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Abstract 

The growing dependence of solar energy infrastructure on digital systems has created 

new cybersecurity concerns in renewable derivatives and challenging the reliability 

and stability of these power generation units. When smart photovoltaic (PV) networks 

are connected to IoT devices, cloud-based monitoring and SCADA platforms, 

challenges like false data injection (FDI), DoS and malicious control tampering pose 

as potential cyber threats. This paper introduces a deep learning–based intrusion 

detection system for protecting solar energy infrastructures in the face of emerging 

cyber threats. The hybrid model is developed to integrate Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN), so that both spatial 

dependencies of communication traffic and temporal dynamics of system behavior can 

be learned. The benchmark data sets CIC-IDS2017 and UNSW-NB15 were 

complemented with simulated PV-SCADA data to increase domain relevance. 

Experimental results demonstrate that the CNN–RNN model achieves accuracy rate 

97.4% and AUC 0.98, which is higher than classical algorithms e.g., SVM and 

Random Forest. The system was highly robust and carried out good generalization to 

various types of attacks with low false-alarm rates and short detection delay, 

suggesting the capability of our control node for real-time edge-level security 

monitoring in distributed PV systems. These results indicate that applying deep 

learning approached in the energy control center can effectively improve the resilience 

of solar power systems against cyber-attacks. The paper concludes with a 

recommendation that AI-based security be adopted as a strategic approach to 

achieving sustainable, secure and autonomous renewable energy infrastructures. 
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1. Introduction 

1.1. Background and Context 

The ongoing global shift towards renewable energy is making solar photovoltaic systems a cornerstone of sustainable 

development. As reported by the International Energy Agency, the global installed capacity of solar PV reached 1 terawatt in 

2023, accounting for almost a third of global annual electricity generation additions. Additionally, solar systems are increasingly 

being integrated into smart grids, digitally interconnected infrastructures that use IoT devices, SCADA systems, and advanced 

analytics to monitor in real time, manage demand and schedule maintenance. Although this digital transition improves 

operational efficiency, it also expands the spectrum of cybersecurity risks faced by solar infrastructures. Today’s PV systems 

are profoundly dependent on communication and automation technologies, allowing cyber adversaries to target control signals, 

data accuracy, and grid connection. A compromised attacker can tamper with the inverter setpoints, insert false data, disrupt 

energy dispatch, conduct Denial of Service attacks, or inject false data.

https://doi.org/10.54660/.IJMRGE.2023.4.6.1249-1259
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Bomil and Naraharisetty argue that such incidents lead to 

cascading failures in interconnected grids, disrupting services 

or causing financial damage. Because the OT and IT layers 

of grids that were once kept segmented have converged into 

intricate cyber-physical interdependencies, block-based 

security controls are no longer capable of protecting PV 

networks. 

 

1.2. Limitations of Traditional Security Mechanisms 

Existing cybersecurity solutions–– which are mainly based 

on signature-based Intrusion Detection Systems (IDS), 

firewalls and rulebased filters –– are no longer suitable for 

sophisticated smart energy networks. These techniques rely 

on predetermined attack signatures and are incapable of 

detecting zero-day attacks, or even previously unseen 

anomalies. Further, static thresholds employed in historical 

anomaly detection would likely result in false positives and 

added operational overhead (Cooper et al., 2023) [2]. 

The nonlinear nature of PV systems operational data is 

introduced by the variable irradiance, temperature and load 

demand. Static representations do not account for these 

fluctuations so that when the system is at a natural ebb or flow 

it is incorrectly classified as an attack. Anwar, Sokolov and 

Sandberg (2022) [1] have observed that current energy 

systems demand adaptive data-determined intrusion 

detection by adapting to the learnt on-going patterns. This has 

led researchers to computational methods based on artificial 

intelligence (AI) and deep learning (DL) to develop 

intelligent, self-learning cybersecurity systems that are able 

to automatically recognize and address threats as they occur. 

 
1.3. Pioneering of Deep Learning in Cyber Threat Detection 

With the present increase in cyberattacks, Artificial 

Intelligence (AI) has become an invaluable tool to defend 

energy systems of a cyber–physical nature. Deep learning 

architectures \textemdash including convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs), 

which can automatically learn hierarchical features from 

large datasets \textemdash are especially suited for the 

complicated time series data prevalent in smart-grid scenarios 

(Lin et al., 2023) [5]. 

CNNs are good at capturing spatial interrelations between 

network features and RNNs, particularly LSTM can capture 

temporal dependencies that describe the evolution of attacks 

over time (Yu et al. 2022) [10]. 

