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97.4% and AUC 0.98, which is higher than classical algorithms e.g., SVM and
Random Forest. The system was highly robust and carried out good generalization to
various types of attacks with low false-alarm rates and short detection delay,
suggesting the capability of our control node for real-time edge-level security
monitoring in distributed PV systems. These results indicate that applying deep
learning approached in the energy control center can effectively improve the resilience
of solar power systems against cyber-attacks. The paper concludes with a
recommendation that Al-based security be adopted as a strategic approach to
achieving sustainable, secure and autonomous renewable energy infrastructures.
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1. Introduction

1.1. Background and Context

The ongoing global shift towards renewable energy is making solar photovoltaic systems a cornerstone of sustainable
development. As reported by the International Energy Agency, the global installed capacity of solar PV reached 1 terawatt in
2023, accounting for almost a third of global annual electricity generation additions. Additionally, solar systems are increasingly
being integrated into smart grids, digitally interconnected infrastructures that use 10T devices, SCADA systems, and advanced
analytics to monitor in real time, manage demand and schedule maintenance. Although this digital transition improves
operational efficiency, it also expands the spectrum of cybersecurity risks faced by solar infrastructures. Today’s PV systems
are profoundly dependent on communication and automation technologies, allowing cyber adversaries to target control signals,
data accuracy, and grid connection. A compromised attacker can tamper with the inverter setpoints, insert false data, disrupt
energy dispatch, conduct Denial of Service attacks, or inject false data.
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Bomil and Naraharisetty argue that such incidents lead to
cascading failures in interconnected grids, disrupting services
or causing financial damage. Because the OT and IT layers
of grids that were once kept segmented have converged into
intricate  cyber-physical interdependencies, block-based
security controls are no longer capable of protecting PV
networks.

1.2. Limitations of Traditional Security Mechanisms
Existing cybersecurity solutions— which are mainly based
on signature-based Intrusion Detection Systems (IDS),
firewalls and rulebased filters — are no longer suitable for
sophisticated smart energy networks. These techniques rely
on predetermined attack signatures and are incapable of
detecting zero-day attacks, or even previously unseen
anomalies. Further, static thresholds employed in historical
anomaly detection would likely result in false positives and
added operational overhead (Cooper et al., 2023) 21,

The nonlinear nature of PV systems operational data is
introduced by the variable irradiance, temperature and load
demand. Static representations do not account for these
fluctuations so that when the system is at a natural ebb or flow
it is incorrectly classified as an attack. Anwar, Sokolov and
Sandberg (2022) ™M have observed that current energy
systems demand adaptive data-determined intrusion
detection by adapting to the learnt on-going patterns. This has
led researchers to computational methods based on artificial
intelligence (Al) and deep learning (DL) to develop
intelligent, self-learning cybersecurity systems that are able
to automatically recognize and address threats as they occur.

1.3. Pioneering of Deep Learning in Cyber Threat Detection
With the present increase in cyberattacks, Artificial
Intelligence (Al) has become an invaluable tool to defend
energy systems of a cyber—physical nature. Deep learning
architectures \textemdash including convolutional neural
networks (CNNs) and recurrent neural networks (RNNS),
which can automatically learn hierarchical features from
large datasets \textemdash are especially suited for the
complicated time series data prevalent in smart-grid scenarios
(Lin et al., 2023) B1,

CNNs are good at capturing spatial interrelations between
network features and RNNs, particularly LSTM can capture
temporal dependencies that describe the evolution of attacks
over time (Yu et al. 2022) %,

The hybrid CNN-RNN has been particularly successful in
learning the interdependency among multi-dimensional data.
For instance, Lin et al. (2023) B! also showed that the fusion
between CNN and RNN layers allows for a better detection
of multistep FDI attacks in power networks, yielding
improvement in precision and recall. 3.4 Based techniques:
Munir, Shetty, and Rawat (2023) (] also presented a reliable
Al model using deep reinforcement learning paradigm for
predictive defense and explainability as well. These results
indicate that deep learning is an efficient technique for
anomaly detection and can be used as a basis for autonomous
and self-healing cybersecurity architectures for the grid.

