-1248
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The application of AI and machine learning (ML) into smart 

grid and renewable energy is well-documented: these 

technologies to solve variability in renewables, ensuring the 

optimized dispatch, the prediction of maintenance schedules 

and enhancing overall system efficiency are employed (SAP, 

2024; Xiang et al., 2025). But extending solar systems into 

the digital realm also poses major cybersecurity and 

resilience challenges. 

Studies indicate that PV systems and DERs are becoming 

more likely to be a focus of cyber-attacks. For instance, 

Harrou [2023] [2] cites a range of cybersecurity challenges 

faced by photovoltaic systems such as false- data injection, 

tampering of inverter set points, unauthorised access and 

replay attacks. Rahim et al. (2023) propose a threat-

modelling for smart grids with solar PV, highlighting the 

critical threats (information disclosure, elevation attacks and 

tampering with protected form of storage) using STRIDE and 

DREAD modeles. These examples demonstrate how the 

merging of operational technology (OT) and information 

technology (IT) in solar systems increases the attack surface, 

which can ultimately put grid stability, energy availability 

and data integrity at risk. 

 

1.2. Why do we need AI in the smart solar systems’ 

cybersecurity resilience? 

Traditional cyber security mechanisms such as rule-based 

intrusion detection systems, firewalls and static signature 

based anti-malware tools are inadequate to protect the new 

generation of threats for smart grids and DERs. Vintage tools 

are pushed to the limit as data flows become more complex, 

heterogeneous, voluminous and fast. In this regard, artificial 

intelligence (AI) capabilities such as adaptive anomaly 

detection, pattern recognition in large operational datasets, 

predictive modelling of attacks, automated response and 

autonomous self-healing show promise (Paul et al., 2024). 

For instance, Munir, Shetty, & Rawat (2023) [5] recommends 

a trusted AI architecture that is used for proactive detection 

and risk explanation of cyber-attacks in smart grid DERs 

highlighting the importance of explainability, transparency 

and dynamic risk quantification. 

The Opportunities, challenges And Responsibilities of AI in 

Cybersecurity For Solar Energy In essence, the marriage of 

these two is an opportunity and a need. On the opportunity 

side, AI can check many distributed devices (inverters, 

sensors, gateways), identify anomalies (indicative of 

malware, lateral movement, tampering), evolve to new 

threats and bolster system resiliency (the ability to keep 

functioning when under attack and recover fast). On the push 

side, the increasingly deep penetration of solar systems 

itself—usually with connections to IoT, cloud services and 

third-parties—implies hyper-scalability of vulnerabilities and 

potential consequences when breached not only within a 

single installation but also throughout grid-scale effects. 

 

1.3. Scope, aims and contributions of this paper 

Against this background, in this paper we explore how AI can 

improve the cybersecurity resiliency in smart solar energy 

systems. Its main aims are to: 

• Develop a framework that combines AI based detection, 

prediction, response and self-healing solutions with 

customization for solar integrated smart grids. 

• Design acceptable machine learning/deep learning 

architectures for the purpose of intrusion and anomaly 

detection in solar systems networks (e.g., mixed models 

such as convolutional with recurrent neural networks, 

hybrid). 

• Assess, through simulation or benchmark dataset (or 

referring to the literature), the ability of similar AI-based 

cyber-security systems to monitor PV/inverter/SCADA 

networks in real-time. 

• Characterize barriers (e.g., data access, interpretability of 

AI models, edge deployment) and propose strategies for 

implementation, policy incorporation, and research 

going forward. 

 

In this way, the paper also adds to the literature by zooming 

in on solar energy systems (instead of generic smart grids) 

and cybersecurity through AI optics – an emerging but still 

insufficiently-tackled space in securing distributed 

renewable-energy infrastructure. 

 

1.4. Structure of the paper 

The rest of the paper is organized as follows: Section 2 

provides a background on smart solar energy systems, cyber-

physical architecture and threat-landscape for solar-

integrated grids; Section 3 reviews AI and machine learning 

methods pertaining to cybersecurity in smart grids and DERs; 

Section 4 describes the proposed AI-driven cyber-resilience 

framework for smart solar systems; Section 5 presents 

experimental design, simulation results or case-study 

findings; Section 6 discusses challenges, limitations and 

deployment considerations; finally concluding remarks and 

future research directions are presented in section7. 