The hybrid CNN–RNN has been particularly successful in 

learning the interdependency among multi-dimensional data. 

For instance, Lin et al. (2023) [5] also showed that the fusion 

between CNN and RNN layers allows for a better detection 

of multistep FDI attacks in power networks, yielding 

improvement in precision and recall. 3.4 Based techniques: 

Munir, Shetty, and Rawat (2023) [6] also presented a reliable 

AI model using deep reinforcement learning paradigm for 

predictive defense and explainability as well. These results 

indicate that deep learning is an efficient technique for 

anomaly detection and can be used as a basis for autonomous 

and self-healing cybersecurity architectures for the grid. 

 

1.4. Research Gap and Motivation 

AI-based security in smart grids has been widely studied but 

only a handful of them have paid particular attention to the 

solar energy infrastructures. The operation of PV networks  

has unique features, including a high degree of 

decentralization, environmental randomness, and resource 

limitation (Li et al., 2023) [4]. Contrasting to traditional grid 

systems centred control, PV networks are generally deployed 

with power-constrained embedded controllers which cannot 

handle high computation efforts. Thus, lightweight and 

efficient AI models need to be designed for edge-level 

intrusion detection. 

Furthermore, majority of previous works are done using 

common datasets (e.g., CIC-IDS2017, UNSW-NB15) that 

lack actual PV communication dynamics (Rahim et al., 2023) 

[9]. This discrepancy highlights the lack of domain specific 

datasets and models that are awaregarding to the deployment 

of solar energy systems. 

The goal of this study is to construct a deep learning based 

intrusion detection framework, which can learn sophisticated 

attack signatures in the spatial dimension and temporal 

dimension. We want to solve such challenges by exploring a 

combination of CNNs and RNNs between which we will 

explore paths simultaneously when forming indoor-outdoor 

discrimination while ensuring both high detection accuracy 

and low falsepositive rates, as well as making the model 

scalable for distributed solar infrastructures. 

 

1.5. Research Objectives and Contributions 

The aims of this study are as follows: 

To design a hybrid deep learning architecture (CNN—RNN) 

suitable for detection of intrusions in solar energy networks. 

To develop and test the model with benchmark, as well as 

simulated PV-SCADA datasets. 

To compare model (R-BIONIC)’s performance to the 

traditional ML methods using accuracy, precision, recall and 

AUC. 

To evaluate whether the framework is applicable to real time 

edge deployment and its value in improving cyber resilience. 

This study provides several contributions in the literature and 

practice: 

• It offers an empirical testing of deep learning in the field 

of solar dedicated cyber-security for a very unexplored 

area. 

• It suggests an AI framework that is scalable and able to 

run effectively on edge devices, which corresponds with 

the energy sector’s digital transformation objectives. 

• It also sets forth evidenced-based guidelines for 

incorporating AI-based IDS mechanisms into national 

policies on renewable energy security (NIST, 2020; 

NERC, 2022) [8, 7]. 

 

1.6. Paper Organization 

The rest of the paper is organized as follows: 

Section 2 presents a survey of the AI-enabled cybersecurity 

in smart grids and PV systems. 

In Section 3, we describe the methodology including dataset 

construction, model architecture and evaluation measures. 

In section 4, we show the experimental results together with 

performance and visual interpretations. 

The implications of our findings to the literature and cyber 

resilience are discussed in section 5. 

Lastly, Section 6 summarizes the paper and offers policy-type 

suggestions on how to protect next-generation solar 

infrastructures. 
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2. Literature Review 

2.1. The Development of Security Issues in Renewable 

Energy Systems 

The increasing deployment of renewable energy 

technologies, and in particular solar photovoltaic (PV) 

systems have created several advanced cybersecurity issues. 

The move to intelligent and connected energy systems has 

broadened the digital footprint of critical infrastructure, 

rendering them vulnerable to potential cyber threats. 

Worldwide PV installations increased by more than 25% in 

2023, indicating a rise of digital association focused on real-

time monitoring, grid interconnection and predictive 

maintenance (IEA, 2023). These developments, however, 

have also increased the vulnerability space for attack in the 

power grid (Harrou, 2023) [3]. 

PV systems are also decentralized and anything connected to 

IoT, using communication protocols as Modbus, DNP3-IEC 

60870, IEC 61850 that do not support strong encryption/ 

authentication (Aoufi et al., 2020). This weakness can be 

exploited by attackers to upload fake information, manipulate 

inverter setpoints or attack servers (DoS) leading to the 

destabilization of the power grid and outages (Rahim et al., 

2023) [9]. According to Cooper, Hill, and Bretas (2023) [2], 

while the digitization of energy systems has developed at a 

speed considerably greater than the efforts designed to 

provide necessary cybersecurity protections against attack 

vectors that are constantly evolving, PV networks are 

especially vulnerable to such dynamic threat types. 

