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Abstract 

Integration of photovoltaic (PV) systems in modern smart grids has turned old energy 

networks into intelligent and integrated structures. Yet, this digitalization creates also 

new cybersecurity threats, since PV inverters, controllers and IoT-based sensors 

represent attack surfaces for attackers. In this work, we present an AI-based intrusion 

detection system for the detection and classification of cyberattacks against PV 

networks. The adopted architecture is a hybrid deep learning model, integrating CNN 

and RNN, to exploit features related to both spatial dependencies among network 

traffic and temporal dynamics for power-flow data. On benchmark intrusion datasets 

(CIC-IDS2017, UNSW-NB15) and injecting PV-SCADA legitimate traffic from 

simulation engine, the model has achieved detection accuracy of 97.2% and AUC 

score of 0.98 which significantly outperforms traditional machine learning algorithms 

such as SVM and Random Forest. It is also showing strong ability in detecting false 

data injection, denial-of-service and insider attacks with a low rate of false positives. 

In addition, deployment simulation in a smart grid environment demonstrates that the 

proposed framework is capable of real-time adaptive threat monitoring over 

distributed PV end host. Results validate the artificial intelligent as an effective 

method to improve cyber resilience and operational reliability for smart solar facilities. 

The paper ends with a suggestion to introduce AI powered intrusion detection 

mechanisms through EMS and cybersecurity legislations in RE networks. 
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1. Introduction 

1.1. Background 

The energy sector is global in transition towards decentralized, intelligent and sustainable systems. Within renewable energy 

technologies, photovoltaic (PV) systems have experienced the most rapid growth in electricity generation and are widely 

recognized as a scalable, cost-effective and environmentally beneficial electricity source. As reported by the International Energy 

Agency (IEA, 2023), global solar PV installed capacity exceeded 1 terawatt in 2023, reaching a historical turning point of de-

carbonized transformation and energy transition toward carbon-neutral target. The proliferation of distributed PV resources in 

smart grids (power systems featuring advanced communication, sensing, and automation) has made the energy systems more 

efficient and dynamic to manage (Xiang et al., 2025). 

But at the same time, this digital disruption has also increased the cyberattack surface of power grids. Conventional electrical 

systems which were discrete and operated manually are now interconnected through cloud-based platforms, iOT sensors and 

Supervisory Control and Data Acquisition (SCADA) system (Rahim et al., 2023) [9]. As a result, PV systems – from household 

inverters to centralized solar farms – can now be entry points for cybersecurity penetrations that impact energy supply and grid 

stability (Harrou, 2023) [3]. 
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1.2. Cyber Challenges in PV Networks 

The exchange of operational data between PV systems and 

grid operators relies on a sophisticated ecosystem of smart 

inverters, gateways, controllers and communication links. 

These devices talk over standard industrial protocols like 

Modbus, DNP3 and IEC 61850, many of which do not boast 

contemporary encryption or authentication features. 

Attackers may leverage these weaknesses to inject invalid 

measurements, control inverter set-points or cause DoS-type 

attacks to the power flows (Aoufi, Elbrahmi & Boulmalf, 

2020). 

Recent episodes highlight the industry’s rising anxiety. 

Harrou (2023) [3] find that also single residential PV systems 

are easy target for FDI and command attacks capable of 

inducing severe grid imbalance. Rahim et al. (2023) [9] 

highlighted security weaknesses of hybrid solar-grid 

infrastructures, e.g. that attackers could compromise 

communication channels between distributed generators and 

control centers. The growing convergence of OT and IT 

layers results in that an attack against any system level 

(device, network or cloud) can spread through the grid, 

causing loss to the cyber-physical integrity of its 

infrastructure. 

Signature-based intrusion detection systems (IDS) are 

underpowered in such dynamic environments. These systems 

use predefined attack signatures and have difficulty in 

identifying zero-day attacks, stealthy data tampering or 

anomalies due to device behavior. With the advances in grid 

infrastructures, static defense mechanisms have become 

inadequate and smarter approaches, such as learning methods 

should scrutinize huge amount of real-time heterogeneous 

data streams (Munir et al., 2023) [6]. 

 

1.3. Role of Artificial Intelligence in Smart-Grid Cyber 

Defense 

Artificial intelligence (AI), especially machine learning (ML) 

and deep learning (DL), has demonstrated its effectiveness 

for securing dynamic threat landscape in smart grids. AI can 

be used to automatically learn identifiable patterns of good 

behaviour so that the predictive capacity of a cyber threat -- 

detection system is enhanced with minimum false - positive 

error rate (Yu et al., 2022) [10]. In PV networks, AI facilitates 

automated threat detection/adaptive response/self-healing in 

the grid control space. 

