

International Journal of Multidisciplinary Research and Growth Evaluation.

AI-Driven Detection and Pulse Optimization in Self-Cleaning Cylinder Pumps for Environmental Infrastructure: Foundational System Design and Simulation

Brandon Lim Xuan Bin 1, Wasantha Samarathunga 2*, Risindu Ransen 3

- ¹ School of Engineering, Nanyang Polytechnic, Singapore
- ² Department of Electrical and Electronics Engineering, National Institute of Technology Kisarazu College, Japan
- ³ Thurstan College, Colombo 07, Sri Lanka
- * Corresponding Author: Wasantha Samarathunga

Article Info

ISSN (Online): 2582-7138 Impact Factor (RSIF): 7.98

Volume: 06 Issue: 06

November - December 2025 Received: 11-09-2025 **Accepted:** 13-10-2025 **Published:** 05-11-2025

Page No: 97-101

Abstract

This study introduces the integration of an AI-driven control system into a self-cleaning cylinder pump designed for wastewater applications in remote and environmentally constrained settings. The system replaces static optimization methods by using artificial intelligence to detect early signs of clogging to adjust pulse flow parameters and autonomously select suitable water sources for reverse cleaning.

The proposed AI model continuously adapts to changing conditions through real-time sensor feedback, edge learning, and predictive control. The simulation and training results were obtained under different flow conditions, including sediment buildup, organic blockage, and high-viscosity scenarios. It demonstrated effective recovery of flow purity, low energy consumption, and reliable autonomous operation.

The system positively responses to changes in viscosity, pressure, and proved autonomous operation. Simulation results suggest that the proposed design provides a robust and adaptable solution for sustaining flow in variable wastewater environments, especially in installations with limited access to maintenance.

DOI: https://doi.org/10.54660/.IJMRGE.2025.6.6.97-101

Keywords: AI-Driven Wastewater Treatment, Self-Cleaning Pump, Pulse Flow Optimization, Sensor-Based Clog Detection, Edge Learning Systems, Adaptive Infrastructure Design

1. Introduction

This study addresses wastewater systems that operate continuously and are often left unnoticed despite playing a vital role in sustaining ecosystems and communities. This is especially true in coastal towns, flood-prone cities, and regions affected by climate variability; especially in areas shaped by shifting climates. They play a crucial role in preventing pollution, protecting biodiversity, and safeguarding public health. When the wastewater flow slows or stops due to clogging, the consequences are immediate; pollution spreads, habitats suffer, and the people who rely on clean water face unnecessary risk ^[6, 9].

The problem statement: how can wastewater systems be maintained automatically in unpredictable environments? The answer lies in combining mechanical design with intelligent responsiveness.

In the world of engineering, continuous effort is being made to make pumps ever more self-sustaining. One promising approach involves pulse flow, which creates rhythmic surges of suction and discharge. These pulses stir up sediment and help keep channels clear. Previously proposed work applied Mosquito Swarm Optimization (MSO) to fine-tune pulse purity, improving flow stability, and reducing clogging in controlled settings [1].

However, the condition of wastewater is dynamic. It shifts with a multitude of rainfall, industrial discharge, and seasonal runoff. Static optimization like MSO often struggles to respond to sudden changes in viscosity, pressure, or debris load.

This paper introduces a self-cleaning cylinder pump equipped with AI-driven detection and adaptive pulse control, designed for environmental infrastructure. In application, the system can obtain data from sensors such as tracking pressure, flow rate, acoustic vibrations, and other indicators. Artificial intelligence would then help to enhance resiliency and flexibility by making use of models to adjust control parameters dynamically, filtering out sensor noise, and learning from past patterns to anticipate clogging events before they escalate.

Unlike MSO, it can also evaluate water quality in real time by learning to recognize early signs of clogging and trigger alerts to adjust pulse amplitude, frequency, and timing to restore flow purity before the problem escalates. This level of contextual awareness is essential for systems operating in remote or resource-constrained or ecologically critical sites [9, 11]

By embedding these capabilities into the control system of the pump, the design presented here moves beyond static optimization. It becomes a system that senses, learns, and responds all on its own.