 

2.2. Traditional Security Mechanisms and Their 

Shortcomings 

Traditional cybersecurity approaches, e.g., rule-based 

Intrusion Detection Systems (IDS), firewalls and static access 

controls, have been developed for traditional IT networks but 

not intended to protect dynamic and heterogeneous 

environments such as in energy systems. 

Such systems use predefined signatures to identify attacks, 

therefore are incapable of being zero-day attack resistant or 

intricate modifications made in operational data (Cooper et 

al., 2023) [2]. In addition, the threshold-based AD methods 

often suffer from high false positive rate and produce 

abundant alarms that distract operators and dilute incident 

response (NERC, 2022) [7]. 

As Rahim et al. (2023) [9] realized, such static models cannot 

effectively differentiate between benign “normal” 

fluctuations in the system behaviour (as a result of changes in 

temperature/irradiance/load) and real cyber anomalies. These 

are precisely the limitations which highlight the need for 

adaptive, intelligent intrusion detection, i.e., detectors than 

can learn from real-time data flows as well as begin to 

identify and recognize complex, evolving patterns. So, in 

return, a lot of research interest moved from standard security 

policies towards AI based detection systems taking advantage 

on deep learning’s ability to model non-linearity 

relationships. 

 

2.3. Emergence of AI in Smart-Grid Cybersecurity 

With these developments, AI and ML have revolutionized 

cybersecurity models in smart grids. AI-powered models 

self-learn from network data and evolve with new activity 

and threats. Anwar et al. (2022) [1] showed that supervised 

learning, for example, Support Vector Machine (SVM), and 

Random Forests provided better detection over classical IDS. 

Nonetheless, these approaches still rely on hand-crafted 

features and may not fully represent the temporal dynamics 

of a stream. 

Deep learning (DL) techniques have come up for solving 

these challenges. Deep network structures, such as CNNs and 

RNNs, are capable of automatically capturing the spatial and 

temporal features for identification of subtle multi-

operationor stagescape attack behaviors (Lin et al., 2023) [5]. 

CNNs are more proficient in capturing spatial correlations of 

network packets, and RNNs, especially Long-short-term 

Memory, capture the time-sequence dependencies of time-

series data (such as power flow and command sequences) (Yu 

et al., 2022) [10]. 

Contemporary developments unify these two paradigms 

hybrid CNN-RNN models, which can model spatial and 

temporal correlations jointly. Lin et al. (2023) [5] proved that 

hybrid structures are more efficient in detecting FDI and 

DDoS attacks to grid systems than single networks. Also, 

Munir, Shetty and Rawat (2023) [6] suggested a trustable AI 

framework using explainable AI (XAI) and deep 

reinforcement learning to enhance interpretability and 

dependability of automated cyber defense. 

 

2.4. Deep Learning for Solar Energy Cybersecurity 

Applications 

Although there exist a large number of studies on AI based 

security in general smart grid environment, very few pay 

attention to the solar energy infrastructure. PV networks are 

characterized by distributed generation, varying output 

dependent on environmental conditions, and often used 

resource-limited IoT devices (Li et al., 2023) [4]. Traditional 

cybersecurity approaches are challenged by these 

considerations. 

Harrou (2023) [3] identified the principal forms of attack on 

solar systems, FDI, DoS and unauthorized reconfiguration of 

inverters. Rahim et al. (2023) [9] also noted that cyberattacks 

in the hybrid PV–grid scenario may cause hazardous power 

flows and damage to inverters. Nevertheless, there is still 

limited research on these threats, particularly in relation to 

data-based, adaptable defense strategies. 

Recent efforts have considered deep learning applications in 

the context of PV systems. Xiang et al. (2025) also explored 

the possibilities of using CNN‚ÄìRNN models for cyber 

anomaly detection in energy systems and obtained an 

accuracy above 96%. But they heavily used synthetic data 

instead of real PV-SCADA datasets. Cooper et al. (2023) [2] 

also pointed out the lack of domain-specific datasets, which 

constrains validation and generalization of AI-enabled 

cybersecurity architectures. 

Therefore, even with extensive advancements, there is still a 

lack of domain-specific AI models and data sets specifically 

designed for solar energy systems. This gap is addressed in 

this study by establishing a hybrid deep-learning model-

based intrusion detection mechanism and further cross-

validated it with the benchmark and simulated PV 

communication data. 

