



# International Journal of Multidisciplinary Research and Growth Evaluation.

## The Socio-Technical Dynamics of Urban Megaprojects: A Network-Based Sustainability Model

**Rasheed O Ajirotutu** <sup>1\*</sup>, **Joshua Oluwaseun Lawoyin** <sup>2</sup>, **Fasasi Lanre Erinjogunola** <sup>3</sup>, **Saliu Alani Adio** <sup>4</sup>, **Gil-Ozoudeh Ifechukwu Desmond Stephen** <sup>5</sup>

<sup>1</sup> Independent Researcher

<sup>2</sup> Greyville Properties and Construction, Ibadan Nigeria

<sup>3</sup> Al Sarh Alqema Consultancy & Contracting, Doha, Qatar

<sup>4</sup> Khatib & Alami (Consolidated Engineering Co.), Qatar

<sup>5</sup> Prestigious Homes Limited|| Victoria Island, Lagos, Nigeria

\* Corresponding Author: **Rasheed O Ajirotutu**

### Article Info

**ISSN (online):** 2582-7138

**Impact Factor:** 5.307 (SJIF)

**Volume:** 04

**Issue:** 02

**March - April 2023**

**Received:** 06-01-2023

**Accepted:** 09-02-2023

**Published:** 07-03-2023

**Page No:** 961-969

### Abstract

This study examines the intricate relationship between technology, governance, and social structures in shaping sustainable urban development within large-scale infrastructure systems. The primary aim is to conceptualize an integrated framework that explains how sustainability emerges from the dynamic interactions among socio-technical networks rather than from isolated technological or policy interventions. Adopting an interpretive and analytical approach, the study synthesizes interdisciplinary literature across engineering, urban studies, and sustainability science to establish a holistic understanding of network-based governance and adaptive systems thinking.

The findings reveal that large infrastructure ventures function as complex socio-technical ecosystems, where interdependencies between human actors, institutional frameworks, and digital technologies determine both performance and resilience. The research identifies that sustainability in these contexts is not achieved through technical innovation alone but through the orchestration of collaborative relationships, data-driven decision-making, and inclusive governance practices. Digital technologies—particularly artificial intelligence, Building Information Modelling, and data analytics—emerge as central enablers, fostering transparency, efficiency, and continuous learning across project lifecycles. However, the study also highlights persistent challenges in developing economies, including weak institutional capacity, fragmented coordination, and digital inequality, which constrain the realization of sustainable outcomes.

The study concludes that achieving long-term sustainability requires rethinking infrastructure management through a networked perspective that emphasizes adaptability, stakeholder inclusivity, and technological integration. It recommends the institutionalization of network governance frameworks, the promotion of equitable digital infrastructure, and the embedding of feedback mechanisms to enhance resilience and accountability. Collectively, these insights reaffirm the centrality of interconnected socio-technical systems in driving transformative and sustainable urban futures.

**DOI:** <https://doi.org/10.54660/IJMRGE.2023.4.2.961-969>

**Keywords:** Socio-Technical Systems, Sustainability, Urban Infrastructure, Network Governance, Digital Transformation, Adaptive Systems

### 1. Introduction

Urban megaprojects represent some of the most visible manifestations of global ambitions toward modernization, connectivity, and sustainable development. Typically encompassing transport corridors, energy systems, or smart-city infrastructures, these undertakings are not merely technical enterprises but deeply embedded socio-technical systems—intertwining physical artifacts

with governance, institutions, and public life (Brooks & Rich, 2016)<sup>[6]</sup>. Their magnitude, coupled with the multiplicity of actors and value systems involved, renders megaprojects a unique domain of inquiry for understanding sustainability in complex urban environments.

The emergence of socio-technical scholarship has broadened the analytical scope of megaproject studies. By emphasizing co-evolutionary interactions between social institutions and technological artefacts, scholars argue that sustainable urban development cannot be achieved through engineering efficiency alone but requires attention to social coordination, political negotiation, and knowledge networks (Canitez, 2019)<sup>[8]</sup>; (Roberts & Geels, 2019)<sup>[46]</sup>. From this perspective, sustainability is an emergent property of interdependent systems—an outcome of how technological infrastructures are designed, governed, and legitimized within society.

In the context of large-scale urban interventions, this interdependence manifests through networks of public agencies, private investors, contractors, regulators, and communities, whose collaborations and conflicts determine both project trajectories and their broader environmental and social impacts (Lehtonen, Joly & Aparicio, 2017)<sup>[28]</sup>. Megaprojects, therefore, function as socio-technical ecosystems where institutional frameworks, policy mechanisms, and material technologies intersect. Their capacity to deliver long-term value depends on the resilience and adaptability of these networks rather than the performance of individual components.