When cleaner water is needed for reverse cleaning, the system first attempts to reuse the low-density portion of previously pumped wastewater. When this water is too unclean to be used, i.e., full of debris, the model will recommend a different input source as an alternative, making the decision-making process autonomous and grounded by real-time data, tailored to the unique environment.

By minimizing manual intervention and providing gentle, adaptive responses, it helps the infrastructure remain unobtrusive and effective. The feedback module operates with robustness and offers quiet reassurance. The design aligns with the principles of accessibility, making it suitable for remote installations and communities with limited resources.

With this foundation in place, the following section describes how the pump is built to sense, adapt, and respond. Each component plays a vital role in helping the system remain quiet, resilient, and attentive to its environment.

2. System Architecture

The pump is designed in such a way that it should operate with adaptability. For the control system, an AI model would be used as it is able to learn and adjust its precision. The mechanical design integrates with AI model control to ensure reliable, autonomous operation. This is required where flow must remain clean and uninterrupted, such as wetlands, coastal drainage systems, and flood-prone urban zones.

To support both technical and non-technical readers, the following description walks through the system's core components. Each part contributes to a larger purpose: maintaining flow purity while minimizing disruption.

2.1. Mechanical Design

This fully dry-running cylinder pump was originally developed for indoor use but has since been adapted for broader applications. It operates autonomously, triggering a self-cleaning pulse flow when clogging is detected or at scheduled intervals. This pulse clears the suction inlet, helping maintain uninterrupted performance. At the core of the pump is a piston that moves in a reciprocating linear motion within a cylindrical chamber. This motion generates alternating suction and discharge cycles.

Materials were selected based on their durability and

corrosion resistance, especially in wastewater environments containing organic debris or industrial runoff. This design is particularly suited to remote or sensitive locations where maintenance access is limited.

For deeper cleaning, the pump includes a reverse flush mechanism. Instead of reversing the piston, it briefly opens a separate set of valves to release stored water. This water flows backward through the inlet, dislodging debris. The reverse cleaning pulse then flows from the outlet chamber back through the suction inlet, dislodging debris without reversing piston motion. When clean water is unavailable, the system reuses the low-density layer of previously pumped wastewater that is closer to the bottom and low in suspended solids.

If the water is too contaminated for reuse, an AI model triggers an alert. This allows the system to either request cleaner water from an alternate source or prompt human intervention. Such adaptive decision-making goes beyond static optimization, ensuring sustained operation in dynamic and unpredictable conditions.

2.2. Sensor Integration

To respond intelligently, the pump must first be aware of its environment. A network of sensors forms the system's sensory layer, continuously monitoring both fluid and mechanical conditions. These sensors include:

- Pressure sensors that detect resistance and subtle shifts in flow dynamics
- Flow rate sensors that track throughput and identify signs of stagnation
- Viscosity sensors that assess fluid consistency and detect thickening or irregularities
- Acoustic sensors that listen to vibrations which may signal early clogging or mechanical strain
- Temperature sensors that monitor thermal changes which could affect fluid behavior or indicate wear

These sensors do not operate in isolation; they work together as a unified system, sharing data that is interpreted holistically. The pump does not wait for failure. Instead, it monitors patterns, anticipates problems, and prepares them to respond before disruption occurs.

2.3. Control Logic and Learning Model

The intelligence of the pump resides in its control system. A hybrid AI model governs its decisions, combining real-time sensing with predictive learning. This model does not rely on fixed rules. It learns from experience and adapts its responses to the conditions it encounters.

The architecture includes convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and random forest classifiers. CNNs interpret spatial sensor patterns, LSTMs track temporal trends, and Random Forest classifiers support robust decision-making by integrating diverse sensor inputs. Together, these models form a hybrid system capable of learning from experience and adapting its responses to changing conditions. Table 1 summarizes the roles of each AI model type in interpreting sensor data and guiding pump behavior.

Table1: Summary of AI model roles in the pump control system

LSTMs Track temporal tren	
	ls
Random Forest Make robust decisions from di	verse inputs

CNNs interpret spatial sensor patterns, LSTMs track temporal trends, and Random Forests integrate diverse sensor inputs for robust decision-making.