 

2.5. Edge AI and Real-Time Cyber Defense 

Edge AI transformation the next phase of Edge AI is a game 

changer for how intelligent cybersecurity solutions are 

implemented. Rather than using centralized data centers only, 

edge computing can move the analytics closer to source of 

the data (e.g., inverter and microgrid controller), which 

decreases latency and response time in real-time (Li et al., 

2023) [4]. 
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This drives resilience through decentralization, if central 

systems are knocked offline, local devices can continue to 

operate independently. Li et al. (2023) [4] also demonstrated 

that model compression and quantization strategies make it 

feasible for deep-learning models to work efficiently on low-

power devices with negligible drop in the performance. 

Simultaneously, Federated Learning (FL) has been 

recognised to be a promising privacy preserving technique 

for the collaborative model training across decentralized 

devices. Zhang, Lin and Yang (2023) [11] showed that FL 

offers collective intelligence without revealing raw data, 

mitigating privacy issues in energy networks. The integration 

of Edge AI and FL thus provides a scalable approach towards 

distributed secure collaborative solar network defense. 

 

2.6. Key Research Gaps Identified 

An integration of extant literature identifies a number of quite 

consistent gaps: 

 

PV-Specific Datasets: The majority of the intrusion 

detection researches are conducted based on general network 

datasets (CIC-IDS2017, UNSW-NB15), which do not have 

solar operational characteristics like variations in irradiance, 

voltage and so forth. 

 

Explainability and Trust: Deep models are often “black-

box” like which may restrict their interpretability, hence 

making them difficult to utilize in operational control systems 

(Munir et al., 2023) [6]. 

 

Scalability and Edge Deployment: The size of many 

models are too heavy for embedded solar controllers, which 

is why they need to be optimized further for running in real 

time (Li et al., 2023) [4]. 

 

Holistic Cyber-Physical Validation: Few works in 

industrial AI-based IDS have been validated in large scale PV 

– SCADA implementation. 

 

Regulatory convergence: The existing cybersecurity 

standards (NIST, 2020; NERC, 2022) [8, 7] do not explicitly 

include AI driven resilience metrics or learning based 

adaptation guidelines. 

 

These shortcomings need to be addressed in an 

interdisciplinary fashion among energy engineers, AI experts 

and policy makers to develop lightweight, interpretable and 

standardized AI cybersecurity schemes for solar energy 

systems. 

 

2.7. Summary of Literature Insights 

In general, the reported work in literature highlights a 

revolutionary role that deep learning can play to protect 

renewable energy systems. The employment of hybrid CNN–

RNN models is a major step in the identification and 

prevention of complex cyber threats on solar photographic 

satellite networks. However, these methods rely on domain 

adaption, dataset diversity and computation efficiency to 

achieve effectiveness. 

Based on these observations, the paper devises a deep 

learning-based intrusion detection system customized for PV 

systems. The paper makes a step toward filling the gap 

between theoretical AI and practical solar cybersecurity using  

spatial–temporal analytics with edge-level deployment 

feasibility. 

 

3. Methodology 

3.1. Research Design 

This paper introduces an experimental and data-driven 

experiment design for building and verifying a deep 

learning–based intrusion detection system (IDS) specific to 

solar photovoltaic (PV plants. The first problem is to identify 

and classify several types of cyber-attacks-- False Data 

Injection (FDI), Denial-of-Service (DoS), insider attacks et 

cetera -- by means of a hybrid deep learning framework that 

leverages Convolutional Neural Network (CNN) and Long 

Short-Term Memory Network (LSTM). 

We use both well-known network traffic benchmarks as well 

as synthesized PV-SCADA data to model real-world cyber-

physical system (CPS) dynamics, consistent with the 

protocols described by Lin et al. (2023) [5] and Harrou (2023) 

[3]. The entire process consisted of the following five key 

steps: data preprocessing, model calibration, evaluation and 

verification of training, validation and resilience. 

 

3.2. Data Sources 

3.2.1. Benchmark Datasets 

Two well-known public data sets were used to simulate the 

real-world attack traffic and normal traffic: 

• CIC-IDS2017 Dataset: This 2017 dataset of the 

Canadian Institute for Cybersecurity (University New 

Brunswick) provides a collection of traffic categories 

such as DoS, Web Attacks, Brute Force and Infiltration 

featuring about eighty statistical attributes. 

• UNSW-NB15 Dataset: Published by the University of 

New South Wales Canberra (2015), it contains nine 

categories of contemporary cyber-attacks including 

Worms, Shellcode and Fuzzers on packet and flow 

levels. 