Facilities for Voluntary Facility-level Ohi et al. (2023) have 

shown that capturing complex spatial and temporal 

dependencies of network traffic and system telemetry can be 

successfully achieved using deep learning architectures such 

as convolutional neural networks (CNNs) and recurrent 

neural networks (RNNs). CNNs learn spatial features in a 

high-dimensional input space, while RNNs---e.g., Long 

Short-Term Memory (LSTM) based networks---capture 

sequential dependencies along time axis and help identify 

attack behavior that evolves gradually. 

In addition, AI-based systems possess scalability and 

flexibility features that the traditional IDS architecture do not 

have. AI can be deployed at the edge of PV domain including 

smart inverters and microgrid controllers, which enables 

intrusion detection to be conducted on site with less latency 

and communication overhead (Li, Zhou, & He, 2023) [4]. This 

edge-AI paradigm allows near real-time reaction and yields 

self-sufficient smart grids vision, which remains resilient 

under coordinated cyber-attacks. 

 

1.4. Research Gap and Rationale 

Though increasing amount of works have been conducted for 

AI-based intrusion detection in the context of general smart 

grids 1, the PV intra-grid security challenges is currently 

scanty. PV plants are unlike conventional power systems in 

several aspects: 

They’re also extremely diffuse, with many being operated by 

multiple private entities. 

They use energy-efficient constrained hardware compute 

units. 

Their operating records, such as voltage, current, irradiance 

and inverter states display typical temporal variation and 

environmental noise. 

These traits require deployments of custom-designed AI 

infrastructures to process PV based data patterns and cyber 

threats. The current publications have been conducted with 

generalized datasets such as CIC-IDS2017, or UNSW-NB15 

and etc., which are valuable in their own rights but do not 

include the contextually-imbedded attributes of solar 

SCADA environments. An opportunity for research is the 

development of domain-adapted, hybrid AI systems that 

combine real and synthetic PV data to improve detection 

accuracy, minimize false alerts, and operate on edge-devices. 

 

1.5. Research Objectives and Contributions 

This paper proposes to design and compare an AI-based 

intrusion detection framework specifically optimized for PV 

networks as a part of smart grids. The primary objectives are: 

1 To develop a hybrid CNN–RNN model for multiple attack 

detection (FDI, DoS, probing and insider) in PV 

communication network. 

To test the model using state of the art intrusion benchmarks 

and simulated PV-SCADA traffic. 

To investigate to what extent the framework contributes to 

enhancing cyber-resilience metrics, such as detection 

accuracy, latency and recovery response. 

This research work is of value to both academic and industry 

as follows: 

• Showing the merit of deep learning in cp-PV networks. 

• Offer development of a scalable and adaptable prediction 

model which can be combined with energy management 

systems. 

 

Providing policy-relevant insights for how policymakers 

should consider integrating AI-informed cybersecurity 

measures into governance frameworks of renewable energy 

(NERC, 2022; NIST, 2020) [7, 8]. 

 

1.6. Paper Structure 

The rest of this paper is structured as follows. 

The literature related to AI-empowered cybersecurity in 

smart grids and PV systems is reviewed in Section 2. 

Section 3 describes the methodology for research, including 

dataset construction, model design and evaluation metrics. 

Section 4 presents results of experiments, the performance 

analysis and visualization. 

In §5 we analyze the findings, discuss implications for cyber-

resilience and outline future research. 

IV) Section 6 closes the paper with suggestions for the 

deployment of AD_IDSs on real world PV systems. 
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2. Literature Review 

2.1. Cybersecurity Landscape in Smart Grids and PV 

Networks 

Conversion of the electric grid to a smart, data-driven 

ecosystem has dramatically transformed cyber risk in the 

energy sector. The modern smart grids combine various 

renewable energy resources (solar PV, wind, etc), and battery 

systems together sharing in a cyber- physical environment 

with cloud computing, Internet of Things (IoT) devices and 

supervisory control and data acquisition (SCADA) systems 

(Rahim et al., 2023) [9]. 

With that integration, which certainly increased the 

efficiency and capability of energy use, also came an increase 

in susceptibility to cyber-attacks for grid-related devices who 

may have been influenced by malware or data corruption, or 

be subjected denial-of-service (DoS) attacks (Cooper et al., 

2023) [2]. 

In this regard, PV systems formed by smart inverters, remote 

monitoring modules and distributed controllers are 

considered to be an attractive attack surface for cyber 

adversaries (Harrou, 2023) [3]. Inverter firmware or network 

communication can be attacked resulting in unsafe operating 

conditions, and voltage/frequency-compensation profiles 

may be destabilized on the broader grid (NERC 2022) [7] 

Misinformation and false data attack (FDI), replay, and 

spoofing emerged as the major threats to PV infrastructures 

according Harrou (2023) [3] whereas the proliferation of such 

attacks was observed by Rahim et al. (2023) [9], compromised 

communication channels can be abused by attackers to re-

shape energy dispatch or control signals. Incidents such as 

these emphasize the need for intelligent, real-time intrusion 

detection systems (IDS) that can adapt to the emerging cyber-

physical environment of solar networks. 

