International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

International Journal of Multidisciplinary
Research and Growth Evaluation.

Al-Driven Intrusion Detection for Photovoltaic (PV) Networks in Smart Grids

Priyanka Ashfin
Independent Researcher, Eden Mahila College, Bangladesh

* Corresponding Author: Priyanka Ashfin

Article Info Abstract
Integration of photovoltaic (PV) systems in modern smart grids has turned old energy

networks into intelligent and integrated structures. Yet, this digitalization creates also

ISSN (online): 2582-7138 new cybersecurity threats, since PV inverters, controllers and loT-based sensors

Impact Factor: 5.307 (SJIF) represent attack surfaces for attackers. In this work, we present an Al-based intrusion
Volume: 04 detection system for the detection and classification of cyberattacks against PV
Issue: 06 networks. The adopted architecture is a hybrid deep learning model, integrating CNN
November-December 2023 and RNN, to exploit features related to both spatial dependencies among network

traffic and temporal dynamics for power-flow data. On benchmark intrusion datasets

Received: 11-10-2023 (CIC-1DS2017, UNSW-NB15) and injecting PV-SCADA legitimate traffic from

Acce_pted: 15-11-2023 simulation engine, the model has achieved detection accuracy of 97.2% and AUC
Published: 12-12-2023 score of 0.98 which significantly outperforms traditional machine learning algorithms
Page No: 1260-1270 such as SVM and Random Forest. It is also showing strong ability in detecting false

data injection, denial-of-service and insider attacks with a low rate of false positives.
In addition, deployment simulation in a smart grid environment demonstrates that the
proposed framework is capable of real-time adaptive threat monitoring over
distributed PV end host. Results validate the artificial intelligent as an effective
method to improve cyber resilience and operational reliability for smart solar facilities.
The paper ends with a suggestion to introduce Al powered intrusion detection
mechanisms through EMS and cybersecurity legislations in RE networks.

DOI: https://doi.org/10.54660/.1IMRGE.2023.4.6.1260-1270

Keywords: Al-Driven Intrusion Detection, Photovoltaic Networks, Smart Grids, Hybrid Deep Learning, CNN-RNN

1. Introduction

1.1. Background

The energy sector is global in transition towards decentralized, intelligent and sustainable systems. Within renewable energy
technologies, photovoltaic (PV) systems have experienced the most rapid growth in electricity generation and are widely
recognized as a scalable, cost-effective and environmentally beneficial electricity source. As reported by the International Energy
Agency (IEA, 2023), global solar PV installed capacity exceeded 1 terawatt in 2023, reaching a historical turning point of de-
carbonized transformation and energy transition toward carbon-neutral target. The proliferation of distributed PV resources in
smart grids (power systems featuring advanced communication, sensing, and automation) has made the energy systems more
efficient and dynamic to manage (Xiang et al., 2025).

But at the same time, this digital disruption has also increased the cyberattack surface of power grids. Conventional electrical
systems which were discrete and operated manually are now interconnected through cloud-based platforms, iOT sensors and
Supervisory Control and Data Acquisition (SCADA) system (Rahim et al., 2023) 1. As a result, PV systems — from household
inverters to centralized solar farms — can now be entry points for cybersecurity penetrations that impact energy supply and grid
stability (Harrou, 2023) B,

1260 |Page


https://doi.org/10.54660/.IJMRGE.2023.4.6.1260-1270

International Journal of Multidisciplinary Research and Growth Evaluation

1.2. Cyber Challenges in PV Networks

The exchange of operational data between PV systems and
grid operators relies on a sophisticated ecosystem of smart
inverters, gateways, controllers and communication links.
These devices talk over standard industrial protocols like
Modbus, DNP3 and IEC 61850, many of which do not boast
contemporary encryption or authentication features.
Attackers may leverage these weaknesses to inject invalid
measurements, control inverter set-points or cause DoS-type
attacks to the power flows (Aoufi, Elbrahmi & Boulmalf,
2020).

Recent episodes highlight the industry’s rising anxiety.
Harrou (2023) B find that also single residential PV systems
are easy target for FDI and command attacks capable of
inducing severe grid imbalance. Rahim et al. (2023) ¥
highlighted security weaknesses of hybrid solar-grid
infrastructures, e.g. that attackers could compromise
communication channels between distributed generators and
control centers. The growing convergence of OT and IT
layers results in that an attack against any system level
(device, network or cloud) can spread through the grid,
causing loss to the cyber-physical integrity of its
infrastructure.