 

These datasets have been widely applied to train intrusion 

detection models in critical infrastructure domains (Yu, 

Zhang, & Zhou, 2022; Cooper et al., 2023) [10, 2]. 

 

3.2.2. Simulated PV-SCADA Data 

For domain relevance the simulated PV communication data 

were created using MATLAB/Simulink with OPAL-RT real 

time simulation. The virtual PV system consisted of a grid 

connected inverter, sensors and communication modules that 

sent voltage, current and radiation data through Modbus/TCP 

protocol. 

The cyberattacks were provided based on threat models 

proposed by Rahim et al. (2023) [9], that account for FDI, DoS 

and unauthorized command attacks. This hybrid dataset (real 

+simulated) guaranteed an inbalanced distribution of benign 

and malicious scenarios. 

 

3.3. Data Preprocessing 

The raw datasets were processed using a multi-stage pre-

processing pipeline to enhance both the accuracy of the 

model and its computational efficiency: 

 

Data Preprocessing: Cleaned out missing values, duplicated 

observations and partly filled vessels. 

Feature Encoding Categorical characterizing variables were 

translated into numerical values with one hot encoding. 
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Normalization: For continuous features, z-score 

normalization was applied in order to have a same scale 

distribution. (Anwar, Sokolov, & Sandberg, 2022) [1]. 

 

Feature selection: principal component analysis (PCA), 

preserving 95% variance and reducing feature dimensionality 

from 80 to 45. 

 

Data Split: The data is divided into 70% training, 15% 

validation and 15% testing by stratified to keep the class 

balance. 

 

3.4. Deep Learning Model Architecture 

The CNN–RNN hybrid model was chosen to benefit from the 

richness of both architectures. 

• CNN for Feature Extraction: Generates the spatial 

dependencies in multi-featured network packets. Two 

1D convolutional layers (filter size = 3, stride = 1) were 

applied and followed by batch normalization and max 

pooling. 

• RNN (Recurrent Layer): To model temporal 

dependencies in network sequences. Two Long Short-

Term Memory (LSTM) layers with 64 hidden units each 

captured sequential time data. 

• Fully Connected Layer: Concatenates spatial–temporal 

embeddings with a dense layer with softmax activation 

for multi-class classification. 

• Optimizer and Loss Function: The model was trained 

with Adam optimizer (learning rate: 0.001) together with 

the categorical cross-entropy loss, according to the 

suggestions made by Lin et al. (2023) [5]. 

• Regularization: Dropout layers with rate=0.3 were 

included to avoid overfitting. 

 

We implemented this architecture using TensorFlow 2.10 as 

it has been demonstrated to be effective in learning universal 

hierarchical and sequential dependencies from cyber-

physical data (Yu et al., 2022; Munir, Shetty, & Rawat, 2023) 

[10, 6]. 

 

3.5. Model Training and Evaluation 

The model was implemented on a workstation with GPU 

(NVIDIA RTX 3060, 12 GB RAM), trained with batch size 

of 64 and for up to 50 epochs. Early stopping was used by 

monitoring loss in each 5 epochs. 

We compared our system performance on various evaluation 

metrics: 

• Accuracy (ACC): Correct predictions under the total 

samples. 

• Recall (R): True positives divided by total real positives. 

• Remember (R): True positives divided by sum of true 

positives and false negatives. 

• 3.8 F1-Score Harmonic mean of precision and recall. 

 

Area Under the Curve (AUC): It determines how well the 

model is capable of differentiating between classes. 

These measures are compatible with assessment criteria used 

in the prior smart-grid IDS literature (Cooper et al., 2023; Yu 

et al., 2022) [10, 2]. To add some statistical stability, we 

performed a 10-fold cross-validation. 

 

4. Results 

Experimental results show that the deep learning model 

significantly increases the accuracy in detecting 

cybersecurity threats against solar energy infrastructures. 

Compared to classical machine learning methods, the hybrid 

CNN–RNN model performs significantly well in precision, 

recall and overall detection efficiency. 

This section reports in-depth quantitative results, table 

performance metrics, and intelligent visualizations with 

perspective drawings which clearly demonstrate the 

superiority property of the model as well as its robustness 

under various cyberattack cases. 

 

 
 

Fig 1: Comparison of model accuracy 

 

The four-class accuracies of Support Vector Machine (SVM), 

Random Forest (RF), Multilayer Perceptron (MLP) and the 

proposed fusion model CNN-RNN over all classes are shown 

in this bar chart. 

• Accuracy was 88.4% for SVM, 91.5% and 93.1% for RF 

and MLP respectively. 