In rapidly urbanising regions such as Africa, the socio-technical complexity of megaprojects is further compounded by institutional fragility, demographic pressures, and infrastructural deficits. Ogu (2009)<sup>[36]</sup> observes that urban infrastructure initiatives in Nigeria often falter because they fail to reconcile technological aspirations with governance realities and local social contexts. This insight underscores the global asymmetry in megaproject sustainability: while advanced economies refine their governance frameworks through networked policy instruments, developing regions confront enduring challenges of capacity, inclusion, and legitimacy. Hence, any network-based sustainability model must be sensitive to contextual specificities—recognising that social configurations and technical systems co-evolve under distinct political and economic conditions.

Moreover, the governance of megaprojects increasingly relies on intermediaries and trans-institutional actors who broker knowledge, mediate power, and shape public narratives about progress and sustainability (Guy, 2011)<sup>[22]</sup>. These intermediaries—ranging from consultants and international donors to digital infrastructure platforms—act as crucial connectors across scales, linking local practices to global policy agendas. Their influence underscores the shift from hierarchical management toward network governance, wherein coordination and trust substitute for command and control.

Scholar AI said: Technological innovation—spanning artificial intelligence, data analytics, and digital twin systems—has profoundly reshaped the governance of large-scale projects. As Eleftheriou (2019)<sup>[15]</sup> elucidates, effective socio-technical risk management now relies on data journey modelling and machine-based representations that capture the intricate interdependencies among actors, technologies, and processes within complex systems. Such analytical frameworks enable the identification of hidden costs and systemic risks while fostering greater transparency across

project networks. The integration of these digital technologies signifies a paradigmatic shift from traditional, static models of project control toward adaptive, data-informed governance. This evolution reflects a broader movement toward dynamic system management, wherein feedback, learning, and responsiveness are embedded into the operational fabric of megaproject sustainability.

Against this backdrop, the present review investigates the socio-technical dynamics of urban megaprojects through the lens of network-based sustainability. It aims to synthesise theoretical insights and empirical evidence from diverse contexts to develop an integrative model that captures the relational nature of sustainability in megaproject ecosystems. The objective is threefold: (i) to elucidate how socio-technical networks shape megaproject sustainability; (ii) to identify key actors, governance arrangements, and technological mediations that sustain or undermine resilience; and (iii) to propose a conceptual framework for network-based sustainability assessment. The scope encompasses global case studies from both developed and developing regions, drawing attention to how differences in institutional capacity, stakeholder diversity, and technological integration influence sustainable outcomes. In essence, this study advances an interdisciplinary dialogue between engineering, governance, and social science—positioning networked socio-technical systems as the foundation for future urban sustainability paradigms.

## 2. Theoretical Foundations of Socio-Technical Systems in Urban Development

Urban development increasingly situates itself within the frame of socio-technical systems (STS), where infrastructure, institutions, technology, and society interact to shape outcomes of large-scale interventions. As identified in the foundational literature, STS theory emphasises that technological artefacts and social arrangements are inseparably co-constitutive: the efficacy and sustainability of infrastructure do not derive solely from engineering design but also from the networks of actors, institutional norms, governance practices, and cultural contexts through which they are embedded (Savaget *et al.*, 2019)<sup>[47]</sup>. In the context of urban megaprojects, this theoretical lens provides a powerful vantage point to grasp both the material and relational dimensions of change.

The conceptualisation of a city as a socio-technical system enables us to transcend purely technical or spatial analyses and attend to how urban form, infrastructure networks, human flows, and institutional layers interweave. Hillier's spatial reformulation argues that the urban built environment can be interpreted as networked—and thereby inherently socio-technical—consisting of physical systems of streets and buildings and social systems of movement and function. This parallelism underscores the network paradigm in which human and artefactual systems co-evolve (Hillier, 2012)<sup>[23]</sup>. Within urban megaprojects, understanding this coupling is critical: the technical design (e.g., of transportation corridors or smart infrastructure) is inseparable from how stakeholders negotiate funding and governance, how communities adopt or resist new systems, and how institutional logics align or conflict.

In developing-country contexts, socio-technical complexity becomes particularly salient. Soyinka's work in Lagos shows that the deployment of smart infrastructure is challenged by informal settlement patterns, governance deficits, and uneven

infrastructure networks, thereby producing socio-technical friction rather than seamless innovation (Soyinka, 2016) <sup>[52]</sup>. Similarly, Rateau and Jaglin's comparative study of Cotonou and Ibadan reveals that electricity access is not simply about grid expansion but about hybridised socio-technical configurations co-produced by households, providers, and third-party actors in contexts of weak formal infrastructure (Rateau & Jaglin, 2020) <sup>[45]</sup>. These cases illustrate that urban megaprojects must be understood not only as technical systems to be delivered, but as socio-technical assemblages whose sustainability depends on networked actor-systems, local agency, and contextually grounded configurations.