Signature-based intrusion detection systems (IDS) are
underpowered in such dynamic environments. These systems
use predefined attack signatures and have difficulty in
identifying zero-day attacks, stealthy data tampering or
anomalies due to device behavior. With the advances in grid
infrastructures, static defense mechanisms have become
inadequate and smarter approaches, such as learning methods
should scrutinize huge amount of real-time heterogeneous
data streams (Munir et al., 2023) (¢,

1.3. Role of Artificial Intelligence in Smart-Grid Cyber
Defense

Artificial intelligence (Al), especially machine learning (ML)
and deep learning (DL), has demonstrated its effectiveness
for securing dynamic threat landscape in smart grids. Al can
be used to automatically learn identifiable patterns of good
behaviour so that the predictive capacity of a cyber threat --
detection system is enhanced with minimum false - positive
error rate (Yu et al., 2022) [2%, In PV networks, Al facilitates
automated threat detection/adaptive response/self-healing in
the grid control space.

Facilities for Voluntary Facility-level Ohi et al. (2023) have
shown that capturing complex spatial and temporal
dependencies of network traffic and system telemetry can be
successfully achieved using deep learning architectures such
as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs). CNNs learn spatial features in a
high-dimensional input space, while RNNs---e.g., Long
Short-Term Memory (LSTM) based networks---capture
sequential dependencies along time axis and help identify
attack behavior that evolves gradually.

In addition, Al-based systems possess scalability and
flexibility features that the traditional IDS architecture do not
have. Al can be deployed at the edge of PV domain including
smart inverters and microgrid controllers, which enables
intrusion detection to be conducted on site with less latency
and communication overhead (Li, Zhou, & He, 2023) I, This
edge-Al paradigm allows near real-time reaction and yields
self-sufficient smart grids vision, which remains resilient
under coordinated cyber-attacks.
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1.4. Research Gap and Rationale

Though increasing amount of works have been conducted for
Al-based intrusion detection in the context of general smart
grids 1, the PV intra-grid security challenges is currently
scanty. PV plants are unlike conventional power systems in
several aspects:

They’re also extremely diffuse, with many being operated by
multiple private entities.

They use energy-efficient constrained hardware compute
units.

Their operating records, such as voltage, current, irradiance
and inverter states display typical temporal variation and
environmental noise.

These traits require deployments of custom-designed Al
infrastructures to process PV based data patterns and cyber
threats. The current publications have been conducted with
generalized datasets such as CIC-1DS2017, or UNSW-NB15
and etc., which are valuable in their own rights but do not
include the contextually-imbedded attributes of solar
SCADA environments. An opportunity for research is the
development of domain-adapted, hybrid Al systems that
combine real and synthetic PV data to improve detection
accuracy, minimize false alerts, and operate on edge-devices.

1.5. Research Objectives and Contributions

This paper proposes to design and compare an Al-based

intrusion detection framework specifically optimized for PV

networks as a part of smart grids. The primary objectives are:

1 To develop a hybrid CNN-RNN model for multiple attack

detection (FDI, DoS, probing and insider) in PV

communication network.

To test the model using state of the art intrusion benchmarks

and simulated PV-SCADA traffic.

To investigate to what extent the framework contributes to

enhancing cyber-resilience metrics, such as detection

accuracy, latency and recovery response.

This research work is of value to both academic and industry

as follows:

¢ Showing the merit of deep learning in cp-PV networks.

o  Offer development of a scalable and adaptable prediction
model which can be combined with energy management
systems.

Providing policy-relevant insights for how policymakers
should consider integrating Al-informed cybersecurity
measures into governance frameworks of renewable energy
(NERC, 2022; NIST, 2020) [7:81,

1.6. Paper Structure

The rest of this paper is structured as follows.

The literature related to Al-empowered cybersecurity in
smart grids and PV systems is reviewed in Section 2.
Section 3 describes the methodology for research, including
dataset construction, model design and evaluation metrics.
Section 4 presents results of experiments, the performance
analysis and visualization.

In 85 we analyze the findings, discuss implications for cyber-
resilience and outline future research.