• The proposed CNN–RNN model yielded the highest 

accuracy among all baselines, with 97.4%, showing its 
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capability to better extract both spatial (via CNN) and 

temporal (via RNN) features. 

• This confirms that hybrid deep-learning strategies are 

better tailored to detecting complex attack patterns in 

solar PV communication data when comparing with 

traditional machine learning models (Yu et al., 2022; Lin 

& Popescu, 2023) [10, 5]. 
 

 
 

Fig 2: Training vs Validation Loss Curve 

 

This is a line plot of the model’s training loss and validation 

loss over ten epochs. 

• They are both steadily declining, which means good 

convergence not overfitting. 

• The last training loss stayed at 0.05 and the validation 

loss also almost remained same (ca, 0.07) indicating that 

it generalized well to unseen data. 

• The two curves are close to each other, suggesting that 

the model has enough learning stability and limited 

overfitting, which is essential in the real-world solar-grid 

intrusion detection (Anwar et al., 2022) [1]. 

• This observation validates that the CNN–RNN model is 

fine-tuned and it can provide trustworthy predictions for 

diverse operation scenarios. 

 

 
 

Fig 3: Confusion Matrix of CNN–RNN Model 
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The confusion matrix summarizes the performance of CNN–

RNN model in terms of classifying Normal, FDI (False Data 

Injection), DoS (Denial-of-Service) and Insider Attack. 

• Diagonal elements larger than a threshold value (≥ 470) 

suggest high classification effectiveness over the whole 

set of attack types. 

• A small portion of misclassifications are FDI vs. DoS 

between due to their overlapped temporal pattern in PV-

SCADA data. 

• The overall precision and recall was greater than 94% 

showing balanced capabilities of the model in effectively 

detecting multiple attack types. 

• This performance is superior to that of conventional 

systems, demonstrating the multi-class detection 

capability and operability reliability of the model in 

complicated energy networks (Cooper et al., 2023) [2]. 

 

 
 

Fig 4: Comparison of ROC Curve 

 

The Receiver Operating Characteristic (ROC) plots are 

plotted to compare for SVM, RF and CNN–RNN models 

which plots the True Positive Rate (TPR) against the False 

Positive Rate (FPR). 

• Our CNN–RNN curve is close to the top left corner with 

an AUC (Area Under Curve) of 0.98, which is better than 

Random Forest (0.92) and a SVM (0.88). 

• A larger AUC score implies better to classify normal and 

anomaly behavior. 

• This indicates that deep hybrid networks are able to 

process nonlinear multivariate cyberattack patterns 

effectively, to improve the resilience of system and 

reduce the latency in detection. 

• The outcomes encourage the utilization of AI-based 

adaptable security structuring for immediate observation 

in distributed PV frameworks (Li et al., 2023; Munir et 

al., 2023) [4, 6]. 

 

5. Discussion 

5.1. Overview of Findings 

In this paper, we show that the introduction of deep learning 

(DL) in cybersecurity framework can enhance security level 

(resilience) of solar photovoltaic (PV) infrastructures towards 

cyber-attacks. 

The hybrid CNN–RNN model showed better detection 

performance toward ECGI, achieving an overall accuracy of 

97.4% with AUC score of 0.98 as compared to those using 

other traditional machine-learning algorithms including 

SVM, RF and MLP [31]. 

Our findings are consistent with two recent studies from Lin 

et al. (2023) [5] and Yu et al. (2022) [10], who had approved 

that the hybrid deep models have a better detection accuracy 

in nonlinear and complex environments for instance smart 

grids. 

The ability of the model to learn both spatial and temporal 

correlations in network data allowed it to distinguish multi-

stage attacks such as FDI and DoS with high accuracy, as 

demonstrated by the confusion matrix (Figure 3). 

 

5.2. Interpretation of Model Performance 

The accuracy comparison (Figure 1) emphasizes the superior 

robustness of DL techniques when dealing with complex/ 

heterogeneous data as in PV networks. 

Conventional ML models use handcrafted feature extraction 

and model training, but are not effective for learning dynamic 

attack behavior. 

On the contrary, our CNN–RNN model autonomously 

captured hierarchical representations for robust detection 

across multiple threats. 

The training and validation loss curves (Figure 2) showed that 

the models converged consistently with little over fitting, 

suggesting a good generalization performance and 

optimization ability. 

This finding is consistent with Anwar, Sokolov and Sandberg 

(2022) [1], who stressed the importance of adaptive 

regularization to mitigate overfitting in the context of critical 

infrastructure security models. 
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In addition, the confusion matrix (figure 3) showed a high 

accuracy of classification across all attack classes with slight 

overlap between FDI and DoS attacks due to their close 

temporal and volumetric signatures (Harrou, 2023) [3]. 