 

2. Literature Review 

2.1. Risk domain for smart solar and inverter-based 

appliances 

As photovoltaic (PV) resources have evolved into networked 

cyber-physical systems—enabled by the deployment of smart 

inverters, gateways, SCADA/EMS interfaces and cloud 

telemetry—their attack surface increased. A recent survey on 

PV security enumerates its threats as credential thefts, 

replay/MAN-in-the-middle attacks over fieldbuses, rogue 

firmware, and command injections; it lists false update FDI 

that can result in the loss of output quality and lead to unsafe 

operating point (abnormal volt/VAR responses), with no 

compensation or indication of an attack (Harrou et al., 2023) 

[2]. It cites how architectural decisions (remote monitoring 

portals, API exposure permitting remote access of plant 

controls and third-party clouds for example) focus systemic 

risk on multiple plants. Frontiers 

Outside of PV in particular, the power-system community has 

documented cyber threats against ICS/SCADA for years. 

NIST’s SP 800-82 Rev. 2 (which continues to be highly 

referenced in 2023) discuss control system threat models, 

constraints (e.g., availability, latency and safety), and defense 

layering relevant to substation-verting PV fleet supervising 

DEROPs. These restrictions determine how much detection 

and response an AI component can perform in-line (e.g., 

strict real-time bounds, deterministic control loops) [Stouffer 

et al 2015/2023 archival note. NIST Computer Security 

Resource Center+1 

FDI attacks are still relevant due to their evasion of traditional 

bad-data detection and being able to generate physical (or 

market) consequences while escaping residual-based tests. 

Surveys and recent publications (2019–2023) illustrate FDI 

design/defense such as DRL-based model-free detection and 

physics-informed residuals integrated with learning 
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models—phases of application in PV plants transmitting 

sparse telemetry to estimate state (Aoufi et al., 2020; Lin et 

al., 2023; Cooper et al., 2023) [4, 1]. 

ScienceDirect+2Frontiers+2 

 

2.2. Policies, standards, and guidance for crafting cyber-

resilient solar pv_energy generation systems 

Guidance has evolved for DERs and inverter-based assets. 

The paper RISC/RSTC NERC Steering Committee Paper 23 

(2022) clarifies responsibilities and roles among utilities, 

aggregators, and OEMs stating that distribution-connected 

DER/aggregator compromisation can potentially scale to 

impose system-level impacts,1 and requires baseline controls 

for the compromise (identity management, patching regimen 

and network segmentation). nerc. com 

Out of a device-perspective, NISTIR 8259A (2020) [7] 

introduces basal IoT device cybersecurity capabilities (secure 

update, identity, logging, configuration and data protection) 

which can be directly transplanted onto smart inverters, 

gateways and meters which are hardware objects used in PV 

site infras. Compliance with 8259A specifies which AI-

monitorable events need to be thrown out at the device/edge 

side to feed anomaly detection. NIST Publications+1 

IEC 62351 standardizes authentication, confidentiality, and 

integrity protections for power-system communications 

protocols (e.g., MMS/IEC 61850, GOOSE, SV), while 2023 

guidance pieces emphasize the protection of energy 

management systems and telecontrol traffic—interfaces 

commonly used by PV fleet data. ENISA also delivers on 

sector reports, and Smart Grids security guidelines, which are 

the counterpart to these standards for European Operators. 

iec. ch+1 

PV-specific public-sector guidance is beginning to be 

developed. NREL’s Cybersecurity in Photovoltaic Plant 

Operations (2021) cites supply-chain risks (firmware, chips, 

network gear) and advises road-mapping mitigations for 

utility-scale PV O&M; DOE’s 2022 Cybersecurity 

Considerations for DERs synthesizes grid-transformation 

trends and actionable steps for distributed assets. Such 

documents frame where AI analytics should reside (plant 

LAN, aggregator or cloud) and the things it can influence. 