1.4. Research Gap and Motivation

Al-based security in smart grids has been widely studied but
only a handful of them have paid particular attention to the
solar energy infrastructures. The operation of PV networks
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has unique features, including a high degree of
decentralization, environmental randomness, and resource
limitation (Li et al., 2023) [, Contrasting to traditional grid
systems centred control, PV networks are generally deployed
with power-constrained embedded controllers which cannot
handle high computation efforts. Thus, lightweight and
efficient Al models need to be designed for edge-level
intrusion detection.

Furthermore, majority of previous works are done using
common datasets (e.g., CIC-IDS2017, UNSW-NB15) that
lack actual PV communication dynamics (Rahim et al., 2023)
Bl This discrepancy highlights the lack of domain specific
datasets and models that are awaregarding to the deployment
of solar energy systems.

The goal of this study is to construct a deep learning based
intrusion detection framework, which can learn sophisticated
attack signatures in the spatial dimension and temporal
dimension. We want to solve such challenges by exploring a
combination of CNNs and RNNs between which we will
explore paths simultaneously when forming indoor-outdoor
discrimination while ensuring both high detection accuracy
and low falsepositive rates, as well as making the model
scalable for distributed solar infrastructures.

1.5. Research Objectives and Contributions

The aims of this study are as follows:

To design a hybrid deep learning architecture (CNN—RNN)

suitable for detection of intrusions in solar energy networks.

To develop and test the model with benchmark, as well as

simulated PV-SCADA datasets.

To compare model (R-BIONIC)’s performance to the

traditional ML methods using accuracy, precision, recall and

AUC.

To evaluate whether the framework is applicable to real time

edge deployment and its value in improving cyber resilience.

This study provides several contributions in the literature and

practice:

e It offers an empirical testing of deep learning in the field
of solar dedicated cyber-security for a very unexplored
area.

e It suggests an Al framework that is scalable and able to
run effectively on edge devices, which corresponds with
the energy sector’s digital transformation objectives.

e It also sets forth evidenced-based guidelines for
incorporating Al-based IDS mechanisms into national
policies on renewable energy security (NIST, 2020;
NERC, 2022) & 71,

1.6. Paper Organization

The rest of the paper is organized as follows:

Section 2 presents a survey of the Al-enabled cybersecurity
in smart grids and PV systems.

In Section 3, we describe the methodology including dataset
construction, model architecture and evaluation measures.

In section 4, we show the experimental results together with
performance and visual interpretations.

The implications of our findings to the literature and cyber
resilience are discussed in section 5.

Lastly, Section 6 summarizes the paper and offers policy-type
suggestions on how to protect next-generation solar
infrastructures.
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2. Literature Review

2.1. The Development of Security Issues in Renewable
Energy Systems

The increasing deployment of renewable energy
technologies, and in particular solar photovoltaic (PV)
systems have created several advanced cybersecurity issues.
The move to intelligent and connected energy systems has
broadened the digital footprint of critical infrastructure,
rendering them vulnerable to potential cyber threats.
Worldwide PV installations increased by more than 25% in
2023, indicating a rise of digital association focused on real-
time monitoring, grid interconnection and predictive
maintenance (IEA, 2023). These developments, however,
have also increased the vulnerability space for attack in the
power grid (Harrou, 2023) B,

PV systems are also decentralized and anything connected to
0T, using communication protocols as Modbus, DNP3-IEC
60870, IEC 61850 that do not support strong encryption/
authentication (Aoufi et al., 2020). This weakness can be
exploited by attackers to upload fake information, manipulate
inverter setpoints or attack servers (DoS) leading to the
destabilization of the power grid and outages (Rahim et al.,
2023) ¥, According to Cooper, Hill, and Bretas (2023) 2,
while the digitization of energy systems has developed at a
speed considerably greater than the efforts desighed to
provide necessary cybersecurity protections against attack
vectors that are constantly evolving, PV networks are
especially vulnerable to such dynamic threat types.

2.2. Traditional Security Mechanisms and Their
Shortcomings

Traditional cybersecurity approaches, e.g., rule-based
Intrusion Detection Systems (IDS), firewalls and static access
controls, have been developed for traditional IT networks but
not intended to protect dynamic and heterogeneous
environments such as in energy systems.