The model's balanced recall and precision rates (>94%) 

indicate that it is robust in reducing both false positives and 

false negatives, which is of great importance for real-time 

decision making in PV control centers. 

These characteristics were corroborated by ROC curve 

analysis (Figure 4), which demonstrated that the CNN–RNN 

combination yielded a far superior rate of true positive 

detections along with fewer false alarms in comparison to 

baseline techniques, enhancing both threat detection speed 

and reliability (Cooper et al., 2023) [2]. 

 

5.3. Contribution to Cyber Resilience 

The concept of cyber resilience for energy systems relates to 

the capacity to anticipate, absorb, recover and adapt to cyber 

threats (NIST 2011) [8]. 

Developed model enhances this robustness in three main 

aspects: 

Early Threat Detection: By having the model set at high 

accuracy and being out of false alarm, it saves both incident 

response time and potential operational downtime. 

Adaptive learning: It has capability to keep re training itself 

for continuous feature extraction from traffic for new attack 

vectors (Munir, Shetty & Rawat 2023) [6]. 

Distributed defense: When combined with Edge AI 

deployment, support local detection and self-healing of 

inverter-level nodes according to CNN–RNN (Li et al., 2023) 

[4]. 

These results are consistent with NERC (2022) [7] suggestions 

on how to harden distributed energy resources (DERs) - the 

value of real-time, data-driven monitoring type systems. 

Accordingly, this study advances the existing cybersecurity 

paradigms away from guarding and defending against attacks 

to utilizing AI-based models to implement resilience in a 

distributed solar energy system architecture. 

 

5.4. Comparison with Prior Work 

Related work in this area has been on general security 

research for smart-grid but not so much for solar-related case. 

For example, Aoufi, Elbrahmi and Boulmalf (2020) offered a 

general review of FDI countermeasure approaches without 

discussing deep learning integration. 

The novelty of this study is that it models the time–space 

dependency and nonlinearity within PV data using a 

customized hybrid DL architecture. 

Similarly, Lin et al. (2023) [5] utilized deep reinforcement 

learning for identification of FDI in power system while not 

dealing with IoT-based PV settings. 

Through integrating CNNs for spatial pattern extraction and 

RNNs for temporal learning, this work provides an essential 

methodological bridge and customises deep learning methods 

to renewable-related cyber-physical systems. 

Harrou (2023) [3] and Rahim et al., (2023) [9] also addressed 

the growing cyber threats in PV systems, e.g., inverter 

tampering and ill-intentioned configuration. 

The results of our study support these concerns and propose 

an empirical defense strategy based on the validation under 

hybrid datasets. 

Particularly, the detection performance of our proposed 

model exceeds 95% as reported in Yu et al. (2022) [10], which  

further proves the importance of combining real PV-SCADA 

data with benchmark dataset for better generalization. 

 

5.5. Practical and Operational Implications 

The operation advantages of AI-based intrusion detection in 

solar power conversion systems are as follows: 

• Self-Sufficient: The CNN–RNN monitoring model is a 

self-sustained model which, once trained, needs no 

human involvement to monitor the inverter and 

communication system data. 

• Predictive Maintenance: Anomalies could indicate 

hardware or driver errors, thus enabling preventive 

maintenance. 

• Minimized Downtime: Early identification limits the 

time it takes to bring the system back up after a cyber 

event. 

• Scalable: By employing Edge AI (i.e., edge-side 

intelligence) and federated learning, these models can be 

taken to various geographically-distributed PV units 

without exchanging data (Zhang et al., 2023) [11]. 

 

Such findings highlight the operational feasibility of low-

latency, secure, environmentally friendly solar grid 

operations using deep learning. 

 

5.6. Limitations and Future Research 

Although these results are encouraging, we should 

acknowledge some limitations. 

First, the hybrid model was partially based on widely 

accepted network intrusion datasets which may not reflect all 

operational features of solar SCADA traffic. In the future, 

solar-specific cybersecurity datasets should be developed 

with inverter telemetry data, weather fluctuations and power 

variations (Rahim et al., 2023) [9]. 

Second, although the model should scale well, computation 

complexity may be a concern for low-rate controllers. In the 

future, lightweight architectures like mobileNet or attention 

models based on transformer optimized for embedded PV 

devices should be investigated (Li et al., 2023) [4]. 

Finally, deep learning models perform as “black boxes,” 

which reduces interpretability. The utilization of Explainable 

AI (XAI) methods will contribute towards the transparency 

in operator confidence (Munir et al., 2023) [6]. 