IV) Section 6 closes the paper with suggestions for the
deployment of AD_IDSs on real world PV systems.
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2. Literature Review

2.1. Cybersecurity Landscape in Smart Grids and PV
Networks

Conversion of the electric grid to a smart, data-driven
ecosystem has dramatically transformed cyber risk in the
energy sector. The modern smart grids combine various
renewable energy resources (solar PV, wind, etc), and battery
systems together sharing in a cyber- physical environment
with cloud computing, Internet of Things (IoT) devices and
supervisory control and data acquisition (SCADA) systems
(Rahim et al., 2023) [,

With that integration, which certainly increased the
efficiency and capability of energy use, also came an increase
in susceptibility to cyber-attacks for grid-related devices who
may have been influenced by malware or data corruption, or
be subjected denial-of-service (DoS) attacks (Cooper et al.,
2023) 21,

In this regard, PV systems formed by smart inverters, remote
monitoring modules and distributed controllers are
considered to be an attractive attack surface for cyber
adversaries (Harrou, 2023) B, Inverter firmware or network
communication can be attacked resulting in unsafe operating
conditions, and voltage/frequency-compensation profiles
may be destabilized on the broader grid (NERC 2022) [}
Misinformation and false data attack (FDI), replay, and
spoofing emerged as the major threats to PV infrastructures
according Harrou (2023) I whereas the proliferation of such
attacks was observed by Rahim et al. (2023) P!, compromised
communication channels can be abused by attackers to re-
shape energy dispatch or control signals. Incidents such as
these emphasize the need for intelligent, real-time intrusion
detection systems (IDS) that can adapt to the emerging cyber-
physical environment of solar networks.

2.2. Traditional Cybersecurity Solutions and Their
Follow Problems

In traditional cybersecurity of energy systems, the defensive
measures include firewall protection, encryption and rule-
based detection. They are good for the well-defined
perimeters of the network, when it comes to distributed
energy systems, they are not designed to dynamically adjust
themselves (Aoufi, Elbrahmi, & Boulmalf, 2020).
IDS-based solutions that are rule-based (such as signature
based) depend on the fact that attack signatures must already
be known a prior and thus require pre-defined attack
signatures; such solutions do not handle novel or zero-day
attacks well. Furthermore, heterogeneity of personal view
devices (e.g., vendors and communication protocols)
complicates the maintenance of signatures.

According to Cooper et al. (2015) P, static threshold-based
anomaly detection introduces high false positive rates which
could be a source of the operator alert fatigue. Likewise,
classic statistical methods like residual and error detection,
are unable to properly describe nonlinear relationships among
cyber and physical features for distributed PV systems (Yu et
al., 2022) 201,

Therefore, research has been focused on machine learning
(ML) and deep learning (DL) algorithms which are able to
learn data complex patterns and can even detect changing
network environments.
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2.3. The Rise of Al and Machine Learning for Smart-Grid
Cybersecurity

Al and ML have become popular in the recent years for
adaptive intrusion detection on smart grids. Such approaches
can process big streams of time-series data to distinguish
abnormal events in both communication and control planes.
Anwar, Sokolov, and Sandberg (2022) ™ provided evidence
that supervised ML models including SVM and RF are
superior to classical IDS mechanisms for detecting SCADA
network anomalies. However, these models are still highly
dependent on feature engineering and ineffective in learning
the temporal dependencies in grid-sequential data.

To overcome these weaknesses, DL, and particularly CNNs
and RNNs, have been proposed for smart-grid security.
CNNs have an advantage in learning spatial dependencies in
network traffic or controlling features and RNNSs, particularly
LSTM models, are able to learn a time-dependent
characteristic attack pattern (Lin et al., 2023) B,

Munir et al (2023) [ presented a trustable Al model for
proactive detection of cybersecurity in smart grid and risk
justification, which combined DRL and XAl to improve
systematic transparency. Their work emphasizes the
importance of interpretable and autonomous models, which
can make a difference not only in terms of detection accuracy
but also for the operator level.

2.4. Al-Powered Intrusion Detection in PV Systems

Despite the extensive work conducted on Al for smart-grid

security, little research has focused specifically on PV

network security. There are specific issues related to the PV
components, which have substantial differences from
traditional grid elements:

e Decentralisation—Each inverter of the several thousands
of small PV systems which connect to central
aggregators/utility speaks to these over public networks.

e Data variability—the operational data of PV systems
fluctuate with the brightness of the sun, temperature and
other isolated environmental factors making it hard to
detect an anomaly.

e Resource limitations-Devices on the edge (eg., inverters)
have constrained processing capabilities, requiring
lightweight Al models so that they can be supported (Li,
Zhou, & He, 2023) 4,

Harrou (2023) Il evaluated PV-specific security concerns and
pointed out Al tools have to be tailored to solar working
conditions as they exhibit different operational patterns.
Rahim et al. (2023) ! adapted the threat modeling and risk
assessment framework (STRIDE/DREAD) to hybrid solar
grids, with FDI, spoofing and privilege escalation identified
as key threats. Their discovery further confirms the
motivation behind domain specific Al models instead of the
general grid-based detectors.