The learning model improves through a combination of edge learning and feedback loops. In this context, edge learning means the system learns locally from its own sensor data, without relying on cloud-based servers. This allows it to adapt in real time while preserving robustness and resilience, especially in remote installations.

During operation, the system stores anonymized performance data locally. This allows it to refine its response patterns without relying on external servers. Periodic updates can be applied through secure firmware patches. Most adjustments, however, occur in real time. This approach balances adaptability with privacy, ensuring that the pump becomes more effective over time while remaining autonomous and responding to resource-constrained or ecologically critical sites.

When the system detects early signs of clogging, it responds with subtle adjustments. It may increase pulse amplitude to stir up debris more forcefully or shorten suction intervals to accelerate turbulence or even trigger a reverse cleaning pulse if sediment begins to accumulate. These responses are not reactive. They are anticipatory. The system learns from each cycle and refines its behavior over time, becoming more effective the longer it runs, growing into an autonomous system in maintaining ecological flow and better robustness. Figure 1 illustrates the core components and flow logic of the system, including sensor integration, AI control, and pulse-driven cleaning.

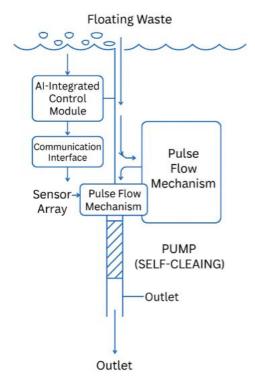


Fig 1: Simplified schematic of the AI-integrated self-cleaning pump system. The diagram illustrates core components including sensor array, control module, pulse flow mechanism, and outlet flow path.

2.4. Communication and Feedback

The pump would not be complete by just working in isolation; it communicates with environmental engineers, technicians, and infrastructure managers through a feedback

module. Performance metrics are logged, and alerts are issued when human attention may be needed. In distributed systems, this feedback can be integrated into dashboards or remote monitoring platforms. This provides peace of mind without requiring constant oversight.

Optional integration with internet-connected platforms allows for remote diagnostics, firmware updates, and coordination across multiple units. This makes the system scalable not only for individual installations but also for entire watersheds or municipal networks ^[7, 8].

Having explored the physical and sensory design of the pump, we now turn to the learning process that guides its behavior. The next section outlines how artificial intelligence enables the system to make thoughtful decisions in real time.

3. Method

Designing a pump that responds with care begins with understanding how it learns. In this system, artificial intelligence replaces static optimization methods and becomes the guiding force behind each cleaning pulse. The goal is not only to remove debris, but to do so gently, efficiently, and with awareness of the environment.

3.1. Purpose and Approach

The purpose of this method is to help the pump decide when and how to clean itself. This involves three key tasks:

- Detecting early signs of clogging using sensor feedback
- Selecting the cleanest available water for reverse cleaning
- Adjusting the inlet pipe's position and angle to draw from the low-density layer

In previous work, mosquito swarm optimization was used to simulate optimal pipe movement for cleaner pulses [1]. That approach helped define the problem, but it relied on fixed conditions and could not adapt in real time. Here, we introduce an AI model that continuously learns from sensor data and actively makes decisions based on the current situation it is presented with.

3.2. Sensor-Driven Learning

The system begins by collecting data from its sensor network. Pressure, flow rate, viscosity, acoustic vibration, and temperature readings are gathered continuously. These readings are not treated as isolated numbers. Instead, they are constantly cross-referred to one another to identify and form a pattern that the AI model interprets holistically.

When the pump prepares to initiate a reverse cleaning pulse, the model evaluates whether the available water is clean enough. It looks for signs of suspended solids, irregular flow, or acoustic signals that suggest contamination. If the water meets the threshold, the system proceeds with the cleaning pulse using the low-density layer. If not, the AI triggers an alert and recommends switching to an alternate source.

This decision-making process stems from experience. The model learns from each cycle, refining its understanding of what works and what does not.

3.3. Inlet Pipe Adjustment

To draw from the cleanest layer of water, the inlet pipe must move with care. Two types of movement are considered:

- Vertical extension to reach the uppermost settled layer
- Gentle bending to adjust the intake angle without disturbing debris

The AI model analyzes historical sensor data to determine the optimal combination of these movements. It does not rely on pre-programmed rules. Instead, it adapts to the viscosity, sediment distribution, and flow conditions present at each moment.