Such systems use predefined signatures to identify attacks,
therefore are incapable of being zero-day attack resistant or
intricate modifications made in operational data (Cooper et
al., 2023) . In addition, the threshold-based AD methods
often suffer from high false positive rate and produce
abundant alarms that distract operators and dilute incident
response (NERC, 2022) "],

As Rahim et al. (2023) P! realized, such static models cannot
effectively  differentiate  between benign “normal”
fluctuations in the system behaviour (as a result of changes in
temperature/irradiance/load) and real cyber anomalies. These
are precisely the limitations which highlight the need for
adaptive, intelligent intrusion detection, i.e., detectors than
can learn from real-time data flows as well as begin to
identify and recognize complex, evolving patterns. So, in
return, a lot of research interest moved from standard security
policies towards Al based detection systems taking advantage
on deep learning’s ability to model non-linearity
relationships.

2.3. Emergence of Al in Smart-Grid Cybersecurity

With these developments, Al and ML have revolutionized
cybersecurity models in smart grids. Al-powered models
self-learn from network data and evolve with new activity
and threats. Anwar et al. (2022) ™M showed that supervised
learning, for example, Support Vector Machine (SVM), and
Random Forests provided better detection over classical IDS.
Nonetheless, these approaches still rely on hand-crafted
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features and may not fully represent the temporal dynamics
of a stream.

Deep learning (DL) techniques have come up for solving
these challenges. Deep network structures, such as CNNs and
RNNs, are capable of automatically capturing the spatial and
temporal features for identification of subtle multi-
operationor stagescape attack behaviors (Lin et al., 2023) [5],
CNNs are more proficient in capturing spatial correlations of
network packets, and RNNSs, especially Long-short-term
Memory, capture the time-sequence dependencies of time-
series data (such as power flow and command sequences) (Yu
et al., 2022) [0,

Contemporary developments unify these two paradigms
hybrid CNN-RNN models, which can model spatial and
temporal correlations jointly. Lin et al. (2023) I proved that
hybrid structures are more efficient in detecting FDI and
DDoS attacks to grid systems than single networks. Also,
Munir, Shetty and Rawat (2023) ®l suggested a trustable Al
framework using explainable Al (XAIl) and deep
reinforcement learning to enhance interpretability and
dependability of automated cyber defense.

2.4. Deep Learning for Solar Energy Cybersecurity
Applications

Although there exist a large number of studies on Al based
security in general smart grid environment, very few pay
attention to the solar energy infrastructure. PV networks are
characterized by distributed generation, varying output
dependent on environmental conditions, and often used
resource-limited 10T devices (Li et al., 2023) . Traditional
cybersecurity approaches are challenged by these
considerations.

Harrou (2023) B! identified the principal forms of attack on
solar systems, FDI, DoS and unauthorized reconfiguration of
inverters. Rahim et al. (2023) ! also noted that cyberattacks
in the hybrid PV—grid scenario may cause hazardous power
flows and damage to inverters. Nevertheless, there is still
limited research on these threats, particularly in relation to
data-based, adaptable defense strategies.

Recent efforts have considered deep learning applications in
the context of PV systems. Xiang et al. (2025) also explored
the possibilities of using CNN,AiRNN models for cyber
anomaly detection in energy systems and obtained an
accuracy above 96%. But they heavily used synthetic data
instead of real PV-SCADA datasets. Cooper et al. (2023) 4
also pointed out the lack of domain-specific datasets, which
constrains validation and generalization of Al-enabled
cybersecurity architectures.

Therefore, even with extensive advancements, there is still a
lack of domain-specific Al models and data sets specifically
designed for solar energy systems. This gap is addressed in
this study by establishing a hybrid deep-learning model-
based intrusion detection mechanism and further cross-
validated it with the benchmark and simulated PV
communication data.

2.5. Edge Al and Real-Time Cyber Defense

Edge Al transformation the next phase of Edge Al is a game
changer for how intelligent cybersecurity solutions are
implemented. Rather than using centralized data centers only,
edge computing can move the analytics closer to source of
the data (e.g., inverter and microgrid controller), which
decreases latency and response time in real-time (Li et al.,
2023) 4,
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This drives resilience through decentralization, if central
systems are knocked offline, local devices can continue to
operate independently. Li et al. (2023) I also demonstrated
that model compression and quantization strategies make it
feasible for deep-learning models to work efficiently on low-
power devices with negligible drop in the performance.