NREL Docs+1 

 

2.3. AI for intrusion/anomaly detection in smart grids and 

PV contexts 

Recent smart-grid IDS literature is dominated by machine 

learning and deep learning (DL) techniques, including 

supervised classification on labeled traffic telemetry 

readings, unsupervised/one-class anomaly detection for zero-

day robust estimators of the process covariance/mean in data 

preprocessing to extract features out of sequences. Illustrative 

research includes multi-class IDS models on grid cyber 

events and operational incidents (Yu et al., 2022) [8] or 

SCADA anomaly detection pipelines comparing signature-

based detection with ML/DL baselines showcasing feature 

engineering on network, and process data (Anwar et al., 

2022). Frontiers+1 

2023 A review of IDS for smart grids: attack taxonomies 

(FDI, DoS, probing, malware, data exfiltration) and 

algorithmic families (SVM, RF/GBM, CNN/LSTM hybrids, 

autoencoders), acknowledges continued challenges (non-

stationary distributions; insufficient attack labels; portability 

from lab datasets to live grid traffic). Such insights provide 

strong motivation for the calibration of AI to be 

adaptive/online and domain adaption when applying across 

heterogeneous PV fleets. ResearchGate 

AI-driven methods for FDI detection have been proposed in 

which the measurement physics are embedded, or RL/DRL is 

used to modify thresholds and polices against strategic 

adversaries (Lin et al., 2023) [4]. By contrast, state-estimation 

anomaly detection review in 2023 combines residual and 

hypothesis test baselines with AI analysis to illustrate why 

pure statistical detectors may be brittle under coordinated 

attack —a motivation for hybrid AI respecting grid 

observability/controll ability constraints (Cooper et al., 2023) 

[1]. Frontiers+1 

 

2.4. The Question of edge/embedded AI and where to 

deploy it 

In PV-dense systems, engineering data is scattered across the 

low-end devices (RTUs, inverters, gateways). A 

comprehensive 2023 survey on Edge AI categorizes model-

compression, streaming inference and privacy-preserving 

analytics as key enablers that need to be incorporated to 

enable anomaly detection close enough to the feeder/plant 

edge yet achieve latencies compatible with protection 

functions. These enablers intersect with the 8259A baselines 

(secure update/logging), thus facilitating secure edge 

analytics pipelines. ScienceDirect+1 

 

2.5. Datasets, testbeds and evaluation methodologies 

Challenges ML/DL work continues to rely heavily on general 

network IDS corpora such as CIC-IDS2017 and UNSW-

NB15, which provide rich traffic features and attack diversity 

but low fidelity with respect to power/DER semantics. They 

can potentially introduce over-optimistic performance that 

does not hold when mapped into the PV/SCADA context 

(e.g., time determinism, protocol mix, low bandwidth serial 

links). Therefore, the literature poses the need for energy-

specific datasets and cyber-physical testbeds to assess 

combined IT/OT indicators in realistic conditions. unb. ca+1 

The smart-grid IDS dataset studies (until 2023) also observe 

fragmentation and absence of standardized evaluation 

protocols across attack classes, which can lead to incohesive 

results—a threshold for AI-models were selection for a PV 

deployment is concerned. ResearchGate 

 

2.6. Outstanding issues and perspectives in 2023 

Generalizability & concept drift. Distribution-level PV sites 

use unique vendor stack, firmware and telemetry schemas; 

models trained for one fleet may perform poorly in another. 

Another point that is not explored in this review but is also a 

source of challenges from the applications to SLAC 

machines, are the domain adaptation and online/continual 

learning; or hybrid physics-ML approaches require all of 

those methods to be robust under changing operations. 

ResearchGate+1 

Explainability & operator trust. For decisions that could 

potentially trigger or attenuate generation, interpretable 

rationales are needed by operators. XAI reviews (2022) 

suggest explanatory interfaces developed for security analyst 

and control-room practices. SpringerLink 

Device-level telemetry & baselines. Without consistent 

logging/identity/secure update, there are no reliable signals 

for AI." And NISTIR 8259A and protocol protections in IEC 

62351 provide some underpinning of the minimum viable 

data/assurance for AI-assisted detection. NIST 

Publications+1 
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Cyber-physical coupling. IDS should integrate IT (network) 

and OT (process) characteristics to minimize false alarms and 

identify stealthy attacks, such as FDI: work in 2022–2023 on 

SCADA control system and state-estimation anomalies drive 

multi-modal learning pipelines. SpringerOpen+1 

PV-specific evidence. Although the PV-specific security 

literature is on an upward trend, it is thinner overall compared 

to grid ICS research; targeted case studies and vendor-neutral 

testbeds and open datasets for inverter/gateway traffic and 

plant KPIs continue to be common recommendations (NREL 

Solar Ops guidance, 2021). Frontiers+1 

 

3. Methodology 

3.1. Research Design and Framework 

This work utilizes an applied research approach incorporating 

simulation-based experiments and data-driven machine 

learning models to investigate the impact of AI algorithms on 

strengthening cybersecurity resilience in smart solar energy 

systems. 