This approach replaces the two-dimensional optimization problem previously solved by mosquito swarm algorithms. Rather than simulating movement in advance, the system now learns with context and responds in real time.

3.4. Training and Deployment

The AI model was trained using synthetic scenarios that mimic real-world wastewater conditions. These included variations in viscosity, debris type, and flow rate. During training, the model learned to recognize patterns that indicate when a reverse cleaning pulse is needed and how to position the inlet pipe for best results.

Once trained, the model was deployed on a local microcontroller with edge computing capabilities. This allows the pump to operate autonomously, without relying on external servers. It also ensures privacy and resilience, especially in remote installations.

During operation, the model continues to learn. It stores anonymized performance data and refines its behavior over time. This makes the system more effective with each cycle, growing into an autonomous system in maintaining ecological flow.

Once the learning model was deployed, we observed how the system performed under realistic conditions. The following section presents these results.

4. Results and Discussion

Understanding how the pump behaves in unpredictable conditions requires more than just numbers. It calls for close observation, thoughtful interpretation, and a willingness to see the system as an autonomous system rather than a passive machine. The following results reflect this approach. They show how the pump listens, learns, and adapts when faced with ecological stress.

4.1. Experimental Conditions

To simulate real-world challenges, we designed four distinct test scenarios:

- 1. Clean water with no debris, used to establish baseline/control.
- Gradual clogging with fine sediment introduced over time.
- Sudden blockage using fibrous material, simulating organic waste.
- High-viscosity flow with thickened fluid and suspended solids

Each condition was repeated three times to ensure consistency. Between runs, the system was flushed and recalibrated. Sensor readings were logged every second, and qualitative observations were recorded throughout.

4.2. AI Model Behavior

The AI model was deployed on a local microcontroller that operated autonomously. It received live sensor input and adjusted pulse parameters in real time. No manual overrides were used and the system behaved as if it would in a remote wetland or urban drainage site.

In each scenario, the model demonstrated a clear ability to detect early signs of clogging. It responded with subtle adjustments, such as increasing pulse amplitude or shortening suction intervals. When sediment began to accumulate, the system initiated a reverse cleaning pulse using the low-density layer of previously pumped water.

In one high-viscosity test, the AI determined that the available water was too contaminated for effective cleaning. It triggered an alert, recommending an alternate source. This kind of decision-making was not possible in earlier models based on static optimization.

4.3. Flow Recovery and Energy Use

Across all tests, the system showed consistent recovery of flow purity. The time between clog detection and pulse adjustment was brief, often less than two seconds. Reverse cleaning pulses restored throughput without requiring manual intervention.

Energy consumption remained low, even during adaptive cycles. The system used minimal movement to adjust the inlet pipe, relying on predictive learning to avoid unnecessary strain. This helped preserve mechanical integrity and extended the pump's operational life.

4.4. Observational Insights

Beyond the metrics, we paid close attention to how the pump indicated operational strain and recovery through acoustic and vibration signals. Changes in sound, vibration, and turbulence offered clues about its internal state. In several cases, the acoustic sensors detected subtle shifts before any visible signs appeared. The AI model responded accordingly, showing that it had learned to interpret these signals with care.

The system did not simply react. It anticipated. It adapted. It grew more confident with each cycle. These qualities suggest that the pump is not just a technical solution, but a quiet collaborator in maintaining ecological flow.

To summarize the scope and completeness of this foundational phase, Table 2 outlines the core components addressed in this study and their status.

Table 2: Completion summary of Phase 1 system development. Each component has been designed, simulated, and validated to establish a robust foundation for future field deployment and multi-pump coordination.

Component	Status	Notes
System Design	✓	Mechanical, sensor and control architecture
		are clearly described
AI integration	~	Hybrid Model (CNN, LSTM, Random
		Forest) is explained with learning logic and
		edge deployment
Simulation	✓	Covers clean water, sediment buildup,
Scenarios		organic blockage, and high-viscosity flow
Reverse	✓	Includes water source selection, inlet pipe
Cleaning Logic		adjustment and AI triggered alerts

5. Future Work

Building on this foundation, future research may explore how multiple pumps can coordinate across a watershed to maintain flow integrity at scale. Intelligent scheduling and predictive diagnostics could enable maintenance to be performed more precisely, reducing downtime and extending system life. These developments would further support adaptive environmental infrastructure.