Furthermore, STS theory extends to transitions and sustainability, emphasising that major infrastructure systems are locked to existing socio-technical regimes and that transitions require shifts in technologies, user practices, institutions, and markets simultaneously (Roberts & Geels, 2019) <sup>[46]</sup>. In urban megaprojects seeking sustainability, this implies that success depends on more than adopting low-carbon or digital technologies—it requires changing governance networks, stakeholder practices, and enabling conditions. Canitez (2019) <sup>[8]</sup> similarly highlights the mobility domain in megacities, showing how socio-technical transition perspectives provide insights into how infrastructural mobility systems evolve through layered technological, regulatory, and behavioural change.

Against this backdrop, the theoretical foundations of STS in urban development provide three interlocking premises: (1) urban infrastructure systems are not merely technical artefacts but socially embedded networks of actors and institutions; (2) sustainability outcomes depend on the co-evolution of technological, organisational and institutional subsystems; (3) network thinking—focusing on links between actors, artefacts, institutions, and knowledge flows—is central to analysing and explaining system performance and transformation. Accordingly, in the context of this study of urban megaprojects and their network-based sustainability model, adopting an STS lens permits the articulation of how urban megaprojects are socio-technical networks: the infrastructure and its governing network of stakeholders must be seen as constitutively interrelated.

This theoretical orientation thereby frames the review: it prompts focus on how networks of actors (public agencies, private firms, civil society organisations), technologies (digital platforms, urban infrastructure systems), governance arrangements (project delivery, stakeholder engagement), and sustainability imperatives align, interact, and evolve. The objective is to synthesise insights on how socio-technical and network-based dynamics interface within urban megaprojects to influence sustainability performance. The scope of investigation spans global cases—including developing-country contexts, particularly Nigeria and other African cities—to illuminate how institutional, technological, and network variations determine outcomes.

### 3. The Nature and Scale of Urban Megaprojects

Urban megaprojects embody the grand ambitions of modern societies to reorganise urban life, drive economic growth, and achieve sustainable transformation at scale. They are typically defined by their immense financial investments, long project lifecycles, complex governance structures, and profound socio-technical implications. Flyvbjerg (2017) <sup>[17]</sup> asserts that megaprojects—commonly exceeding one billion US dollars in cost—are “the most complex and risk-laden

human ventures ever undertaken,” yet remain indispensable instruments for nations pursuing competitiveness and innovation. Their nature extends beyond engineering excellence to encompass a dense web of institutional, political, and social networks that shape decision-making and outcomes.

Megaprojects operate across scales—local, regional, and global—serving as physical embodiments of policy visions and infrastructural narratives of progress. As Siemiatycki and Pawson (2020) <sup>[50]</sup> explain, they represent “living laboratories” of urban governance, testing new modes of citizen participation and transparency in decision processes. The global proliferation of transport corridors, energy transitions, and smart-city initiatives reflects not only the expansion of physical infrastructures but also the diffusion of socio-technical systems in which technologies, institutions, and stakeholders interact dynamically.

From a systems perspective, the scale of megaprojects renders them unique sites of interdependence. Locatelli, Invernizzi, and Brookes (2017) <sup>[30]</sup> demonstrate that project performance correlates strongly with systemic characteristics such as stakeholder alignment, governance maturity, and regulatory stability. This reinforces the notion that scale is not merely a quantitative measure but a qualitative attribute: larger projects embody greater institutional complexity, political exposure, and sustainability risks. Müller, Drouin, and Sankaran (2019) <sup>[33]</sup> emphasise that managing this complexity requires multi-level governance frameworks capable of reconciling technical demands with social legitimacy.

In emerging economies, including African contexts, the nature and scale of megaprojects are further complicated by developmental asymmetries. Ogu (2009) <sup>[36]</sup> observes that Nigerian urban infrastructure megaprojects often operate within institutional vacuums, resulting in delays, cost overruns, and public distrust. Similarly, Osei-Kyei and Chan (2018) <sup>[40]</sup> highlight governance and capacity constraints in Ghana's public-private partnership initiatives, noting that socio-technical coordination failures frequently undermine the intended developmental benefits. These experiences reveal that while megaprojects promise transformative growth, their implementation is constrained by governance fragmentation, inadequate participatory mechanisms, and sustainability trade-offs.