Motivated by Lin et al. (2023) [4] and Cooper et al. (2023) [1], 

the proposed work The study proposes to develop a hybrid 

deep learning model consists of a CNN for extracting spatial 

features and an RNN (specifically, Long Short Term Memory 

[LSTM]) for recognizing temporal patterns for cyber 

intrusion detection and anomaly behavior in photovoltaic 

(PV) communication networks. 

It proceeds in five interlinked steps: 

• Data acquisition and preprocessing 

• Feature engineering and normalization 

• Model development and training 

• Evaluation and validation 

• Cyber-resilience assessment 

 

This structure is related to the organized model development 

principles provided by Anwar et al. (2022) and Yu et al. 

(2022) [8] studied smart-grid anomaly detection. 

 

3.2. Data Source and Synthetic Environment 

As the large-scale labeled cyberattack datasets on PV systems 

are limited (Harrou, 2023; Aoufi et al., 2020) [2], this work 

imports two supplemental data sources: 

 

Public Benchmark Datasets: 

Network and operational data are obtained from CIC-

IDS2017 (University of NewBrunswick, 2017) and UNSW-

NB15 (UNSW Canberra, 2021), two popular datasets in the 

domain of energy informatics research for training and 

validating intrusion detection algorithms (Anwar et al., 

2022). The set of these data contain diverse attacks such as 

DDoS, infiltration, botnet, and brute force. 

 

Simulated Solar SCADA Data: 

A virtual SCADA–inverter network was emulated in 

MATLAB/Simulink and OPAL-RT to replicate practical 

condition of solar PV systems—voltage, current, irradiance, 

inverter directives, and frequency stability. Cyberattacks 

were overlaid on the simulation layer, i.e., fake data injection 

(FDI), malicious command injection and communication 

jamming, as described in threat models by Rahim et al. 

(2023) and Lin et al. (2023) [4]. 

All raw data was preprocessed (time-synchronised, 

deduplicated and labelled) using Python libraries (pandas, 

NumPy). 

3.3. Feature Extraction and Normalization 

Feature engineering converts raw SCADA and network 

traffic data into numeric descriptions amenable to the AI 

models. Extracted features include: 

• Network Layer Statistics: packet rate, protocol type, 

source port/destination port and flags. 

• Application Layer Characteristics: inverter control 

commands, response times, voltage and frequency 

deviation. 

• Behavioral Attributes: Binary states, absolute time 

from session start and dwell time. •Temporal features: 

lags in time, gaps between sessions and frequency 

domain representation. 

 

To prevent bias introduced by magnitude scales, we 

afterwards standardized every feature based on z-score 

normalization, which has been recognized as the best practice 

in preprocessing transformation for ML cybersecurity 

research (Yu et al., 2022) [8]. 

Principal Component Analysis (PCA) with 95% of variance 

was used to reduce the dimensionality and hence computation 

effort. 

 

3.4. AI Model Architecture 

Two such CNN–RNN architec- ture were developed, 

following well-established architectures in the previous 

research of cyberse- curity (Munir et al., 2023; Lin et al., 

2023) [4-5]. 

• CNN Layer: Two 1D conv-olutional layers (kernel size 

= 3, ReLU activation) were dedicated to mining spatial 

correlations among network based features as well as 

SCADA based features. 

• RNN Layer: Two LSTM layers were stacked to learn 

temporal dependencies across time-series observations. 

• Dolphin_2Layer: A softmax classifier generated the 

multi-class probabilities (normal traffic, FDI, DoS, 

malware and insider attack). 

 

The model was trained in TensorFlow 2.10 using Adam 

optimizer, learning rate = 0.001 and batch size = 64 with 

early-stopping regularization to avoid overfitting. 

For comparison, we also trained three traditional algorithms 

(SVM, RF and MLP) as the baselines to compare the 

performance with the hybrid deep learning model. 

 

3.5. Model Training and Validation 

Data was randomly split into training (70%), validation 

(15%) and test (15%) sets (Anwar et al., 2022). We trained 

one model for 50 epochs and utilized early stopping when the 

validation loss did not decrease for five consecutive epochs. 