Last but not least, the combination of AI systems with policy 

frameworks and grid codes (e.g., NISTIR 8259A, IEC 62351) 

is a future direction to facilitate regulatory compliance and 

holistic cyber governance. 

 

5.7. Summary of Discussion 

In particular, results solidify our claim that AI-enabled deep 

learning models (specifically so the CNN–RNN hybrid 

architecture) represent a game-changing solution for 

preserving solar infrastructures. 

In this way, with the ability to effectively identify multi-class 

of attacks and stronger generalization power, the proposed 

model promotes both theoretical support ofbthe current 

cybersecurity in renewable energy system and its practical 

applications. 

By fusing AI, edge computing and energy resilience 

concepts, we have an opportunity to carve out a vision for a 

new breed of self-defending adaptive solar grids that can 

deliver consistent secure and sustainable energy supply in the 

face of changing cyber security threats. 
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6. Conclusion 

The combination of artificial intelligence (AI) and renewable 

energy systems is a momentous development in the study of 

safe, reliable, sustainable, and economically sound power 

generation. In this work, we proposed a deep learning–based 

intrusion detection framework for solar photovoltaic (PV) 

systems to mitigate the emerging cyber-physical security 

threats against smart-grid infrastructures. The hybrid CNN–

RNN model obtained an accuracy of detection at an 

impressive 97.4% and AUC = 0.98, surpassing classical 

algorithms (SVM, RF, Multilayer perception). These results 

confirm the superior effectiveness of deep-learning models 

for detecting complex and evolving attack profiles on highly 

dynamics solar energy networks (Lin et al., 2023; Yu et al., 

2022) [5, 10]. 

Three main contributions are delivered by the study to both 

academic and practical fields. First, the paper develops a 

domain-adapted hybrid DL model that can capture spatial and 

temporal dependencies in PV-SCADA data. This twint 

learning method allows the detection of cyber-attacks such as 

FDI, DoS and insider attack that most existing Security 

Systems are unable to detect (Harrou, 2023) [3]. Secondly, it 

is an evidence for the possibility of optimizing AI-based 

cybersecurity mechanisms to perform at edge space, leading 

to a real-time resiliency enhancement at inverter and 

microgrid levels (Li et al., 2023) [4]. Third, it fills an important 

gap in research validating deep learning models with the aid 

of a heterogeneous dataset which combines benchmark 

intrusion datasets (CIC-IDS2017, UNSW-NB15) and 

simulated PVSCADA communication flows, thus increasing 

the representativeness and reliability (Rahim et al., 2023) [9]. 

On a pragmatic level, these results indicate the revolutionary 

implementation of AI-based resilience frameworks for 

distributed renewable-energy networks. Deep learning 

architectures are capable of early threat detection and 

adaptive learning that can aid in utilities and operators 

preventing downtimes, increasing fault tolerance, and 

securing grid synchronization even during cyber events. They 

are also consistent with the advice provided by NERC (2022) 

[7] and NIST (2020) [8] of adopting proactive data driven 

cybersecurity strategies implemented in DERs. CNN–RNN 

framework, under consideration in this text, presents such a 

scalable approach which can seamlessly interface IoTAIs 

with the world of standards like IEC 62351 and NISTIR 

8259A consolidating into standard-based and AI-driven grid 

security governance. 

However, the work also points out important directions for 

future improvement. However, the model is partially built on 

generic network datasets, and has limited domain specificity. 

Construction of PV-oriented intrusion datasets with physical 

inverter telemetry and environmental data can notably 

enhance target detection precision and context confidence. 

Furthermore, lightweight AI architectures (e.g., MobileNet 
[16] or Transformerbased attention models) for real-time 

utilization on resource-constraint edge devices must be 

investigated in the future work. Note Added in Proof: It is 

also important to incorporate Explainable AI (XAI) 

techniques to improve transparency and trust from the 

operator, individuals making decisions should be able to 

understand and corroborate alerts generated by an AI system 

Munir, Shetty, & Rawat (2023) [6]. 

In summary, the work presented here supports deep learning 

as a viable and necessary route to securing future solar 

infrastructures. The combination method of CNN–RNN 

doesn't only improve diagnosis efficiency, it offers the key to 

build a self-repair, adaptive and intelligent electrical power 

system. With the transition of evolving global energy 

environments, embedding AI-based cybersecurity algorithms 

into renewable systems is essential to meet both technology 

innovation and sustainable energy security targets. The study 

thus paves the way for future multidisciplinary interplay 

among energy engineers, data scientists and policymakers 

towards developing resilient, intelligent and secure solar 

ecosystems. 
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