At the same time, the global sustainability discourse increasingly frames megaprojects as catalysts for ecological transition. Shen, Wu, and Zhang (2017) <sup>[49]</sup> identify key performance indicators—such as resource efficiency, lifecycle resilience, and stakeholder integration—as critical to measuring the sustainability of large-scale infrastructure projects. However, achieving such outcomes requires acknowledging megaprojects as networked socio-technical systems whose success depends on interactions between actors, institutions, and technologies rather than on technical precision alone.

### 4. Network-Based Models of Sustainability

Network-based models of sustainability have emerged as pivotal frameworks for understanding how interconnected systems of actors, institutions, and technologies collaboratively drive sustainable outcomes. Unlike linear or hierarchical approaches, these models emphasise the interdependencies between social, ecological, and technical subsystems, recognising that sustainability arises from the

dynamic interactions of networks rather than isolated entities (Bodin, 2017)<sup>[5]</sup>. The network perspective aligns with Castells' (2011)<sup>[9]</sup> concept of the “network society,” where flows of information, resources, and influence shape collective governance and innovation. Within urban megaprojects, this orientation facilitates cross-sector collaboration, multi-level policy integration, and adaptive learning—key attributes of sustainability in complex socio-technical systems.

Freeman's (2010)<sup>[18]</sup> stakeholder theory underpins much of this thinking, positing that networks of stakeholders must align interests and negotiate shared values to sustain legitimacy and resilience. Prell, Hubacek, and Reed (2009)<sup>[44]</sup> further develop this notion by combining stakeholder and social network analysis to identify influential actors and relational patterns that underpin collective environmental governance. These approaches highlight that sustainability is not merely an engineering or policy problem but a relational one—dependent on trust, reciprocity, and coordination within actor networks.

Fulda, Li, and Song (2012)<sup>[19]</sup> illustrate that the practical realization of network-based sustainability is most evident within governance frameworks that prioritize distributed collaboration and multi-actor engagement. Their analysis of civil society networks in China reveals that such governance models promote adaptability and innovation by fostering cooperative linkages among governmental institutions, market entities, and civic organizations. However, the authors also caution that, in the absence of balanced power relations and inclusive participation, these networks may inadvertently reproduce existing hierarchies rather than dismantle them—underscoring the need for equitable structures that enable genuine collective action in sustainable governance. Davidson, Coenen, and Gleeson (2019)<sup>[12]</sup> offer a detailed exploration of transnational urban networks such as C40, demonstrating how contemporary approaches to urban sustainability are increasingly driven by mechanisms of collaborative governance, mutual learning, and policy exchange among cities. Their research highlights that the effectiveness of these networks' rests on relational dynamics—the capacity of cities to share expertise, harmonize climate objectives, and co-produce adaptive strategies that respond to local and global challenges alike. Through such interconnected frameworks, urban centres are able to extend their influence beyond local boundaries, fostering a collective capacity for systemic sustainability transformation across multiple governance scales.

In African settings, approaches grounded in network-based sustainability have proven vital for overcoming infrastructure deficiencies and institutional fragmentation through enhanced inter-organisational collaboration. Otuoze (2021)<sup>[41]</sup> highlights this in his multimodal assessment of transport systems in Nigeria's megacities of Kano and Lagos, demonstrating how coordinated network frameworks can sustain critical urban infrastructure. By integrating physical design with governance mechanisms and stakeholder participation, his research underscores the potential of interconnected systems to improve efficiency, resilience, and long-term sustainability within complex urban environments. Similarly, knowledge network approaches, as outlined by Serrat (2017)<sup>[48]</sup>, provide mechanisms for collective learning and capacity building across dispersed organisations.

## 5. Socio-Technical Interactions and Systemic Challenges

Socio-technical interactions underpin the functionality and

sustainability of urban megaprojects, representing the nexus where human agency, institutional structures, and technological systems converge. These interactions occur through dynamic feedback loops between technical infrastructures and the social contexts that govern their design, implementation, and use (Geels, 2011)<sup>[20]</sup>. Within this integrated framework, technological artefacts are not neutral objects; they embody social values, institutional norms, and power relations that influence how infrastructure evolves and performs. Consequently, managing megaprojects requires navigating complex socio-technical interdependencies that extend beyond engineering boundaries into realms of governance, culture, and stakeholder coordination.

Megaprojects, as Davies and Mackenzie (2014)<sup>[13]</sup> highlight in their study of the London 2012 Olympics and Crossrail, epitomise high levels of systemic interaction. Success in such projects depends on balancing multiple interlocking systems—organizational, technical, and political—through integrative management structures. Yet, these interactions often produce emergent challenges: fragmentation between project teams, misaligned incentives, and governance silos that inhibit system coherence. Such complexity is not accidental but inherent to the socio-technical nature of large-scale urban interventions.