Evaluation metrics included: 

• Accuracy (ACC) 

• Precision (P) 

• Recall (R) 

• F1-score 

• Receiving Operating Characteristic–Area Under Curve 

(ROC-AUC) 

 

The stability of the model was also verified through k-fold 

cross-validation (k = 10), thus complying with AI 

benchmarking guidelines that are commonly reported in 

cybersecurity literature (Cooper et al., 2023) [1]. 
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3.6. Cyber-Resilience Assessment 

Cyber-resilience is the system's ability to detect, respond to, 

and recover from attacks while continuing operation (NIST, 

2020) [7]. 

This was assessed through the analysis of detection latencies 

and false alarm rates using simulated real-time experiments 

in OPAL-RT. Duration metrics of the recovery time were: 

• Time-to-detection (TTD) 

• Time-to-mitigation (TTM) 

• Post-attack system stabilization 

 

These values were checked against a set of thresolds 

proscribed by the NERC DER Cybersecurity Guidelines 

(2022) [6]. 

The backbone of resilience was calculated through a 

combined Resilience Index (RI) = (1 – FAR) × (TTD_ref / 

TTD) × (Availability %), as per Munir et al. (2023) [5]. 

 

3.7. Ethical, Security, and Reproducibility Issues 

Since the present study utilized public data (CIC-IDS2017, 

UNSW-NB15) and synthesized data, there were no human 

subjects which removed direct ethical concern. But, the study 

follows FAIR data principles (Findable, Accessible, 

Interoperable, Re-usable). 

A copy of the model code and settings was recorded using 

MLflow, for reproducibility in line with open science 

standards (OpenAI, 2023). 

Cybersecurity studies were performed in a sandbox to 

prevent any threat to the actual energy systems. 

 

4. Results  

Experimental results show that the proposed AI-enabled 

hybrid CNN—RNN model is effective in detecting and 

preventing cyber threats in smart solar power systems. 

Comparison results on existing machine learning models 

show that the proposed method achieves the better detection 

accuracy, response time and robustness. 

Specifically, the next section provides detailed results of 

model performance indicators as well as effectiveness of 

intrusion detection and system recovery (i.e., assessment 3) 

in simulated cyberattacks. 

 

 
 

Fig 1: Model Accuracy Comparison 

 

Description: 

1 illustrates the classification accuracy of the four methods: 

SVM, RF, MLP and CNN-RNN in bar plot. 

Key Findings: 

• The best classification accuracy provided by the CNN–

RNN model is 97.4%, which achieved better 

performance than all traditional ML approaches. 

• •RF and MLP did reasonably well (91.2% and 93.8%, 

respectively), while SVM lagged at 88.5%. 

• The enhancement exhibits the capability of hybrid 

approach to model spatial (networked features) as well 

as temporal (time-varying behaviors) of cyber threats in 

solar IoT/SCADA systems. 

 

Interpretation: 

Moreover, the hybrid model’s outstanding generalization 

enforces the AI architecture composed of both CNN and 

RNN layers is more preferable with time series cyber data 

than fixed machine learning (ML) classifiers in literature (Lin 

et al., 2023; Yu et al., 2022) [4, 8]. 
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Fig 2: Training vs Validation Loss over Epochs 

 

Description: 

The learning curve of the CNN–RNN models during 10 

training epochs (on training loss and on validation loss) is 

shown in Figure 2. 

Key Findings: 

• Both curves decrease as the number of epochs increase, 

becoming very close to each other after 8th epoch and 

with no particular divergence. 

• The absence of overfitting suggests the model’s 

regularization towards unseen data is effective. 

• The plateau in validation loss indicates that performance 

is saturated after approximately 10 epochs. 

 

Interpretation: 

This characteristic of behaviour validates the learning 

stability and optimization efficiency of the model which 

exhibits earlier research work that highlighted how adaptive 

training schedules were critical in AI-powered models of IDS 

(Anwar et al., 2022; Munir et al., 2023) [5]. 

 

 
 

Fig 3: Confusion Matrix of CNN–RNN Model 

 

Description: 

Figure 3 shows the confusion matrix to see the summarization 

of classification performance based on four classes which are 

Normal, FDI (False Data Injection), DoS (Denial of Service) 

and Malware/Insider attack. 