 

2.2. Traditional Cybersecurity Solutions and Their 

Follow Problems 

In traditional cybersecurity of energy systems, the defensive 

measures include firewall protection, encryption and rule-

based detection. They are good for the well-defined 

perimeters of the network, when it comes to distributed 

energy systems, they are not designed to dynamically adjust 

themselves (Aoufi, Elbrahmi, & Boulmalf, 2020). 

IDS-based solutions that are rule-based (such as signature 

based) depend on the fact that attack signatures must already 

be known a prior and thus require pre-defined attack 

signatures; such solutions do not handle novel or zero-day 

attacks well. Furthermore, heterogeneity of personal view 

devices (e.g., vendors and communication protocols) 

complicates the maintenance of signatures. 

According to Cooper et al. (2015) [2], static threshold-based 

anomaly detection introduces high false positive rates which 

could be a source of the operator alert fatigue. Likewise, 

classic statistical methods like residual and error detection, 

are unable to properly describe nonlinear relationships among 

cyber and physical features for distributed PV systems (Yu et 

al., 2022) [10]. 

Therefore, research has been focused on machine learning 

(ML) and deep learning (DL) algorithms which are able to 

learn data complex patterns and can even detect changing 

network environments. 

 

2.3. The Rise of AI and Machine Learning for Smart-Grid 

Cybersecurity 

AI and ML have become popular in the recent years for 

adaptive intrusion detection on smart grids. Such approaches 

can process big streams of time-series data to distinguish 

abnormal events in both communication and control planes. 

Anwar, Sokolov, and Sandberg (2022) [1] provided evidence 

that supervised ML models including SVM and RF are 

superior to classical IDS mechanisms for detecting SCADA 

network anomalies. However, these models are still highly 

dependent on feature engineering and ineffective in learning 

the temporal dependencies in grid-sequential data. 

To overcome these weaknesses, DL, and particularly CNNs 

and RNNs, have been proposed for smart-grid security. 

CNNs have an advantage in learning spatial dependencies in 

network traffic or controlling features and RNNs, particularly 

LSTM models, are able to learn a time-dependent 

characteristic attack pattern (Lin et al., 2023) [5]. 

Munir et al (2023) [6] presented a trustable AI model for 

proactive detection of cybersecurity in smart grid and risk 

justification, which combined DRL and XAI to improve 

systematic transparency. Their work emphasizes the 

importance of interpretable and autonomous models, which 

can make a difference not only in terms of detection accuracy 

but also for the operator level. 

 

2.4. AI-Powered Intrusion Detection in PV Systems 

Despite the extensive work conducted on AI for smart-grid 

security, little research has focused specifically on PV 

network security. There are specific issues related to the PV 

components, which have substantial differences from 

traditional grid elements: 

• Decentralisation—Each inverter of the several thousands 

of small PV systems which connect to central 

aggregators/utility speaks to these over public networks. 

• Data variability—the operational data of PV systems 

fluctuate with the brightness of the sun, temperature and 

other isolated environmental factors making it hard to 

detect an anomaly. 

• Resource limitations-Devices on the edge (eg., inverters) 

have constrained processing capabilities, requiring 

lightweight AI models so that they can be supported (Li, 

Zhou, & He, 2023) [4]. 

 

Harrou (2023) [3] evaluated PV-specific security concerns and 

pointed out AI tools have to be tailored to solar working 

conditions as they exhibit different operational patterns. 

Rahim et al. (2023) [9] adapted the threat modeling and risk 

assessment framework (STRIDE/DREAD) to hybrid solar 

grids, with FDI, spoofing and privilege escalation identified 

as key threats. Their discovery further confirms the 

motivation behind domain specific AI models instead of the 

general grid-based detectors. 

Recent efforts have started filling this gap. Xiang et al. (2025) 

demonstrated the effectiveness of hybrid CNN–RNN models 

in renewable-energy cybersecurity, with detection accuracies 

exceeding 96% in simulated PV analyzes. They make use of 

spatial information extracted from communication packets 

and from temporal inverter telemetry data for multi-layer 

anomaly detection.  
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Similarly, Yu et al. (2022) [10] designed a deep neural IDS 

with robust resistance against both FDI and DoS attacks for 

smart grids, indicating strong transferability to PV networks. 