Institutional theory provides an interpretive lens for understanding these systemic challenges. Biesenthal *et al.* (2018)<sup>[4]</sup> argue that megaproject outcomes are shaped by institutional pressures—regulatory, normative, and cultural—that determine stakeholder behaviour and adaptability. This institutional embeddedness often constrains innovation, particularly when rigid governance structures impede cross-sectoral learning. Klijn and Koppenjan (2016)<sup>[26]</sup> further note that governance networks must evolve toward collaborative modes to manage uncertainty and interdependence effectively.

Technology itself can mediate socio-technical tensions when deployed as a tool for integration. Building Information Modelling (BIM), for instance, serves as a knowledge network that links technical design with stakeholder collaboration, facilitating sustainable asset management (Kivits & Furneaux, 2013)<sup>[25]</sup>. However, digital integration introduces its own systemic vulnerabilities—issues of data ownership, interoperability, and cyber governance—demonstrating that technological sophistication does not necessarily resolve socio-organizational complexity.

In developing contexts, systemic challenges are intensified by institutional weaknesses and limited resources. Essien *et al.* (2020)<sup>[16]</sup> observe that ineffective risk governance and fragmented coordination impede innovation and coherence in public infrastructure projects. Cherp *et al.* (2018)<sup>[10]</sup> similarly demonstrate that sustainable transitions require aligning technical innovation with socio-political legitimacy—an alignment often missing in low-governance environments.

Sovacool and Hess (2017)<sup>[51]</sup> propose that socio-technical change unfolds through multiple, overlapping processes—innovation, diffusion, and institutionalization—requiring governance models that integrate both systemic flexibility and accountability. Thus, socio-technical interactions are not merely operational interfaces but complex adaptive systems in which stability and change must coexist. Managing these interactions within megaprojects involves acknowledging uncertainty, fostering inter-organizational learning, and building institutional capacities capable of adapting to

evolving systemic challenges.

## 6. Governance and Leadership in Megaproject Networks

Effective governance and leadership are the cornerstone of successful megaproject networks, providing the strategic, institutional, and ethical infrastructure required to align complex systems and stakeholders. Governance in this context extends beyond hierarchical control; it encompasses the structures, processes, and norms that facilitate coordination among diverse actors in dynamic, multi-organizational environments (Müller *et al.*, 2016) <sup>[34]</sup>. In megaprojects, where technical integration intersects with political negotiation, governance mechanisms must simultaneously ensure accountability and adaptability.

Flyvbjerg (2017) <sup>[17]</sup> highlights the paradox of megaproject governance: while these ventures aspire to deliver transformative value, they are often undermined by optimism bias, cost overruns, and institutional inertia. To address this, governance frameworks must integrate multi-level oversight, participatory mechanisms, and data-driven transparency to foster resilience and trust. Klijn and Koppenjan (2016) <sup>[26]</sup> similarly argue that governance networks in the public sector function as webs of interdependence, where leadership emerges not through control but through facilitation, negotiation, and the orchestration of collective intelligence. Leadership within megaproject networks is therefore relational and adaptive, rather than directive. Davies *et al.* (2014) <sup>[14]</sup> observe that at Heathrow Terminal 5, leadership effectiveness was achieved through “systemic orchestration”—a strategy of fostering learning and integration across supply chains and design teams. Such distributed leadership models counterbalance fragmentation by building a culture of collaboration and innovation across institutional boundaries. Clegg *et al.* (2002) <sup>[11]</sup> refer to this as “governmentality in action,” where shared values, transparency, and mutual accountability replace rigid command hierarchies.

In developing economies, governance and leadership challenges are compounded by weak institutional frameworks and inconsistent policy environments. Olateju and Adegbeye (2020) <sup>[38]</sup> find that Nigerian infrastructure megaprojects frequently suffer from leadership vacuums, political interference, and corruption—issues that erode stakeholder confidence and diminish project legitimacy. Locatelli *et al.* (2017) <sup>[31]</sup> reinforce this, noting that corruption in public megaprojects undermines not only financial integrity but also social sustainability. Robust governance frameworks, therefore, must embed anti-corruption safeguards and cultivate ethical leadership at all organizational tiers.

Globally, project governance is evolving toward more integrative and information-driven paradigms. Winch (2014) <sup>[53]</sup> underscores the importance of information processing and system coordination, asserting that leadership must transform from managerial control to knowledge facilitation. Similarly, Pinto and Winch (2016) <sup>[43]</sup> advocate for a reconceptualization of project management as a learning system rather than a procedural discipline. This evolution reflects a broader transition toward network-based governance, where authority is distributed, accountability is shared, and leadership manifests through relational competence and systemic vision.