Simultaneously, Federated Learning (FL) has been
recognised to be a promising privacy preserving technique
for the collaborative model training across decentralized
devices. Zhang, Lin and Yang (2023) ' showed that FL
offers collective intelligence without revealing raw data,
mitigating privacy issues in energy networks. The integration
of Edge Al and FL thus provides a scalable approach towards
distributed secure collaborative solar network defense.

2.6. Key Research Gaps ldentified
An integration of extant literature identifies a number of quite
consistent gaps:

PV-Specific Datasets: The majority of the intrusion
detection researches are conducted based on general network
datasets (CIC-1DS2017, UNSW-NB15), which do not have
solar operational characteristics like variations in irradiance,
voltage and so forth.

Explainability and Trust: Deep models are often “black-
box” like which may restrict their interpretability, hence
making them difficult to utilize in operational control systems
(Munir et al., 2023) [¢],

Scalability and Edge Deployment: The size of many
models are too heavy for embedded solar controllers, which
is why they need to be optimized further for running in real
time (Li et al., 2023) I,

Holistic Cyber-Physical Validation: Few works in
industrial Al-based IDS have been validated in large scale PV
— SCADA implementation.

Regulatory convergence: The existing cybersecurity
standards (NIST, 2020; NERC, 2022) [& 71 do not explicitly
include Al driven resilience metrics or learning based
adaptation guidelines.

These shortcomings need to be addressed in an
interdisciplinary fashion among energy engineers, Al experts
and policy makers to develop lightweight, interpretable and
standardized Al cybersecurity schemes for solar energy
systems.

2.7. Summary of Literature Insights

In general, the reported work in literature highlights a
revolutionary role that deep learning can play to protect
renewable energy systems. The employment of hybrid CNN—
RNN models is a major step in the identification and
prevention of complex cyber threats on solar photographic
satellite networks. However, these methods rely on domain
adaption, dataset diversity and computation efficiency to
achieve effectiveness.

Based on these observations, the paper devises a deep
learning-based intrusion detection system customized for PV
systems. The paper makes a step toward filling the gap
between theoretical Al and practical solar cybersecurity using
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spatial-temporal analytics with edge-level deployment
feasibility.

3. Methodology

3.1. Research Design

This paper introduces an experimental and data-driven
experiment design for building and verifying a deep
learning—based intrusion detection system (IDS) specific to
solar photovoltaic (PV plants. The first problem is to identify
and classify several types of cyber-attacks-- False Data
Injection (FDI), Denial-of-Service (DoS), insider attacks et
cetera -- by means of a hybrid deep learning framework that
leverages Convolutional Neural Network (CNN) and Long
Short-Term Memory Network (LSTM).

We use both well-known network traffic benchmarks as well
as synthesized PV-SCADA data to model real-world cyber-
physical system (CPS) dynamics, consistent with the
protocols described by Lin et al. (2023) B! and Harrou (2023)
Bl The entire process consisted of the following five key
steps: data preprocessing, model calibration, evaluation and
verification of training, validation and resilience.

3.2. Data Sources

3.2.1. Benchmark Datasets

Two well-known public data sets were used to simulate the

real-world attack traffic and normal traffic:

o CIC-IDS2017 Dataset: This 2017 dataset of the
Canadian Institute for Cybersecurity (University New
Brunswick) provides a collection of traffic categories
such as DoS, Web Attacks, Brute Force and Infiltration
featuring about eighty statistical attributes.

e UNSW-NB15 Dataset: Published by the University of
New South Wales Canberra (2015), it contains nine
categories of contemporary cyber-attacks including
Worms, Shellcode and Fuzzers on packet and flow
levels.

These datasets have been widely applied to train intrusion
detection models in critical infrastructure domains (Yu,
Zhang, & Zhou, 2022; Cooper et al., 2023) [10.2],

3.2.2. Simulated PV-SCADA Data

For domain relevance the simulated PV communication data
were created using MATLAB/Simulink with OPAL-RT real
time simulation. The virtual PV system consisted of a grid
connected inverter, sensors and communication modules that
sent voltage, current and radiation data through Modbus/TCP
protocol.

The cyberattacks were provided based on threat models
proposed by Rahim et al. (2023) ¥, that account for FDI, DoS
and unauthorized command attacks. This hybrid dataset (real
+simulated) guaranteed an inbalanced distribution of benign
and malicious scenarios.