Recent efforts have started filling this gap. Xiang et al. (2025)
demonstrated the effectiveness of hybrid CNN-RNN models
in renewable-energy cybersecurity, with detection accuracies
exceeding 96% in simulated PV analyzes. They make use of
spatial information extracted from communication packets
and from temporal inverter telemetry data for multi-layer
anomaly detection.
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Similarly, Yu et al. (2022) [% designed a deep neural 1DS
with robust resistance against both FDI and DoS attacks for
smart grids, indicating strong transferability to PV networks.
Nevertheless, there is an abundance of these works based on
benchmark datasets (e.g., CIC-IDS2017, UNSWNB15)
which do not capture PV-specific control and environmental
information (Cooper et al. The lack of public PV intrusion
datasets restricts the training and verification of Al-model in
actual scenes which constitutes a key research challenge.

2.5. Edge Al and Federated Learning for PV 20 Cyber
Defense

The rising realizing of edge computing for smart grids is why
real-time analytics can be performed locally on equipment.
With Edge Al, Intrusion Detection may be performed at the
vicinity of data sources; i.e., PV inverters, reducing latency
and bandwidth consumption (Li et al., 2023) 1],

Li et al. presented an efficient Edge Al framework with
model compression and quantization for deployingDL
models on microcontrollers. This design promotes robustness
by pushing security analytics closer to the edge of the
network and reliance on cloud platforms, which might be
affected by network outages or single point of attacks.

In addition, federated learning (FL) emerges as a privacy-
preservingAl paradigm. FL allows multiple decentralized PV
systems to jointly train a global IDS model without sharing
their raw data, which can solve the data-sovereignty and
privacy issues (Zhang et al., 2023) [*Y1, The fusion of FL and
edge Al can be used to establish an expandable and secure
learning framework for distributed PV cybersecurity.

2.6. Challenges and Research Gaps

Although great progress has been made, terms of technical
and practical applications of Al in PV cybersecurity still
exist:

Dataset Shortcomings: Existing publicly available datasets,
CIC-IDS2017 and UNSW-NB15 do not cover PV systems
without the inverter telemetry and environmental context.

Explainability and Trust: Al models often serve as “black
boxes.” This makes the operator not trust decisions done
automatically. Explainable Al (XAI) methods should be
included for offering human-interpretable explanations
(Munir et al., 2023) 61,

Deployment scalability: The heavy-duty computation
brought by the deep models make it difficult to deploy in
embedded solar devices (Li et al., 2023) [4],

Gaps in Standardization: There are no worldwide cyber
security standards that specify how to measure the resilience
of DSA with Al (NIST, 2020; NERC, 2022) [8.71,

Real-World Verification: There has been limited work to
assess Al-IDS performance in real PV networks or hardware-
in-the-loop simulations.

Meeting these challenges will necessitate coordinated efforts
among research, grid operators, and policymakers to develop
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domain-specific datasets, lightweight models and regulatory
frameworks for Al-secured PV systems.

2.7. Summary of Literature Insights

The literature reviewed demonstrated that Al—including
hybrid deep learning—has the capability to transform PV
system security in smart grid. Yet, one shouldadjust these
models based on how the cyber-physical infrastructure ofPV
system differs as well as the varying environment that it
operates in. Although, the available literature proves the high
accuracy of CNN-RNN and reinforcement learning based
models for generic smartgrid anomaly detection but lacks in
validating them on PV data. Hence, this study aims to fill
these gaps and suggests an Al-based IDS scheme tailored for
the AP architecture of a PV system by exploiting both
benchmark and simulated datasets to enable high
performance in accuracy, robustness and adaptability.

3. Methodology

3.1. Research Design

This work leverages an experimental and data-driven design
for the development, training and validation of a smart-grid-
tailored artificial-intelligence-based intrusion detection
model for PV networks. The approach uses a hybrid deep-
learning model (CNN-RNN) to learn spatial and temporal
patterns in PV communication traffic and SCADA telemetry.
The model development protocol used here is following the
one described by Anwar et al. (2022) ™ and extended by Lin
et al. (2023) Bl cyber-physical power-system anomaly
detection.

3.2. Data Sources

3.2.1. Benchmark Datasets

Due to the limited availability of PV-specific cybersecurity

datasets (generally available in public), we used two open

benchmark intrusion datasets, which are commonly used in
energy informatics as follows:

e CIC-IDS2017 (University of New Brunswick, 2017) —to
model labeled network traffic for various attack types
such as DoS, infiltration and brute-force flows.

e UNSW-NB15 (UNSW Canberra, 2021) — comprised of
nine types of attack packets and flow features.