Nevertheless, there is an abundance of these works based on 

benchmark datasets (e.g., CIC-IDS2017, UNSWNB15) 

which do not capture PV-specific control and environmental 

information (Cooper et al. The lack of public PV intrusion 

datasets restricts the training and verification of AI-model in 

actual scenes which constitutes a key research challenge. 

 

2.5. Edge AI and Federated Learning for PV 20 Cyber 

Defense 

The rising realizing of edge computing for smart grids is why 

real-time analytics can be performed locally on equipment. 

With Edge AI, Intrusion Detection may be performed at the 

vicinity of data sources; i.e., PV inverters, reducing latency 

and bandwidth consumption (Li et al., 2023) [4]. 

Li et al. presented an efficient Edge AI framework with 

model compression and quantization for deployingDL 

models on microcontrollers. This design promotes robustness 

by pushing security analytics closer to the edge of the 

network and reliance on cloud platforms, which might be 

affected by network outages or single point of attacks. 

In addition, federated learning (FL) emerges as a privacy-

preservingAI paradigm. FL allows multiple decentralized PV 

systems to jointly train a global IDS model without sharing 

their raw data, which can solve the data-sovereignty and 

privacy issues (Zhang et al., 2023) [11]. The fusion of FL and 

edge AI can be used to establish an expandable and secure 

learning framework for distributed PV cybersecurity. 

 

2.6. Challenges and Research Gaps 

Although great progress has been made, terms of technical 

and practical applications of AI in PV cybersecurity still 

exist: 

 

Dataset Shortcomings: Existing publicly available datasets, 

CIC-IDS2017 and UNSW-NB15 do not cover PV systems 

without the inverter telemetry and environmental context. 

 

Explainability and Trust: AI models often serve as “black 

boxes.” This makes the operator not trust decisions done 

automatically. Explainable AI (XAI) methods should be 

included for offering human-interpretable explanations 

(Munir et al., 2023) [6]. 

 

Deployment scalability: The heavy-duty computation 

brought by the deep models make it difficult to deploy in 

embedded solar devices (Li et al., 2023) [4]. 

 

Gaps in Standardization: There are no worldwide cyber 

security standards that specify how to measure the resilience 

of DSA with AI (NIST, 2020; NERC, 2022) [8, 7]. 

 

Real-World Verification: There has been limited work to 

assess AI-IDS performance in real PV networks or hardware-

in-the-loop simulations. 

 

Meeting these challenges will necessitate coordinated efforts  

among research, grid operators, and policymakers to develop  

domain-specific datasets, lightweight models and regulatory 

frameworks for AI-secured PV systems. 

 

2.7. Summary of Literature Insights 

The literature reviewed demonstrated that AI—including 

hybrid deep learning—has the capability to transform PV 

system security in smart grid. Yet, one shouldadjust these 

models based on how the cyber-physical infrastructure ofPV 

system differs as well as the varying environment that it 

operates in. Although, the available literature proves the high 

accuracy of CNN–RNN and reinforcement learning based 

models for generic smartgrid anomaly detection but lacks in 

validating them on PV data. Hence, this study aims to fill 

these gaps and suggests an AI-based IDS scheme tailored for 

the AP architecture of a PV system by exploiting both 

benchmark and simulated datasets to enable high 

performance in accuracy, robustness and adaptability. 

 

3. Methodology 

3.1. Research Design 

This work leverages an experimental and data-driven design 

for the development, training and validation of a smart-grid-

tailored artificial-intelligence-based intrusion detection 

model for PV networks. The approach uses a hybrid deep-

learning model (CNN–RNN) to learn spatial and temporal 

patterns in PV communication traffic and SCADA telemetry. 

The model development protocol used here is following the 

one described by Anwar et al. (2022) [1] and extended by Lin 

et al. (2023) [5] cyber-physical power-system anomaly 

detection. 

 

3.2. Data Sources 

3.2.1. Benchmark Datasets 

Due to the limited availability of PV-specific cybersecurity 

datasets (generally available in public), we used two open 

benchmark intrusion datasets, which are commonly used in 

energy informatics as follows: 

• CIC-IDS2017 (University of New Brunswick, 2017) – to 

model labeled network traffic for various attack types 

such as DoS, infiltration and brute-force flows. 

• UNSW-NB15 (UNSW Canberra, 2021) – comprised of 

nine types of attack packets and flow features. 

 

Both datasets were chosen due to their good coverage on 

attack behaviors and are appropriate for supervised/hybrid 

learning-based approaches (Yu et al., 2022) [10]. 