3.3. Data Preprocessing

The raw datasets were processed using a multi-stage pre-
processing pipeline to enhance both the accuracy of the
model and its computational efficiency:

Data Preprocessing: Cleaned out missing values, duplicated
observations and partly filled vessels.

Feature Encoding Categorical characterizing variables were
translated into numerical values with one hot encoding.
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Normalization:  For  continuous features, z-score
normalization was applied in order to have a same scale
distribution. (Anwar, Sokolov, & Sandberg, 2022) 11,

Feature selection: principal component analysis (PCA),
preserving 95% variance and reducing feature dimensionality
from 80 to 45.

Data Split: The data is divided into 70% training, 15%
validation and 15% testing by stratified to keep the class
balance.

3.4. Deep Learning Model Architecture

The CNN-RNN hybrid model was chosen to benefit from the

richness of both architectures.

e CNN for Feature Extraction: Generates the spatial
dependencies in multi-featured network packets. Two
1D convolutional layers (filter size = 3, stride = 1) were
applied and followed by batch normalization and max
pooling.

e RNN (Recurrent Layer): To model temporal
dependencies in network sequences. Two Long Short-
Term Memory (LSTM) layers with 64 hidden units each
captured sequential time data.

e Fully Connected Layer: Concatenates spatial-temporal
embeddings with a dense layer with softmax activation
for multi-class classification.

e Optimizer and Loss Function: The model was trained
with Adam optimizer (learning rate: 0.001) together with
the categorical cross-entropy loss, according to the
suggestions made by Lin et al. (2023) B,

e Regularization: Dropout layers with rate=0.3 were
included to avoid overfitting.

We implemented this architecture using TensorFlow 2.10 as
it has been demonstrated to be effective in learning universal
hierarchical and sequential dependencies from cyber-
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physical data (Yu et al., 2022; Munir, Shetty, & Rawat, 2023)
[10,6]

3.5. Model Training and Evaluation

The model was implemented on a workstation with GPU

(NVIDIA RTX 3060, 12 GB RAM), trained with batch size

of 64 and for up to 50 epochs. Early stopping was used by

monitoring loss in each 5 epochs.

We compared our system performance on various evaluation

metrics:

e Accuracy (ACC): Correct predictions under the total
samples.

o Recall (R): True positives divided by total real positives.

o Remember (R): True positives divided by sum of true
positives and false negatives.

e 3.8 F1-Score Harmonic mean of precision and recall.

Area Under the Curve (AUC): It determines how well the
model is capable of differentiating between classes.

These measures are compatible with assessment criteria used
in the prior smart-grid IDS literature (Cooper et al., 2023; Yu
et al.,, 2022) [ 2, To add some statistical stability, we
performed a 10-fold cross-validation.

4. Results

Experimental results show that the deep learning model
significantly  increases the accuracy in detecting
cybersecurity threats against solar energy infrastructures.
Compared to classical machine learning methods, the hybrid
CNN-RNN model performs significantly well in precision,
recall and overall detection efficiency.

This section reports in-depth quantitative results, table
performance metrics, and intelligent visualizations with
perspective drawings which clearly demonstrate the
superiority property of the model as well as its robustness
under various cyberattack cases.

97.5F

95.0f

92.5¢}

90.0
88.4%
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87.51

85.01

82.51

80.0 SVM

Random Forest MLP
Models

97.4%

CNN-RNN

Fig 1: Comparison of model accuracy

The four-class accuracies of Support Vector Machine (SVM),
Random Forest (RF), Multilayer Perceptron (MLP) and the
proposed fusion model CNN-RNN over all classes are shown
in this bar chart.

e  Accuracy was 88.4% for SVM, 91.5% and 93.1% for RF
and MLP respectively.

e The proposed CNN-RNN model yielded the highest
accuracy among all baselines, with 97.4%, showing its
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capability to better extract both spatial (via CNN) and
temporal (via RNN) features.
e This confirms that hybrid deep-learning strategies are
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better tailored to detecting complex attack patterns in
solar PV communication data when comparing with
traditional machine learning models (Yu et al., 2022; Lin
& Popescu, 2023) [10.5],

Training Loss
Validation Loss
0.6}
0.5}
0.4}
@
3
0.3}
0.2
0.1}
0.0k L L ; i
2 4 6 8 10
Epochs
Fig 2: Training vs Validation Loss Curve
This is a line plot of the model’s training loss and validation e The two curves are close to each other, suggesting that

loss over ten epochs.

e They are both steadily declining, which means good
convergence not overfitting.

e The last training loss stayed at 0.05 and the validation )
loss also almost remained same (ca, 0.07) indicating that
it generalized well to unseen data.

the model has enough learning stability and limited
overfitting, which is essential in the real-world solar-grid
intrusion detection (Anwar et al., 2022) 14,

This observation validates that the CNN-RNN model is
fine-tuned and it can provide trustworthy predictions for
diverse operation scenarios.