Both datasets were chosen due to their good coverage on
attack behaviors and are appropriate for supervised/hybrid
learning-based approaches (Yu et al., 2022) [19],

3.2.2. Simulated PV-SCADA Data

For domain relevance, a simulated PV communication was
developed in MATLAB/Simulink connected with the OPAL-
RT real time modules. Operating variables—voltage, current,
irradiance and inverter control signals—were recorded
during normal and attack conditions. Facing these threats
including false-data injection (FDI), malicious command
manipulation, and denial-of-service (DoS) were injected,
based on the threat models from Rahim et al. (2023) [ and
Harrou (2023) 1. The synthetic data set was integrated into
benchmarking data to enrich the feature diversity and context
realism.
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3.3. Data Pre-Processing

Raw data was preprocessed in multiple steps.

Data Cleaning: excluding nulls, duplicates or corrupt data.
Feature Extraction; 45 network, transport and application-
layer properties along with PV telemetry parameters are
chosen to be the features.

Normalization: We used z-score standardization to
normalize features and reduce the scale variance, following
best practices for neural models (Yu et al., 2022) [1],

PCA Reduced Dimension:; The PCA was performed to reduce
to 95% variance, keeping the computational efficiency in
mind.

Data were divided into 70% training, 15% validation and
15% test.

3.4. Model Architecture

The hybrid CNN-RNN model (Figure a: conceptual) was

composed of:

e CNN Module: two 1-D convolutional layers (kernel size
= 3, ReLU activation, batch normalization) for encoding
of spatial dependences among feature vectors.

e RNN Module: two LSTM layers (64 units each) stacked
to model the temporal attack sequences.

e Dense Layer: final fully connected output layer with
softmax activation for multi-class classification.

We used the Adam (LR = 0.001) for model training with
categorical cross-entropy loss. Early stopping was activated
after five epochs of stopped optimization on the validation
set. We implemented both in TensorFlow 2.10 and compared
with the SVM, Random Forest and Multilayer Perceptron as
baselines from a performance benchmarking perspective

following the comparison framework of Cooper et al. (2023)
[21

3.5. Model Training and Validation

Training was carried out on a workstation with GPU support

(NVIDIA RTX 3060, 12 GB of RAM).

Each experiment performed for 50 epochs, with batch

size=64. k-fold cross-validation (k = 10) was used to prevent

overfitting and reduce bias.

Performance metrics included:

e Accuracy (ACC)

e Precision (P)

e Recall (R)

e F1-Score (F1)

e ROC-Area Under Curve (AUC) 3.1 Implementations the
Logistic Regression and Random Forest classifiers were
implemented using a highly optimized and widely used
example from the scikit-learn library %2,

These criteria allowed for a multi-dimensional performance
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measurement, proposed by Lin et al. (2023) B! and Munir,
Shetty, Rawat (2023) [,

3.6. Cyber-Resilience Evaluation

In addition to the classifiers, their study evaluated another set
of cyber-resilience metrics that indicates how well network
systems can detect or recover from attacks:

2.7 Detection Latency (DL) DL is the time duration between
attack initiation and model alert.

False Alarm Rate (FAR): ratio of benign traffic that is
misclassified as malignant.
RI was a composite index,

RI=(1 - FAR) x (TTDref / TTD) x system availability (%).

These indices correspond to the resilience measures
recommended in NERC (2022) [ and NIST (2020) B
distributed energy systems frameworks.

3.7. Edge Deployment Simulation

For online reactiveness assessment, we implemented the
trained model on an embedded system (the Raspberry Pi 4
GB), assumed to be a PV inverter controller.

Inference latency, CPU utilization, memory footprints were
recorded to evaluate the feasibility of edge deployment based
on the Edge Al optimization strategies proposed in Li et al.
(2023).

The computation overhead can be reduced by 35% through
model pruning and quantization with no much accuracy
degradation, indicating the scalability towards distributed PV
installations.

3.8. Ethical, Security and Reproducibility Aspects

All the implemented datasets were open-sourced and
anonymized; therefore, they did not contain any human or
sensitive data. Experiments adhered to the FAIR data
principles—findable, accessible, interoperable and reusable.
Model checkpoints, hyper-parameter logs and version control
was performed via MLflow for transparency and
reproducibility (Munir et al., 2023) ©1,

All simulations ran in a controlled network sandbox to
preclude the systemic access on the live grid accreditation
paths.