 

3.2.2. Simulated PV-SCADA Data 

For domain relevance, a simulated PV communication was 

developed in MATLAB/Simulink connected with the OPAL-

RT real time modules. Operating variables—voltage, current, 

irradiance and inverter control signals—were recorded 

during normal and attack conditions. Facing these threats 

including false-data injection (FDI), malicious command 

manipulation, and denial-of-service (DoS) were injected, 

based on the threat models from Rahim et al. (2023) [9] and 

Harrou (2023) [3]. The synthetic data set was integrated into 

benchmarking data to enrich the feature diversity and context 

realism. 

 



International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com  

 
    1264 | P a g e  

 

3.3. Data Pre-Processing 

Raw data was preprocessed in multiple steps. 

Data Cleaning: excluding nulls, duplicates or corrupt data. 

Feature Extraction: 45 network, transport and application-

layer properties along with PV telemetry parameters are 

chosen to be the features. 

 

Normalization: We used z-score standardization to 

normalize features and reduce the scale variance, following 

best practices for neural models (Yu et al., 2022) [10]. 

PCA Reduced Dimension: The PCA was performed to reduce 

to 95% variance, keeping the computational efficiency in 

mind. 

Data were divided into 70% training, 15% validation and 

15% test. 

 

3.4. Model Architecture 

The hybrid CNN–RNN model (Figure a: conceptual) was 

composed of: 

• CNN Module: two 1-D convolutional layers (kernel size 

= 3, ReLU activation, batch normalization) for encoding 

of spatial dependences among feature vectors. 

• RNN Module: two LSTM layers (64 units each) stacked 

to model the temporal attack sequences. 

• Dense Layer: final fully connected output layer with 

softmax activation for multi-class classification. 

 

We used the Adam (LR = 0.001) for model training with 

categorical cross-entropy loss. Early stopping was activated 

after five epochs of stopped optimization on the validation 

set. We implemented both in TensorFlow 2.10 and compared 

with the SVM, Random Forest and Multilayer Perceptron as 

baselines from a performance benchmarking perspective 

following the comparison framework of Cooper et al. (2023) 

[2]. 

 

3.5. Model Training and Validation 

Training was carried out on a workstation with GPU support 

(NVIDIA RTX 3060, 12 GB of RAM). 

Each experiment performed for 50 epochs, with batch 

size=64. k-fold cross-validation (k = 10) was used to prevent 

overfitting and reduce bias. 

Performance metrics included: 

• Accuracy (ACC) 

• Precision (P) 

• Recall (R) 

• F1-Score (F1) 

• ROC-Area Under Curve (AUC) 3.1 Implementations the 

Logistic Regression and Random Forest classifiers were 

implemented using a highly optimized and widely used 

example from the scikit-learn library [32]. 

 

These criteria allowed for a multi-dimensional performance 

measurement, proposed by Lin et al. (2023) [5] and Munir, 

Shetty, Rawat (2023) [6]. 

 

3.6. Cyber-Resilience Evaluation 

In addition to the classifiers, their study evaluated another set 

of cyber-resilience metrics that indicates how well network 

systems can detect or recover from attacks: 

2.7 Detection Latency (DL) DL is the time duration between 

attack initiation and model alert. 

 

False Alarm Rate (FAR): ratio of benign traffic that is 

misclassified as malignant. 

RI was a composite index,  

 

RI = (1 − FAR) × (TTDref / TTD) × system availability (%). 

 

These indices correspond to the resilience measures 

recommended in NERC (2022) [7] and NIST (2020) [8] 

distributed energy systems frameworks. 

3.7. Edge Deployment Simulation 

For online reactiveness assessment, we implemented the 

trained model on an embedded system (the Raspberry Pi 4 

GB), assumed to be a PV inverter controller. 

Inference latency, CPU utilization, memory footprints were 

recorded to evaluate the feasibility of edge deployment based 

on the Edge AI optimization strategies proposed in Li et al. 

(2023). 

The computation overhead can be reduced by 35% through 

model pruning and quantization with no much accuracy 

degradation, indicating the scalability towards distributed PV 

installations. 

 

3.8. Ethical, Security and Reproducibility Aspects 

All the implemented datasets were open-sourced and 

anonymized; therefore, they did not contain any human or 

sensitive data. Experiments adhered to the FAIR data 

principles—findable, accessible, interoperable and reusable. 

Model checkpoints, hyper-parameter logs and version control 

was performed via MLflow for transparency and 

reproducibility (Munir et al., 2023) [6]. 

All simulations ran in a controlled network sandbox to 

preclude the systemic access on the live grid accreditation 

paths. 

 

4. Results 

Experimental results demonstrate the efficacy of the 

proposed AI-based hybrid CNN–RNN model for identifying 

cyber threats in a photovoltaic (PV) smart-grid network. 

Comparing with baseline models, we achieve improvements 

across detection accuracy, precision and resilience measures. 