Actual Class
FDI Normal

DoS

Insider

Normal FDI

14

DoS
Predicted Class

400

300

- 200

- 100

Insider

Fig 3: Confusion Matrix of CNN-RNN Model
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The confusion matrix summarizes the performance of CNN—
RNN model in terms of classifying Normal, FDI (False Data
Injection), DoS (Denial-of-Service) and Insider Attack.

o Diagonal elements larger than a threshold value (> 470)
suggest high classification effectiveness over the whole
set of attack types.

e A small portion of misclassifications are FDI vs. DoS
between due to their overlapped temporal pattern in PV-
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SCADA data.

e The overall precision and recall was greater than 94%
showing balanced capabilities of the model in effectively
detecting multiple attack types.

e This performance is superior to that of conventional
systems, demonstrating the multi-class detection
capability and operability reliability of the model in
complicated energy networks (Cooper et al., 2023) 4,

1.0 CNN-RNN (AUC=0.98)
Random Forest (AUC=0.92)
— SVM (AUC=0.88)
0.8}
[0)
©
x 0.6
[0)
=
=
g
0 04¢1
3
=
0.2
0.0
0.0 0.2 0.4

False Positive Rate

0.6 0.8 1.0

Fig 4: Comparison of ROC Curve

The Receiver Operating Characteristic (ROC) plots are

plotted to compare for SVM, RF and CNN-RNN models

which plots the True Positive Rate (TPR) against the False

Positive Rate (FPR).

e  Our CNN-RNN curve is close to the top left corner with
an AUC (Area Under Curve) of 0.98, which is better than
Random Forest (0.92) and a SVM (0.88).

e Alarger AUC score implies better to classify normal and
anomaly behavior.

e This indicates that deep hybrid networks are able to
process nonlinear multivariate cyberattack patterns
effectively, to improve the resilience of system and
reduce the latency in detection.

e The outcomes encourage the utilization of Al-based
adaptable security structuring for immediate observation
in distributed PV frameworks (Li et al., 2023; Munir et
al., 2023) [+ 6],

5. Discussion

5.1. Overview of Findings

In this paper, we show that the introduction of deep learning
(DL) in cybersecurity framework can enhance security level
(resilience) of solar photovoltaic (PV) infrastructures towards
cyber-attacks.

The hybrid CNN-RNN model showed better detection
performance toward ECGI, achieving an overall accuracy of
97.4% with AUC score of 0.98 as compared to those using
other traditional machine-learning algorithms including
SVM, RF and MLP B,

Our findings are consistent with two recent studies from Lin
et al. (2023) B and Yu et al. (2022) !9, who had approved
that the hybrid deep models have a better detection accuracy
in nonlinear and complex environments for instance smart
grids.

The ability of the model to learn both spatial and temporal
correlations in network data allowed it to distinguish multi-
stage attacks such as FDI and DoS with high accuracy, as
demonstrated by the confusion matrix (Figure 3).

5.2. Interpretation of Model Performance

The accuracy comparison (Figure 1) emphasizes the superior
robustness of DL techniques when dealing with complex/
heterogeneous data as in PV networks.

Conventional ML models use handcrafted feature extraction
and model training, but are not effective for learning dynamic
attack behavior.

On the contrary, our CNN-RNN model autonomously
captured hierarchical representations for robust detection
across multiple threats.

The training and validation loss curves (Figure 2) showed that
the models converged consistently with little over fitting,
suggesting a good generalization performance and
optimization ability.

This finding is consistent with Anwar, Sokolov and Sandberg
(2022) M, who stressed the importance of adaptive
regularization to mitigate overfitting in the context of critical
infrastructure security models.
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In addition, the confusion matrix (figure 3) showed a high
accuracy of classification across all attack classes with slight
overlap between FDI and DoS attacks due to their close
temporal and volumetric signatures (Harrou, 2023) B1,

The model's balanced recall and precision rates (>94%)
indicate that it is robust in reducing both false positives and
false negatives, which is of great importance for real-time
decision making in PV control centers.