4. Results

Experimental results demonstrate the efficacy of the
proposed Al-based hybrid CNN-RNN model for identifying
cyber threats in a photovoltaic (PV) smart-grid network.
Comparing with baseline models, we achieve improvements
across detection accuracy, precision and resilience measures.
Performance results, visualization of evaluation metrics and
an analysis of the model cyber-resilience in simulated attack
scenarios are provided in this section.
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Fig 1: Model Accuracy Comparison

Description:

A bar chart for the detection accuracies and comparison of
four algorithms (SVM, RF, MLP and the hybrid CNN-RNN)
is illustrated in Figure 1.

Key Findings:

*  CNN-RNN proved to be the best-performing model with
accuracy of 97.3% followed by MLP (93.6%), RF
(91.2%) and then SVM (88.5%).

*  Hybrid model’s betterment of nearly 6% over that for RF

demonstrates its ability to better learn static (spatial) and
dynamic (temporal) patterns in PV-SCADA data.

Interpretation:

This result supports intuition that connection between
convolutional and recurrent layers provides more
generalization capability than classical ML-based classifiers
asin (Linetal., 2023) ¥ and Yu et al. (2022) 19, |t designates
the CNN-RNN as a benchmark model for future
comparisons.

o
=)

—e— Training Loss
—=— Validation Loss

6 8 10
Epochs

Fig 2: Loss on Train and Validation per Epoch

Description:
Figure 2 shows how the training and validation losses change
over ten epochs.

Key Findings:

e Both losses reduce gradually and become overlapped
since the 8th epoch which indicates good learning; there
is no obvious overfitting.

e The validation loss closely follows the training loss,

demonstrating strong generalization.

Interpretation:

[LT17,9] 10 The fact that this range is stable means our model
has effectively trained its parameters against noise, a result
which corroborates the findings in [AWH+18]. (2022) who
highlighted adaptive optimization for IDS models in cyber-
physical grid.
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Fig 3: Confusion Matrix of CNN-RNN Model

Description:

The confusion matrix showing classification performance in
the four traffic categories: Normal, FDI (False Data
Injection), DoS (Denial-of-Service), and Insider attacks is
shown in Figure 3.

Key Findings:

e High diagonal values indicate a high class-wise accuracy
(> 95% each).

e Misidentifications are restricted mostly between FDI and

DoS because they have common temporal aspects in
command flow characteristics.
e The overall Precision and Recall are over 94%.

Interpretation:

The well detection under various attacks shows that the
CNN-RNN has the ability to recognize slight as well as
severe faults, thereby proving its potential in real-time PV
cyber monitoring (Harrou, 2023; Cooper et al., 2023) 32,

1.0 CNN-RNN (AUC=0.98)
Random Forest (AUC=0.92)
— SVM (AUC=0.88)
0.8
]
T
< 0.6
]
=
.E
&
0 0.4¢
=]
=
0.2}
0.0
0.0 0.2 0.4

False Positive Rate

06 0.8 1.0

Fig 4: ROC Curve Comparison

Description:

The Receiver Operating Characteristic (ROC) curves of the
CNN-RNN, Random Forest, and SVM models are shown in
Fig. 4.

Key Findings:

e The CNN-RNN has the most sharply curved curve near
the top-left corner with AUC = 0.98, better than Random
Forest (0.92) and SVM (0.88).

e Higher value of AUC represents more sensitivity (or
true-positive rate) and less false positive rate.

Interpretation:

This higher AUC value proves the robustness of the hybrid
approach for different assault intensities and noises levels. It
corroborates prior results that deep neural ensembles offer
711 fine protection against cyber-attacks in the smart grid
(Munir et al., 2023; NERC, 2022) 671,
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5. Discussion

5.1. Overview of Findings

The findings of this study indicate that Al, in particular the
consolidated DL model, can effectively enhance the cyber-
resilience of smart-grid integrated PV systems towards cyber-
attacks.

The proposed CNN-RNN based framework also performed
better than traditional machine learning (ML) based
algorithms, i.e., SVM, RF and MLP with a detection accuracy
of 97.3% and AUC = 0.98 (Fig. 4). These results are
consistent with Lin et al. (2023) B! who shared similar
increases in performance when applying deep reinforcement
learning for FDI detection.

The greater performance of CNN-RNN indicates that the
hybrid architectures which incorporate both spatial patterns
(by means of CNN) and temporal contexts (by means of
RN/LSTM) can provide solid detection in many cyber-
attacks’ types on PV networks.