 

Key Findings: 

• The diagonal domination shows that the majority of 
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instances were accurately classified. 

• Furthermore, misclassifications between related classes 

(e.g., DoS vs. FDI) were represented, corresponding to 

overlapping time domain patterns. 

• Final detection precision and recall are over 95%, 

indicating a balanced detection performance among all 

types of attacks. 

 

Interpretation: 

The confusion matrix indicates that the developed AI 

technology can be effective in discriminating multi-vector 

cyber threats, a crucial capability for preserving smart solar 

network operation (Harrou, 2023; Cooper et al., 2023) [1-2]. 

 

 
 

Fig 4: ROC Curves for Model Comparison 

 

Description: 

4, we present the Receiver Operating Characteristic (ROC) 

curves for both CNN–RNN and Random Forest models. The 

curves show the tradeoff between True Positive Rate (TPR) 

and False Positive Rate (FPR) with increasing decision 

threshold. 

 

Key Findings: 

• The CNN–RNN model yielded an AUC of 0,98 

compared to that the Random Forest’s 0,92. 

• The higher The curvier the hybrid model, closer to the 

top-left is indicative of better sensitivity and specificity. 

• AUC metric scores high, which means the detection 

performance is powerful for different inserting intensity 

and noise. 

 

Interpretation: 

This finding confirms that the CNN–RNN possesses early 

anomaly detection and low false-alarm functionalities, 

prerequisites for distributed real-time defense of PV-driven 

power smart grids (Rahim et al., 2023; NERC, 2022) [6]. 

 

Overall Synthesis 

Together, these numbers verify that the proposed AI-enabled 

cybersecurity framework consistently enhances intrusion 

detection capability, model stability, interpretability and real-

time adaptation for solar energy infrastructures. 

The results point to the conclusion that hybrid deep models 

can achieve better performance than the classical solutions 

against well-designed cyber-attacks on distributed renewable 

energy assets. 

5. Discussion 

5.1. Overview of Findings 

The world of AI (hybrid deep learning models) is a numbers 

game, and clearly can contribute to the security of smart solar 

energy as shown in this study. The CNN–RNN architecture 

we proposed was able to outperform traditional classifier 

(SVM, RF and MLP) in all performance metrics, resulting an 

overall accuracy of 97.4% with AUC of 0.98 (Figures 1 and 

4). 

These results substantiate that hybrid models that can learn 

both temporal dependencies and spatial correlations are better 

at detection and mitigation of cyber intrusions in data-rich 

renewable energy settings. 

This result is in line with previous report by Lin and co-

workers (2023) [4] proposed the use of convolutional recurrent 

structure to achieve an accurate detection rate of FDI attacks 

in smart grids. Identically Alikhani, Harrou (2023) [2] Warm 

deployment of security in PV systems due to changing attack 

vectors that defeat traditional rule-based defenses. 

 

5.2. Interpretation of Model Performance 

The better performance of the CNN–RNN model is that it has 

a two-layer feature extraction structure. 

The first component (convolutional layer) learns spatial 

dependencies between SCADA \& network traffic features 

(contrastive patterns in packet sequences, voltage changes), 

while the second component (LSTM-based layer) captures 

the temporal dynamics of anomalies where CWAN-evolving 

oddities are modeled across time. 

This two-stage structure allows the model to catch rapid, 

high-volume attacks (e.g. DoS) and stealthy long-term 
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manipulations (e.g. FDI), which cannot be captured by 

single-layer classifiers. 

In line with Anwar et al. (2022), it appears that deep neural 

models are more robust to diverse operational data and 

versatile CP merged dynamics than conventional classifiers. 

In addition, the small gab between training and validation 

losses (Figure 2) verify that overfitting is successfully 

prevented, assuring the capability of the model in 

generalization towards unknown attack types. 

The confusion matrix (see Figure 3) further confirms the 

strength of this approach: balanced precision and recall (> 

95%) for all classes, demonstrating its robustness in learning 

to detect multi-vector threats. Balanced detection for various 

cyberattacks was also found by Yu et al. (2022) [8], where they 

have proved that CNN-LSTM hybrids remain robust to class 

imbalance and noise. 

 

5.3. Cyber-Resilience Implications 

Cyber resilience for smart solar energy systems refers to the 

capacity of such a system to: prepare and adapt before an 

adverse cyber event; withstand, respond, recover, and restore 

from a technology failure after an event (DoE/NREL 2019). 