These characteristics were corroborated by ROC curve
analysis (Figure 4), which demonstrated that the CNN-RNN
combination yielded a far superior rate of true positive
detections along with fewer false alarms in comparison to
baseline techniques, enhancing both threat detection speed
and reliability (Cooper et al., 2023) 21,

5.3. Contribution to Cyber Resilience

The concept of cyber resilience for energy systems relates to
the capacity to anticipate, absorb, recover and adapt to cyber
threats (NIST 2011) (81,

Developed model enhances this robustness in three main
aspects:

Early Threat Detection: By having the model set at high
accuracy and being out of false alarm, it saves both incident
response time and potential operational downtime.

Adaptive learning: It has capability to keep re training itself
for continuous feature extraction from traffic for new attack
vectors (Munir, Shetty & Rawat 2023) [61,

Distributed defense: When combined with Edge Al
deployment, support local detection and self-healing of
inverter-level nodes according to CNN-RNN (Li et al., 2023)
4]

These results are consistent with NERC (2022) [ suggestions
on how to harden distributed energy resources (DERs) - the
value of real-time, data-driven monitoring type systems.
Accordingly, this study advances the existing cybersecurity
paradigms away from guarding and defending against attacks
to utilizing Al-based models to implement resilience in a
distributed solar energy system architecture.

5.4. Comparison with Prior Work

Related work in this area has been on general security
research for smart-grid but not so much for solar-related case.
For example, Aoufi, EIbrahmi and Boulmalf (2020) offered a
general review of FDI countermeasure approaches without
discussing deep learning integration.

The novelty of this study is that it models the time—space
dependency and nonlinearity within PV data using a
customized hybrid DL architecture.

Similarly, Lin et al. (2023) P utilized deep reinforcement
learning for identification of FDI in power system while not
dealing with loT-based PV settings.

Through integrating CNNs for spatial pattern extraction and
RNNs for temporal learning, this work provides an essential
methodological bridge and customises deep learning methods
to renewable-related cyber-physical systems.

Harrou (2023) B and Rahim et al., (2023) I also addressed
the growing cyber threats in PV systems, e.g., inverter
tampering and ill-intentioned configuration.

The results of our study support these concerns and propose
an empirical defense strategy based on the validation under
hybrid datasets.

Particularly, the detection performance of our proposed
model exceeds 95% as reported in Yu et al. (2022) 1, which
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further proves the importance of combining real PV-SCADA
data with benchmark dataset for better generalization.

5.5. Practical and Operational Implications

The operation advantages of Al-based intrusion detection in

solar power conversion systems are as follows:

e  Self-Sufficient: The CNN-RNN monitoring model is a
self-sustained model which, once trained, needs no
human involvement to monitor the inverter and
communication system data.

e Predictive Maintenance: Anomalies could indicate
hardware or driver errors, thus enabling preventive
maintenance.

e Minimized Downtime: Early identification limits the
time it takes to bring the system back up after a cyber
event.

e Scalable: By employing Edge Al (i.e., edge-side
intelligence) and federated learning, these models can be
taken to various geographically-distributed PV units
without exchanging data (Zhang et al., 2023) [4],

Such findings highlight the operational feasibility of low-
latency, secure, environmentally friendly solar grid
operations using deep learning.

5.6. Limitations and Future Research

Although these results are encouraging, we should
acknowledge some limitations.

First, the hybrid model was partially based on widely
accepted network intrusion datasets which may not reflect all
operational features of solar SCADA traffic. In the future,
solar-specific cybersecurity datasets should be developed
with inverter telemetry data, weather fluctuations and power
variations (Rahim et al., 2023) ],

Second, although the model should scale well, computation
complexity may be a concern for low-rate controllers. In the
future, lightweight architectures like mobileNet or attention
models based on transformer optimized for embedded PV
devices should be investigated (Li et al., 2023) 1.

Finally, deep learning models perform as “black boxes,”
which reduces interpretability. The utilization of Explainable
Al (XAI) methods will contribute towards the transparency
in operator confidence (Munir et al., 2023) [,

Last but not least, the combination of Al systems with policy
frameworks and grid codes (e.g., NISTIR 8259A, IEC 62351)
is a future direction to facilitate regulatory compliance and
holistic cyber governance.