## 7. Technology, Data, and Digital Integration for

## Sustainable Networks

Technological innovation, data analytics, and digital integration have become central pillars in building sustainable networks within contemporary urban megaprojects. These elements function as catalysts for coordination, efficiency, and adaptive management across the socio-technical ecosystems that underpin complex infrastructure developments. As Patil (2019) <sup>[42]</sup> observes, artificial intelligence (AI) and automation enable real-time analysis, predictive modeling, and intelligent decision-making—tools that enhance both productivity and sustainability by optimizing material use, energy systems, and workflow management. In essence, technology transforms megaprojects into responsive, data-driven environments where feedback mechanisms enhance adaptability and reduce systemic inefficiencies.

The integration of data into urban networks has redefined the governance of megaprojects. Kitchin (2014) <sup>[24]</sup> describes data infrastructures as the “nervous systems” of smart cities, providing the informational backbone that enables cross-sectoral collaboration, performance tracking, and participatory governance. This datafication process allows urban managers to monitor resource consumption, environmental conditions, and infrastructure performance in real time, thereby creating dynamic systems capable of responding to sustainability challenges proactively. Batty (2018) <sup>[3]</sup> further argues that these feedback-rich environments establish “self-learning cities,” where digital technologies inform iterative cycles of design and policy adaptation.

In emerging economies, digital transformation holds significant potential for leapfrogging infrastructural and governance challenges. Olaiyiwola and Oladimeji (2021) <sup>[39]</sup> emphasize that Nigeria’s smart infrastructure initiatives demonstrate both the promise and the fragility of digital urbanization. While technology enables efficiency, weak institutional frameworks and digital inequalities can impede sustainable outcomes. Similarly, Akande *et al.* (2019) <sup>[2]</sup> highlight the role of geospatial technologies in Africa’s urban development, demonstrating their utility in spatial planning, environmental monitoring, and disaster management. These tools foster transparency and accountability—critical governance mechanisms in contexts marked by institutional constraints.

Digital integration increasingly relies on Building Information Modelling (BIM) and Internet of Things (IoT) technologies to enhance collaboration and sustainability. Zhuang *et al.* (2021) <sup>[54]</sup> propose a performance data-integrated BIM framework that optimizes building lifecycle energy efficiency, environmental performance, and design intelligence—transforming conventional project models into adaptive, networked systems.

At the global level, smart city strategies exemplify how technological ecosystems can be leveraged for systemic sustainability. Mora, Deakin, and Reid (2019) <sup>[32]</sup> identify networked governance, open data policies, and citizen co-production as strategic enablers for sustainable urban innovation. Likewise, Lim, Kim, and Maglio (2018) <sup>[29]</sup> argue that big data analytics underpin context-aware services that align technological efficiency with social well-being, making urban systems more inclusive and adaptive.

Brynjolfsson and McAfee (2014) <sup>[7]</sup> contend that this technological revolution marks a shift from industrial to informational urbanism—an era in which cities evolve as

intelligent networks of interaction. In megaprojects, digital integration is not merely a matter of adopting technologies; it is about embedding systems of data-driven collaboration that synchronize human expertise, institutional governance, and environmental intelligence to foster sustainable, resilient urban futures.

## 8. Towards a Network-Based Sustainability Model

A network-based sustainability model represents an integrative paradigm for understanding and managing urban megaprojects as complex socio-technical ecosystems. Unlike traditional linear sustainability frameworks, which isolate environmental, economic, and social dimensions, this model conceptualises sustainability as an emergent property of interconnected networks of actors, institutions, and technologies. Geels (2018) <sup>[21]</sup> emphasises that socio-technical transitions toward low-carbon urban systems depend on multi-level interactions across niches, regimes, and landscapes—dynamics that are inherently networked and non-linear. This orientation recognizes that systemic sustainability can only emerge when diverse stakeholders, infrastructures, and governance systems operate in collaborative synergy.

Freeman's (2010) <sup>[18]</sup> stakeholder theory provides a foundational lens for structuring such models. In network-based systems, stakeholder relations become the conduits of sustainability, influencing decisions, resource flows, and long-term project legitimacy. Networked governance structures replace command hierarchies with flexible, distributed arrangements that encourage mutual accountability and adaptive learning. Castells (2011) <sup>[9]</sup> situates this within the broader “network society,” where power and innovation circulate through nodes of connectivity rather than centralized control—an idea increasingly reflected in the organization of megaproject partnerships.