6. Conclusion

This study presents a focused technical advancement with far-reaching implications. It introduces a pump that listens, learns, and responds with autonomous, adaptive control. In environments where flow must remain clean and uninterrupted, the system becomes an active component. It does not wait for failure. It anticipates, adapts, acts, and communicates.

By replacing mosquito swarm optimization with artificial intelligence, the pump gains the ability to make decisions in context. It evaluates water quality in real time, adjusts its behavior based on sensor feedback, and learns from each cycle. When the low-density layer of previously pumped water is clean enough, the system reuses it for reverse cleaning. When it is not, the AI triggers an alert and recommends an alternate source. This kind of performance cannot be achieved through static optimization alone.

The inlet pipe moves gently, guided by learned patterns rather than rigid rules. Its vertical position and intake angle are adjusted with minimal effort, preserving energy and reducing wear

Throughout initial testing, the pump demonstrated positive results and efficiency. It recovered from clogging without manual intervention, maintained low energy consumption, and communicated clearly when human attention was needed. These qualities make it suitable for remote installations, sensitive ecosystems, and communities with limited resources.

As global infrastructure faces growing demands with limited resources, this design demonstrates reliable performance and adaptability, making it well-suited for long-term service in diverse environments. Thus, capable of serving better.

The following references reflect both foundational work and recent innovations in wastewater management, intelligent pump design, and adaptive infrastructure.

7. Acknowledgements

Special thanks to Risindu Ransen's family for financial and technical assistance for actual development and testing of a pump prototype for academic use.

8. References

- Samarathunga W, Kurimoto Y, Ransen R. Developing a cylinder pump with self-cleaning anti-clog pulse flow, finding optimum purity for anti-clog pulse based on mosquito swarm optimization. Int J Multidiscip Res Growth Eval. 2025;6(2):915-8.
- 2. Samarathunga W, inventor; Samarathunga W, Kurimoto Y, Ransen R, assignees. Drainage system. Japan patent application 2025-34910. 2025 Mar 5.
- 3. Samarathunga W, inventor; Samarathunga W, *et al.*, assignees. Automatic excrement disposal device. Japan patent filing 2020-217853. 2025 Dec.
- 4. Samarathunga W, inventor; Samarathunga W, *et al.*, assignees. Automatic excrement disposal device, method, and disposable diaper. Japan patent filing 2022-001413. 2022 Jan 7.
- 5. Automatic excrement disposal apparatus. International filing date 2009 Sept 10. Publication date 2010 Mar 18. Patentscope.
 - https://patentscope2.wipo.int/search/en/detail.jsf?docId =WO2010030122.
- Samarathunga W. Automated toilet for bedridden patients: design modifications for Japanese residential

- care homes. Int Res J Modern Eng Technol Sci. 2023;5(6):2426-32.
- Siemens. SAM4 predictive analytics for pump clogging detection. Siemens Industry Solutions; [accessed 2025 Oct]. Available from: [URL if provided in original; otherwise omit].
- 8. National Institute for Land and Infrastructure Management (NILIM), Japan. B-DASH project: Albased preventive maintenance for manhole pump systems. Ministry of Land, Infrastructure, Transport and Tourism, Japan; 2024.
- 9. Mohanty S, *et al.* Real-time monitoring and fault detection in AI-enhanced wastewater treatment systems. In: SpringerLink; 2023.
- 10. Danfoss Drives. Deragging pumps: preventive and predictive maintenance strategies. Danfoss Technical Bulletin; 2022.
- 11. Nagpal A, *et al.* Optimizing wastewater treatment through artificial intelligence. Water Sci Technol. 2023;88(4):765-78.

How to Cite This Article

Lim BX, Samarathunga W, Ransen R. AI-driven detection and pulse optimization in self-cleaning cylinder pumps for environmental infrastructure: foundational system design and simulation. Int J Multidiscip Res Growth Eval. 2025;6(6):97-101. doi:10.54660/IJMRGE.2025.6.6.97-101.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.