Better Accuracy with Fast Response Times of Hybrid AI 

Model The high detection accuracy and rapid response in 

terms of time of the proposed hybrid AI approach means 

improved operating resilience for distributed PV 

infrastructure. 

It minimizes TTD and FAR hence, eliminates the risk of 

starting from scratch while also maintaining grid stability. 

These findings are consistent with the (NERC, 2022) [6] 

guidance that stresses inculcating automatic detection and 

auto-mitigation of DERs. Notably, a decrease in false alarms 

has been observed commensurate with this reduction in 

operational overpressure levels mitigating a noted 

operational challenge mentioned in [NREL’s Cybersecurity 

in Photovoltaic Plant Operations), once being the high rate of 

false positives having challenged adoption of automated 

response. 

Furthermore, the use of AI in edge analytics can help in self-

healing control (as proposed by Munir et al. (2023) [5]; such 

that real-time detection of abnormalities at the inverter and 

controller level may be made possible. This capability of 

executing distributed detection and response within the 

network edge can be helpful in order to lower latency, 

preventing information leak and reduce communication 

overhead which are characteristics for centralized monitoring 

networks architectures. 

 

5.4. Comparison with Prior Studies 

Existing studies have surveyed a selection of AI methods for 

grid cybersecurity, but not as specific to solar photovoltaics 

(PVs). 

For instance, Cooper et al., Hill and Bretas (2023) [1] are a 

review of AI techniques used for anomaly detection in power 

system state estimation but mostly dealing with transmission 

level systems. 

These ideas can be further generalized to PV-based 

microgrids and SCADA-driven plants with cyber–physical 

coupling, which make them susceptible to attack mechanisms 

other than traditional ones such as inverter attacks and cloud-

service compromise (Rahim et al., 2023). 

In contrast, Aoufi, Elbrahmi and Boulmalf (2020) deliberated  

on AI-based defences for FDI in common smart grids but 

their models were not endowed with temporal feature 

learning. 

The CNN–RNN hybrid model presented in this work 

overcomes this limitation as temporal inference is 

incorporated leading to much higher detection rates. 

Likewise, Yu et al. (2022) [8] that showed very deep neural 

architectures they designed to reach about 95% accuracy for 

grid IDS; the present work achieved 97.4% accuracy and 

AUC of 0.98 proving that architectural refinement and hybrid 

data-set is noticeable in such a complex scenario. 

Therefore, the research helps to bridge the gap between 

theoretical AI usage and practical cybersecure solar 

deployment, thereby goes on supporting building of domain-

specific AI models for renewable energy infrastructure. 

 

5.5. Policy Relevance and Practical Applications 

In that respect, the real-world implications of combining AI-

based cybersecurity systems with solar energy structure are 

significant. 

Hybrid models like CNN–RNN can be deployed by utilities 

and solar operators to: 

• Allow the intelligence-based incident detection in 

inverter and SCADA subsystems. 

• Minimize downtime with automated isolation and 

remediation. 

• Enable predictive maintenance by analyzing anomalous 

trends, improving overall system reliability. 

 

At the policy level, national energy agencies might integrate 

AI-based frameworks into cybersecurity standards for 

renewable energy systems, to existing protocols including 

IEC 62351 for secure power system automation 

communication and NISTIR 8259A related to IoT device 

cybersecurity. 

If these models incorporate AI analytics, energy management 

systems could have a shift from reactive detection of threats 

to proactive threat prevention. 

 

5.6. Limitations and Future Research Directions 

Although promising, there are a number of limitations to 

bring to attention. 

To begin, the work was partially based on public datasets 

(CIC-IDS2017, UNSW-NB15), and as comprehensive as 

they are, they cannot fully emulate the operational 

environment of solar PV networks. Future research should 

thus aim to gather domain-specific data on inverter telemetry, 

power-flow, and realistic attacks. 

Second, despite the superiority of CNN–RNN model 

performance, a large computation burden still exists for 

deployment on resource-limited edge devices. 

By compressing models with Edge AI algorithms 

(quantization, pruning, federated learning), it is possible to 

increase scalability and sustainability (Li et al., 2023). 

Lastly, there are ethical and explainability concerns. As 

Munir et al. (2023) [5] state, “Explanatory AI (XAI) 

frameworks are necessary to ensure operator confidence and 

accountability for unaided cyber defense solutions. 