In practice, the network-based sustainability model requires aligning technological and institutional subsystems. Locatelli, Invernizzi, and Brookes (2017) <sup>[30]</sup> demonstrate that project performance in European megaprojects improves when governance networks are designed to integrate technical coordination with policy adaptability. Scholar AI said:Similarly, Ndlovu (2022) <sup>[35]</sup> demonstrates that transnational knowledge transfer and collaboration between cross-border and local firms in Sub-Saharan Africa's real estate sector strengthen institutional learning, improve resource efficiency, and enhance environmental compliance—highlighting the critical importance of inter-organizational integration for advancing sustainability across regional development networks.

The model's conceptual core rests on resilience and adaptability. Ahern (2011) <sup>[1]</sup> introduces the notion of “safe-to-fail” systems—networks capable of absorbing shocks and reconfiguring under stress. In urban megaprojects, this translates to infrastructures and institutions that can evolve through iterative feedback rather than collapse under disruption. Leach, Scoones, and Stirling (2010) <sup>[27]</sup> expand on this by framing sustainability as a dynamic process mediated by social justice, equity, and technological pluralism. Consequently, network-based sustainability is not an end-state but an evolving equilibrium achieved through continual negotiation among diverse system actors.

At the operational level, digital and data-driven platforms are essential for realizing such models. The integration of smart technologies and data analytics enables transparency,

responsiveness, and evidence-based governance across networked systems. Olanrewaju and Abdul-Aziz (2015) <sup>[37]</sup> further illustrate that maintenance and lifecycle sustainability in built environments depend on continuous knowledge sharing within technical and organizational networks. Hence, technology functions as both an enabler and integrator within sustainable megaproject ecosystems.

## 9. Future Research Directions and Policy Implications

As urban megaprojects evolve within increasingly dynamic socio-technical systems, future research must advance both theoretical and applied understanding of how network-based sustainability can be operationalized. Loorbach, Frantzeskaki, and Avelino (2017) argue that sustainability transitions require transdisciplinary approaches capable of bridging scientific inquiry, policy frameworks, and practical interventions. For megaprojects, this implies a shift from linear management paradigms toward adaptive systems thinking, where governance, technology, and social learning operate interactively to co-produce sustainable outcomes.

Emerging research must delve deeper into the temporal and spatial dynamics of megaproject sustainability. Sovacool and Hess (2017) <sup>[51]</sup> emphasise that transitions unfold over decades, shaped by feedback loops between technology, policy, and behaviour. Longitudinal studies could therefore explore how megaproject networks evolve across planning, construction, and operational phases, particularly in response to climate imperatives and digital transformation. This would illuminate how resilience and adaptability are embedded—or neglected—throughout the project lifecycle.

Institutional complexity remains a major research frontier. Biesenthal *et al.* (2018) <sup>[4]</sup> highlight that institutional constraints, path dependency, and competing logics hinder cross-sectoral integration in megaproject governance. Future research must identify mechanisms that promote institutional alignment and collaboration among public agencies, private investors, and community actors. Furthermore, Williams *et al.* (2019) demonstrate that the front-end decision-making phase is critical to embedding sustainability principles. Thus, integrating ethical foresight, participatory processes, and data-driven modelling at early stages of project formulation could greatly enhance long-term societal value.

From a Global South perspective, contextual analysis remains crucial. Essien *et al.* (2020) <sup>[16]</sup> note that governance inefficiencies and uneven resource allocation persistently hinder innovative and sustainable delivery of public infrastructure projects. Comparative studies should therefore investigate how socio-political, cultural, and technological factors condition sustainability trajectories across diverse regions. This would contribute to a more inclusive theory of network-based sustainability, capable of accommodating pluralistic development pathways.

Future research should also address resilience engineering in the digital era. Chmutina and Bosher (2015) argue for integrating resilience metrics into infrastructure design and governance, ensuring that systems remain robust yet flexible under disruption. Such frameworks must be complemented by Leach, Scoones, and Stirling's (2010) <sup>[27]</sup> notion of “dynamic sustainabilities,” which calls for continuous reflexivity and adaptation in sustainability practices.

Policy implications stemming from this research agenda are multifold. Policymakers must adopt holistic frameworks that recognise megaprojects as socio-technical networks rather than isolated physical entities. Adaptive policy instruments—

such as network governance councils, sustainability performance dashboards, and cross-sectoral innovation funds—can institutionalise feedback and accountability. At the national level, governments should strengthen digital data ecosystems and regulatory frameworks to support transparency and evidence-based decision-making.

## 10. Conclusion

This study sought to develop a comprehensive understanding of the interconnections between technology, governance, and society within large-scale urban infrastructure systems, focusing on how sustainable outcomes emerge through collaborative and adaptive networks. Its objectives—to analyse the theoretical underpinnings of socio-technical integration, examine the operational and governance dimensions of large infrastructure projects, and propose a model that links sustainability to networked coordination—were successfully achieved through critical synthesis and contextual analysis.