Performance results, visualization of evaluation metrics and 

an analysis of the model cyber-resilience in simulated attack 

scenarios are provided in this section. 
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Fig 1: Model Accuracy Comparison 

 

Description: 

A bar chart for the detection accuracies and comparison of 

four algorithms (SVM, RF, MLP and the hybrid CNN–RNN) 

is illustrated in Figure 1. 

 

Key Findings: 

• CNN–RNN proved to be the best-performing model with 

accuracy of 97.3% followed by MLP (93.6%), RF 

(91.2%) and then SVM (88.5%). 

• Hybrid model’s betterment of nearly 6% over that for RF 

demonstrates its ability to better learn static (spatial) and 

dynamic (temporal) patterns in PV-SCADA data. 

 

Interpretation: 

This result supports intuition that connection between 

convolutional and recurrent layers provides more 

generalization capability than classical ML-based classifiers 

as in (Lin et al., 2023) [5] and Yu et al. (2022) [10]. It designates 

the CNN–RNN as a benchmark model for future 

comparisons. 
 

 
 

Fig 2: Loss on Train and Validation per Epoch 

 

Description: 

Figure 2 shows how the training and validation losses change 

over ten epochs. 

 

Key Findings: 

• Both losses reduce gradually and become overlapped 

since the 8th epoch which indicates good learning; there 

is no obvious overfitting. 

• The validation loss closely follows the training loss, 

demonstrating strong generalization. 

 

Interpretation: 

[LT17,9] 10 The fact that this range is stable means our model 

has effectively trained its parameters against noise, a result 

which corroborates the findings in [AWH+18]. (2022) who 

highlighted adaptive optimization for IDS models in cyber-

physical grid.
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Fig 3: Confusion Matrix of CNN–RNN Model 

 

Description: 

The confusion matrix showing classification performance in 

the four traffic categories: Normal, FDI (False Data 

Injection), DoS (Denial-of-Service), and Insider attacks is 

shown in Figure 3. 

 

Key Findings: 

• High diagonal values indicate a high class-wise accuracy 

(> 95% each). 

• Misidentifications are restricted mostly between FDI and 

DoS because they have common temporal aspects in 

command flow characteristics. 

• The overall Precision and Recall are over 94%. 

 

Interpretation: 

The well detection under various attacks shows that the 

CNN–RNN has the ability to recognize slight as well as 

severe faults, thereby proving its potential in real-time PV 

cyber monitoring (Harrou, 2023; Cooper et al., 2023) [3, 2]. 

 

 
 

Fig 4: ROC Curve Comparison 

 

Description: 

The Receiver Operating Characteristic (ROC) curves of the 

CNN–RNN, Random Forest, and SVM models are shown in 

Fig. 4. 

 

Key Findings: 

• The CNN–RNN has the most sharply curved curve near 

the top-left corner with AUC = 0.98, better than Random 

Forest (0.92) and SVM (0.88). 

• Higher value of AUC represents more sensitivity (or 

true-positive rate) and less false positive rate. 

 

Interpretation: 

This higher AUC value proves the robustness of the hybrid 

approach for different assault intensities and noises levels. It 

corroborates prior results that deep neural ensembles offer 

711 fine protection against cyber-attacks in the smart grid 

(Munir et al., 2023; NERC, 2022) [6, 7]. 
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5. Discussion 

5.1. Overview of Findings 

The findings of this study indicate that AI, in particular the 

consolidated DL model, can effectively enhance the cyber-

resilience of smart-grid integrated PV systems towards cyber-

attacks. 

The proposed CNN–RNN based framework also performed 

better than traditional machine learning (ML) based 

algorithms, i.e., SVM, RF and MLP with a detection accuracy 

of 97.3% and AUC = 0.98 (Fig. 4). These results are 

consistent with Lin et al. (2023) [5] who shared similar 

increases in performance when applying deep reinforcement 

learning for FDI detection. 

The greater performance of CNN-RNN indicates that the 

hybrid architectures which incorporate both spatial patterns 

(by means of CNN) and temporal contexts (by means of 

RN/LSTM) can provide solid detection in many cyber-

attacks’ types on PV networks. 

 

5.2. Interpretation of Model Performance 

The results of bar chart (Figure 1) indicate that there is a 

remarkable performance jump due to hybrid deep learning, 

relative to conventional base algorithms. SVM and RF 

annotated PV communication traffic with only moderate 

accuracy (88–91%) due to inability to model sequential 

dependencies. On the other hand, the CNN–RNN model 

captured context and time-aware attacks signatures that 

change over streams of data. This aligns with Yu et al. (2022) 

[10], whose hypothesis was that deep models can learn 

automatically nonlinear, multiscale correlations which 

traditional classifiers are not able to perceive. 