Explainability models, reinforcement-learning-based 

adaptive control and blockchain-empowered data integrity 

mechanisms should be integrated into the future study to 

construct an all-round trustful solar cybersecurity ecosystem. 
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5.7. Summary 

In overall, it is empirically validated in this study that 

AIenabled cybersecurity solutions-particularly CNN–RNN 

hybrids-provide significant benefits for cyber threat 

detection, classification and mitigation of IoT solar and 

SCADA networks. 

Robustification, speeding up and increased accuracy 

introduced in these methods are important technological steps 

towards secure, sustainable and smart renewable energy 

systems. 

Deployment of these AI models on top of current grid 

security frameworks can transform the way solar energy 

infrastructures are protected from emerging cyber threats. 

 

6. Conclusion 

The increased penetration of intelligent and connected solar 

energy systems in national grids offers an once-in-a-lifetime 

opportunity for shifting to clean power generation, as well as 

new challenges by way of cybersecurity threats. As illustrated 

in this work, the arching of operational technology (OT) and 

information technology (IT) leveraging Internet of Things 

(IoT)-enabled sensors, smart devices and SCADA 

communication systems pervades into today’s photovoltaic 

(PV) plants forming intricate cyber–physical 

interconnections that demand for a smart, adaptive rather than 

brittle security solutions. 

This study designed and implemented a hybrid AI-based 

system that integrated Convolutional Neural Networks 

(CNN) and Recurrent Neural Networks (RNN/LSTM) for the 

purpose of cyber threat detection, classification, and response 

within solar energy networks. The proposed model achieved 

97.4% accuracy, outperforming SVM, Random Forest and 

MLP as traditional machine learning algorithms. The better 

results explain that hybrid deep learning is able to learn 

spatial and temporal characteristics in cyber intrusion 

datasets, leading to the identification of advanced attacks like 

FDI, DoD and insider manipulation (Lin et al., 2002; Harrou 

et al., 2023) [4, 2]. 

The performance metrics (precision, recall and ROC-AUC) 

of the model are also n/a 0.98which indicate its robustness 

sensitivity and generalizability, further supporting the 

findings of SOC prediction from AI-based smart grid studies 

in similar trend trough-a-like process (Yu et al., 2022; Cooper 

-a-center et al., 2023) [8, 1]. Further, the findings support the 

contention of Munir et al. (2023) [5] that AI-powered 

cybersecurity frameworks are able to move from "passive 

systems that monitor cyber threats toward proactive and 

autonomous self-healing protective capabilities," that better 

system uptime and resilience outcomes. The low false-alarm 

rate and prompt response time obtained in this work are 

consistent with the NERC (2022) [6] suggested real-time 

defense in DERs. 

On a policy and real-world basis this research recommends 

the inclusion of AI- driven analytics in national renewable 

energy cyber security frameworks. Standards such as NISTIR 

8259A (NIST, 2020) [7] and IEC 62351 should be extended to 

make AI-assisted intrusion detection and adaptive anomaly 

response mandatory operational layers for smart grids and 

solar systems. The deployment of AI on edge devices and in 

control centers can enable real-time resilience, reduce 

downtime, and prevent cascading blackouts. 

The research has limitations despite its success. The use of 

limited public network datasets (CIC-IDS2017, UNSW-

NB15) may not offset the contextual differences in actual 

solar communication networks. In this respect, future work 

should create domain-specific datasets for inverter-level 

telemetry, local communication protocols and coordinated 

multi-vector attacks. Moreover, the computational cost of 

CNN–RNN models is too high for deployment in low-power 

edgel devices, which would require lightweight or federated 

learning models (Li et al., 2023). Lastly, explainable AI 

(XAI) should be a major focus to increase operator trust in 

and transparency of automatic decision-making processes. 

We believe that this work provides a proven, data-driven 

framework for cybersecurity resilience enhancement in SUC 

system using AI. The hybrid model presented here, suggests 

that AI application can effectively play a role of game 

changer in order to discover, react and eliminate cyber-threat 

in large scale renewable energy infrastructure. Integrating 

advanced analytics into policy, design and implementation 

can enable stakeholders to develop secure resilient and 

future-ready solar power applications that are able to 

effectively mitigate the threat posed by the changing cyber 

risk landscape. 
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