5.7. Summary of Discussion

In particular, results solidify our claim that Al-enabled deep
learning models (specifically so the CNN-RNN hybrid
architecture) represent a game-changing solution for
preserving solar infrastructures.

In this way, with the ability to effectively identify multi-class
of attacks and stronger generalization power, the proposed
model promotes both theoretical support ofbthe current
cybersecurity in renewable energy system and its practical
applications.

By fusing Al, edge computing and energy resilience
concepts, we have an opportunity to carve out a vision for a
new breed of self-defending adaptive solar grids that can
deliver consistent secure and sustainable energy supply in the
face of changing cyber security threats.
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6. Conclusion

The combination of artificial intelligence (Al) and renewable
energy systems is a momentous development in the study of
safe, reliable, sustainable, and economically sound power
generation. In this work, we proposed a deep learning—based
intrusion detection framework for solar photovoltaic (PV)
systems to mitigate the emerging cyber-physical security
threats against smart-grid infrastructures. The hybrid CNN-
RNN model obtained an accuracy of detection at an
impressive 97.4% and AUC = 0.98, surpassing classical
algorithms (SVM, RF, Multilayer perception). These results
confirm the superior effectiveness of deep-learning models
for detecting complex and evolving attack profiles on highly
dynamics solar energy networks (Lin et al., 2023; Yu et al.,
2022) [5. 101,

Three main contributions are delivered by the study to both
academic and practical fields. First, the paper develops a
domain-adapted hybrid DL model that can capture spatial and
temporal dependencies in PV-SCADA data. This twint
learning method allows the detection of cyber-attacks such as
FDI, DoS and insider attack that most existing Security
Systems are unable to detect (Harrou, 2023) Bl. Secondly, it
is an evidence for the possibility of optimizing Al-based
cybersecurity mechanisms to perform at edge space, leading
to a real-time resiliency enhancement at inverter and
microgrid levels (Li et al., 2023) ™I, Third, it fills an important
gap in research validating deep learning models with the aid
of a heterogeneous dataset which combines benchmark
intrusion datasets (CIC-IDS2017, UNSW-NB15) and
simulated PVSCADA communication flows, thus increasing
the representativeness and reliability (Rahim et al., 2023) [,
On a pragmatic level, these results indicate the revolutionary
implementation of Al-based resilience frameworks for
distributed renewable-energy networks. Deep learning
architectures are capable of early threat detection and
adaptive learning that can aid in utilities and operators
preventing downtimes, increasing fault tolerance, and
securing grid synchronization even during cyber events. They
are also consistent with the advice provided by NERC (2022)
[l and NIST (2020) B of adopting proactive data driven
cybersecurity strategies implemented in DERs. CNN-RNN
framework, under consideration in this text, presents such a
scalable approach which can seamlessly interface l0TAIls
with the world of standards like IEC 62351 and NISTIR
8259A consolidating into standard-based and Al-driven grid
security governance.

However, the work also points out important directions for
future improvement. However, the model is partially built on
generic network datasets, and has limited domain specificity.
Construction of PV-oriented intrusion datasets with physical
inverter telemetry and environmental data can notably
enhance target detection precision and context confidence.
Furthermore, lightweight Al architectures (e.g., MobileNet
(81 or Transformerbased attention models) for real-time
utilization on resource-constraint edge devices must be
investigated in the future work. Note Added in Proof: It is
also important to incorporate Explainable Al (XAl)
techniques to improve transparency and trust from the
operator, individuals making decisions should be able to
understand and corroborate alerts generated by an Al system
Munir, Shetty, & Rawat (2023) (61,

In summary, the work presented here supports deep learning
as a viable and necessary route to securing future solar
infrastructures. The combination method of CNN-RNN
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doesn't only improve diagnosis efficiency, it offers the key to
build a self-repair, adaptive and intelligent electrical power
system. With the transition of evolving global energy
environments, embedding Al-based cybersecurity algorithms
into renewable systems is essential to meet both technology
innovation and sustainable energy security targets. The study
thus paves the way for future multidisciplinary interplay
among energy engineers, data scientists and policymakers
towards developing resilient, intelligent and secure solar
ecosystems.
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