The training–validation loss curve (Figure 2) shows cross-

convergence of both curves with no overfitting, suggesting 

their convergence is well optimized. Such stable training also 

could be observed in previous energy sector IDS studies 

Anwar et al. (2022) [1] confirm the effectiveness of adaptive 

learning and regularization methods unable to train other 

deep architectures ibidem). 

The confusion matrix (Figure 3) also reveals that four 

categories have a balanced classification quality including 

Normal, FDI, DoS and Insider with precision and recall 

greater than 94%. Some small confusions between FDI and 

DoS are inevitable, since temporal profiles of both the attacks 

coincide (Cooper and Hill & Bretas, 2023) [2]. 

Overall, these findings confirm the CNN–RNN model can 

effectively distinguish between short-term high-volume 

disrupt attacks (DoS type) and slow subtle false data injection 

(FDI type), two of the most prevalent but difficult-to-detect 

attack models in smart solar systems. 

 

5.3. Cyber-Resilience Implications 

The cyber-resilience of smart grids is the system’s capacity 

to predict, resist, recover from, and adapt to cyber-attacks 

(NIST, 2020) [8]. The presented AI model primarily improves 

the three fundamental dimensions of resilience: 

 

Fast and Accurate Detection: High accuracy, low false 

alarm rate speeds operator reaction to reduce system 

downtime. 

Learning Sensibility–Generalization: Generalizing 

patterns from unknown attacks allow CNN–RNN to be 

resilient against Zero-Day threats (Munir et al., 2023; Shetty 

& Rawat, 2022) [6]. 

Self-defense Reliance: Paired with edge-AI deployment, the 

device has ability to sense the environment and capable of 

self-healing without dependence on back-end/center control 

(Li, Zhou, & He., 2023). 

 

These findings are in line with the NERC (2022) [7] 

recommendations on proactive and distributed defense for 

DERs. The hybrid model therefore not only enhances 

anomaly detection, but it also facilitates the self-adaptive 

cyber-resilience necessary for future smart-grid 

infrastructures. 

 

5.4. Comparison with Previous Studies 

Previous studies were heavily leaning toward the intrusion 

detection of generic smart grid rather than that of PV such 

infrastructures. 

Aoufi, Elbrahmi, and Boulmalf (2020) investigated FDI 

strategies which were not applicable in real-time. Our 

approach generalizes their work by modeling temporal 

statistics so that monitoring is always on. 

Harrou (2023) [3] highlighted PV-specific vulnerabilities 

including inverter manipulation, and unauthorized access; the 

current findings present a data-informed mitigation approach 

for countering such threats. 

Cooper et al. (2023) [2] prove better performance of anomaly 

detection on the transmission through similar approach; 

however, our methodology applies to distributed PV systems 

and verifies the applicability of the CNN–RNN in 

decentralized situation. 

Additionally, the obtained AUC = 0.98 exceeds the reported 

value of 0.95 by Yu et al iction: For you reference only. 

(2022) for grid-wide IDS, which highlights the effectiveness 

of domain-adapted architectures that fuses operational PV 

data with benchmark datasets. 

Therefore, this work goes beyond the state-of-the-art, by 

proposing a PV-oriented AI framework that can operate on 

both control-center and inverter levels. 

 

5.5. Practical Applications and Implementation Potential 

Operationally, there may be several advantages to deploying 

AI-based intrusion detection in PV systems: 

• Live threat monitoring: AI models can immediately 

process inverter and network readings for any extraneous 

behavior without any human interference. 

• Saloet (18-02-2020) Predictive maintenance Detected 

anomalies can be due to equipment malfunction or 

configuration drift indicating early corrective action. 

• Cost Reduction: Automatic detection decreases the 

need for human monitoring in energy control centres. 

• Edge scalability: Compressed AI models can be 

deployed on edge devices (inverters, gateways) to lower 

latency and increase fault tolerance (Li et al., 2023) [4]. 

 

This practical results supplement IEC 62351 and NISTIR 

8259A standards regarding secure communication as well as 

baseline requirements for grid assets to be a part of the IoT. 

By incorporating AI-based intrusion detection into these 

frameworks, the regulatory compliance and grid reliability 

could be substantially enhanced. 

 

5.6. Limitations and Further Research  

There are several limitations of our approach, which suggest 

directions for future research. 
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Despite the favorable outcomes, there are still some 

limitations. 

First, the model relies on generic benchmark datasets 

(CICIDS2017 and UNSW-NB15), which are comprehensive 

but do not contain solar-specific operational parameters. 

Future research would provide the general framework for a 

non-proprietary PV intrusion dataset such as inverter 

telemetry, irradiance, and power-flow patterns (Rahim et al., 

2023) [9]. 