5.2. Interpretation of Model Performance

The results of bar chart (Figure 1) indicate that there is a
remarkable performance jump due to hybrid deep learning,
relative to conventional base algorithms. SVM and RF
annotated PV communication traffic with only moderate
accuracy (88-91%) due to inability to model sequential
dependencies. On the other hand, the CNN-RNN model
captured context and time-aware attacks signatures that
change over streams of data. This aligns with Yu et al. (2022)
120 whose hypothesis was that deep models can learn
automatically nonlinear, multiscale correlations which
traditional classifiers are not able to perceive.

The training—validation loss curve (Figure 2) shows cross-
convergence of both curves with no overfitting, suggesting
their convergence is well optimized. Such stable training also
could be observed in previous energy sector IDS studies
Anwar et al. (2022) ™M confirm the effectiveness of adaptive
learning and regularization methods unable to train other
deep architectures ibidem).

The confusion matrix (Figure 3) also reveals that four
categories have a balanced classification quality including
Normal, FDI, DoS and Insider with precision and recall
greater than 94%. Some small confusions between FDI and
DoS are inevitable, since temporal profiles of both the attacks
coincide (Cooper and Hill & Bretas, 2023) 21,

Overall, these findings confirm the CNN-RNN model can
effectively distinguish between short-term high-volume
disrupt attacks (DoS type) and slow subtle false data injection
(FDI type), two of the most prevalent but difficult-to-detect
attack models in smart solar systems.

5.3. Cyber-Resilience Implications

The cyber-resilience of smart grids is the system’s capacity
to predict, resist, recover from, and adapt to cyber-attacks
(NIST, 2020) ©, The presented Al model primarily improves
the three fundamental dimensions of resilience:

Fast and Accurate Detection: High accuracy, low false
alarm rate speeds operator reaction to reduce system
downtime.

Learning Sensibility—Generalization: Generalizing
patterns from unknown attacks allow CNN-RNN to be
resilient against Zero-Day threats (Munir et al., 2023; Shetty
& Rawat, 2022) [,
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Self-defense Reliance: Paired with edge-Al deployment, the
device has ability to sense the environment and capable of
self-healing without dependence on back-end/center control
(Li, Zhou, & He., 2023).

These findings are in line with the NERC (2022) [
recommendations on proactive and distributed defense for
DERs. The hybrid model therefore not only enhances
anomaly detection, but it also facilitates the self-adaptive
cyber-resilience  necessary  for  future  smart-grid
infrastructures.

5.4. Comparison with Previous Studies

Previous studies were heavily leaning toward the intrusion
detection of generic smart grid rather than that of PV such
infrastructures.

Aoufi, Elbrahmi, and Boulmalf (2020) investigated FDI
strategies which were not applicable in real-time. Our
approach generalizes their work by modeling temporal
statistics so that monitoring is always on.

Harrou (2023) B! highlighted PV-specific vulnerabilities
including inverter manipulation, and unauthorized access; the
current findings present a data-informed mitigation approach
for countering such threats.

Cooper et al. (2023) [ prove better performance of anomaly
detection on the transmission through similar approach;
however, our methodology applies to distributed PV systems
and verifies the applicability of the CNN-RNN in
decentralized situation.

Additionally, the obtained AUC = 0.98 exceeds the reported
value of 0.95 by Yu et al iction: For you reference only.
(2022) for grid-wide IDS, which highlights the effectiveness
of domain-adapted architectures that fuses operational PV
data with benchmark datasets.

Therefore, this work goes beyond the state-of-the-art, by
proposing a PV-oriented Al framework that can operate on
both control-center and inverter levels.

5.5. Practical Applications and Implementation Potential
Operationally, there may be several advantages to deploying
Al-based intrusion detection in PV systems:

e Live threat monitoring: Al models can immediately
process inverter and network readings for any extraneous
behavior without any human interference.

e Saloet (18-02-2020) Predictive maintenance Detected
anomalies can be due to equipment malfunction or
configuration drift indicating early corrective action.

e Cost Reduction: Automatic detection decreases the
need for human monitoring in energy control centres.

e Edge scalability: Compressed Al models can be
deployed on edge devices (inverters, gateways) to lower
latency and increase fault tolerance (Li et al., 2023) 11,

This practical results supplement IEC 62351 and NISTIR
8259A standards regarding secure communication as well as
baseline requirements for grid assets to be a part of the IoT.
By incorporating Al-based intrusion detection into these
frameworks, the regulatory compliance and grid reliability
could be substantially enhanced.

5.6. Limitations and Further Research

There are several limitations of our approach, which suggest
directions for future research.
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Despite the favorable outcomes, there are still some
limitations.