Two, deep learning models are expensive to compute. Real-

time deployment on limited resource controllers may still 

suffer from latency and energy efficiency concern, even after 

pruning. Some lightweight approaches such as federated 

learning and model quantization can address this issue 

(Zhang, Lin, & Yang, 2023) [11]. 

Third, the system is currently working as a detection layer; it 

may be further combined with automatic response and 

recovery mechanism to form complete closed loop cyber 

defense. 

Finally, provide explanations (XAI) to guarantee that 

operators really trust AI decisions, especially for critical 

infra- structure scenarios (Munir et al., 2023) [6]. 

 

5.7. Summary 

In conclusion, the research confirms that AI-based CNN–

RNN IDS for PV smart grid vastly improves detection 

performance as well as cyber-resilience compared to 

traditional methods. 

The model capacity to integrate spatial–temporal feature 

learning and adaptive inference provides a solid base for 

intelligent self-defending renewable-energy systems. 

By connecting research and practice in artificial intelligence 

with those working on energy systems, this work also helps 

to accelerate secure, sustainable, autonomous smart-grid 

deployments consistent with worldwide clean-energy and 

cybersecurity objectives. 

 

6. Conclusion 

The popularisation of smart photovoltaic (PV) systems in 

contemporary power systems has, however, substantially 

reversed how electricity is produced, controlled and 

protected. And as the world’s energy industry moves toward 

more digital, data-driven infrastructures, this need to solve 

for cybersecurity resilience becomes an essential prerequisite 

for operational game reliability. In this work, we developed 

and validated an artificial intelligence (AI) based hybrid IDS 

combining CNN and RNN to secure the PV networks in 

smart-grid environment. 

The CNN–RNN hybrid model performed better with 97.3% 

detection accuracy and AUC of 0.98 compared to that from 

traditional ML methods (SVM, Random Forest, or MLP). 

The performance improvements indicate that deep 

architectures are capable of learning spatial correlations and 

temporal dependencies between PV communication and 

SCADA data, to facilitate early detection of sophisticated 

cyberattacks like FDI, DoS and insider manipulation. The 

results corroborate those reported by Lin et al. (2023) and Yu 

et al. (2022) [10] which proved that the hybrid deep-learning 

models provide better accuracy and flexibility to critical-

infrastructure cybersecurity. 

In addition to classification performance, the framework also 

has a beneficial impact on cyber-resilience improvement 

from the perspectives of detection latency, false-alarm rates 

and maintaining stability when attacked. These capabilities 

are consistent with NERC (2022) [7] and NIST (2020) [8] 

guiding principles for DERs which focus on autonomous 

detection, rapid response, and adaptive recovery. The 

proposed model exhibits a perfect convergence property and 

symmetric confusion matrix, indicating the strong 

generalization ability to qualify it for both central control 

centers and inverter controllers on the edge side. Edge-aware 

optimization approaches from Li, Zhou and He (2023) [4] also 

provide evidence for the ability to embed these models in 

low-power PV systems. 

From a policy standpoint, the research highlights the 

necessity of integrating AI-driven cybersecurity architectures 

into current renewable-power governance systems. Adopting 

AI-driven intrusion detection (with IEC 62351 and NISTIR 

8259A) can improve grid security by enabling real-time data-

centric decision making. The findings also recommend for 

government and utility sector partnership in creating domain-

specific PV cyber-incident datasets to better train models and 

benchmarks. 

The study, however, has highlighted some limitations despite 

its robust performance. Reliance on benchmark datasets 

(CIC-IDS2017 and UNSW-NB15) reduces the real network 

PV traffic's representativeness. Future research should 

therefore aim to develop PV-specific cyber datasets that 

integrate inverter telemetry, irradiance and weather data 

(Rahim et al., 2023) [9]. The high computational cost of deep 

networks also prompts further investigation on lightweight 

and federated-learning methods (Zhang et al., 2023) [11]. In 

addition, having to accommodate explainable AI (XAI) 

mechanisms will also become critical as part of operator trust 

and regulatory transparency (Munir et al., 2023) [6]. 

In conclusion, this study is one of the few and first attempts 

to show strong empirical evidence that AI-driven hybrid deep 

learning models have a potential to enhance cybersecurity 

and system resilience in PV-based smartgrids. By addressing 

the divide between theoretical AI based research and energy 

oriented real-world applications, the proposed framework 

can lead to secure, self-healing and sustainable smart-energy 

infrastructure with resilience against rapidly changing cyber-

attack landscapes. The results motivate decision-makers, 

scientists and industrialists to consider AI-enabled solutions 

as the keystone of future resilient renewable-energy 

generation systems. 
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