First, the model relies on generic benchmark datasets
(CICIDS2017 and UNSW-NB15), which are comprehensive
but do not contain solar-specific operational parameters.
Future research would provide the general framework for a
non-proprietary PV intrusion dataset such as inverter
telemetry, irradiance, and power-flow patterns (Rahim et al.,
2023) 1,

Two, deep learning models are expensive to compute. Real-
time deployment on limited resource controllers may still
suffer from latency and energy efficiency concern, even after
pruning. Some lightweight approaches such as federated
learning and model quantization can address this issue
(Zhang, Lin, & Yang, 2023) 14,

Third, the system is currently working as a detection layer; it
may be further combined with automatic response and
recovery mechanism to form complete closed loop cyber
defense.

Finally, provide explanations (XAIl) to guarantee that
operators really trust Al decisions, especially for critical
infra- structure scenarios (Munir et al., 2023) [6],

5.7. Summary

In conclusion, the research confirms that Al-based CNN-
RNN IDS for PV smart grid vastly improves detection
performance as well as cyber-resilience compared to
traditional methods.

The model capacity to integrate spatial-temporal feature
learning and adaptive inference provides a solid base for
intelligent self-defending renewable-energy systems.

By connecting research and practice in artificial intelligence
with those working on energy systems, this work also helps
to accelerate secure, sustainable, autonomous smart-grid
deployments consistent with worldwide clean-energy and
cybersecurity objectives.

6. Conclusion

The popularisation of smart photovoltaic (PV) systems in
contemporary power systems has, however, substantially
reversed how electricity is produced, controlled and
protected. And as the world’s energy industry moves toward
more digital, data-driven infrastructures, this need to solve
for cybersecurity resilience becomes an essential prerequisite
for operational game reliability. In this work, we developed
and validated an artificial intelligence (Al) based hybrid IDS
combining CNN and RNN to secure the PV networks in
smart-grid environment.

The CNN-RNN hybrid model performed better with 97.3%
detection accuracy and AUC of 0.98 compared to that from
traditional ML methods (SVM, Random Forest, or MLP).
The performance improvements indicate that deep
architectures are capable of learning spatial correlations and
temporal dependencies between PV communication and
SCADA data, to facilitate early detection of sophisticated
cyberattacks like FDI, DoS and insider manipulation. The
results corroborate those reported by Lin et al. (2023) and Yu
et al. (2022) 1% which proved that the hybrid deep-learning
models provide better accuracy and flexibility to critical-
infrastructure cybersecurity.

In addition to classification performance, the framework also
has a beneficial impact on cyber-resilience improvement
from the perspectives of detection latency, false-alarm rates
and maintaining stability when attacked. These capabilities
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are consistent with NERC (2022) [l and NIST (2020) E
guiding principles for DERs which focus on autonomous
detection, rapid response, and adaptive recovery. The
proposed model exhibits a perfect convergence property and
symmetric confusion matrix, indicating the strong
generalization ability to qualify it for both central control
centers and inverter controllers on the edge side. Edge-aware
optimization approaches from Li, Zhou and He (2023) 1 also
provide evidence for the ability to embed these models in
low-power PV systems.

From a policy standpoint, the research highlights the
necessity of integrating Al-driven cybersecurity architectures
into current renewable-power governance systems. Adopting
Al-driven intrusion detection (with IEC 62351 and NISTIR
8259A) can improve grid security by enabling real-time data-
centric decision making. The findings also recommend for
government and utility sector partnership in creating domain-
specific PV cyber-incident datasets to better train models and
benchmarks.

The study, however, has highlighted some limitations despite
its robust performance. Reliance on benchmark datasets
(CIC-1DS2017 and UNSW-NB15) reduces the real network
PV traffic's representativeness. Future research should
therefore aim to develop PV-specific cyber datasets that
integrate inverter telemetry, irradiance and weather data
(Rahim et al., 2023) I, The high computational cost of deep
networks also prompts further investigation on lightweight
and federated-learning methods (Zhang et al., 2023) (!4, In
addition, having to accommodate explainable Al (XAl)
mechanisms will also become critical as part of operator trust
and regulatory transparency (Munir et al., 2023) [,

In conclusion, this study is one of the few and first attempts
to show strong empirical evidence that Al-driven hybrid deep
learning models have a potential to enhance cybersecurity
and system resilience in PV-based smartgrids. By addressing
the divide between theoretical Al based research and energy
oriented real-world applications, the proposed framework
can lead to secure, self-healing and sustainable smart-energy
infrastructure with resilience against rapidly changing cyber-
attack landscapes. The results motivate decision-makers,
scientists and industrialists to consider Al-enabled solutions
as the keystone of future resilient renewable-energy
generation systems.
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