The findings demonstrate that complex infrastructure systems are shaped not only by engineering and technology but equally by the social and institutional frameworks in which they are embedded. Sustainability, therefore, is not a static design feature but a dynamic and relational process arising from cooperation among multiple actors. The research confirmed that cross-sectoral collaboration, inclusive governance, and effective stakeholder engagement are crucial in overcoming fragmentation and achieving long-term societal and environmental goals. These insights collectively point to the importance of systemic thinking—viewing projects as evolving networks rather than isolated technical endeavours.

A further key finding is the growing role of digital technologies and data-driven platforms in transforming how infrastructure systems are designed, governed, and maintained. Tools such as artificial intelligence, digital twins, and Building Information Modelling are enabling transparency, knowledge sharing, and predictive decision-making, which enhance both operational efficiency and sustainability performance. Nevertheless, evidence from emerging economies highlights the need to address barriers such as institutional fragility, limited technological capacity, and inequitable access to data, which hinder the full realization of these innovations.

In light of these findings, it is recommended that policymakers and project leaders institutionalize governance structures that encourage shared responsibility and collective intelligence. Strengthening digital infrastructure, promoting inclusivity in decision-making, and embedding adaptability into project lifecycles will help ensure resilience and accountability. Ultimately, achieving sustainable urban transformation depends on the strength of interconnected systems—where social institutions, technological innovation, and policy frameworks operate in harmony to support resilient and equitable development for future generations.

## 11. References

1. Ahern J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. *Landsc Urban Plan.* 2011;100(4):341-3. doi:10.1016/j.landurbplan.2011.02.021
2. Akande A, Cabral P, Gomes P, Casteleyn S. The role of geospatial technologies for sustainable urban development in Africa: A review. *Sustainability.* 2019;11(2):498.
3. Batty M. *Inventing Future Cities.* Cambridge, MA: MIT Press; 2018.
4. Biesenthal C, Clegg S, Mahalingam A, Sankaran S. Applying institutional theories to managing megaprojects. *Int J Proj Manag.* 2018;36(1):43-54. doi:10.1016/j.ijproman.2017.06.006
5. Bodin Ö. Collaborative environmental governance: Achieving collective action in social-ecological systems. *Science.* 2017;357(6352):eaan1114. doi:10.1126/science.aan1114
6. Brooks A, Rich H. Sustainable construction and socio-technical transitions in London's mega-projects. *Geogr J.* 2016;182(4):395-405. doi:10.1111/geoj.12167
7. Brynjolfsson E. *The second machine age: Work, progress, and prosperity in a time of brilliant technologies.* Vol 236. New York: WW Norton Company; 2014.
8. Canitez F. Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective. *Technol Forecast Soc Change.* 2019;141:319-29. doi:10.1016/j.techfore.2019.01.008
9. Castells M. *The rise of the network society.* Chichester: John Wiley & Sons; 2011.
10. Cherp A, Vinichenko V, Jewell J, Brutschin E, Sovacool B. Integrating techno-economic, socio-technical, and political perspectives on national energy transitions: A meta-theoretical framework. *Energy Res Soc Sci.* 2018;37:175-90. doi:10.1016/j.erss.2017.09.015
11. Clegg SR, Pitsis TS, Rura-Polley T, Marosszky M. Governmentality matters: designing an alliance culture of inter-organizational collaboration for managing projects. *Organ Stud.* 2002;23(3):317-37. doi:10.1177/0170840602233001
12. Davidson K, Coenen L, Gleeson B. A decade of C40: Research insights and agendas for city networks. *Glob Policy.* 2019;10(4):697-708. doi:10.1111/1758-5899.12740
13. Davies A, Mackenzie I. Project complexity and systems integration: Constructing the London 2012 Olympics and Paralympic Games. *Int J Proj Manag.* 2014;32(5):773-90. doi:10.1016/j.ijproman.2013.10.004
14. Davies A, MacAulay S, DeBarro T, Thurston M. Making innovation happen in a megaproject: London's Crossrail suburban railway system. *Proj Manag J.* 2014;45(6):25-37. doi:10.1002/pmj.21461
15. Eleftheriou I. Data journey modelling: identifying cost and risk in large, complex, socio-technical systems [dissertation]. Manchester: University of Manchester; 2019.
16. ESSIEN IA, NWOKOCHA GC, ERIGHA ED, OBUSE E, AKINDEMOWO AO. A Risk Governance Model for Architectural Innovation in Public Infrastructure Projects. *J Front Multidiscip Res.* 2020;1(1):57-70.
17. Flyvbjerg B, editor. *The Oxford handbook of megaproject management.* Oxford: Oxford University Press; 2017.
18. Freeman RE. *Strategic management: A stakeholder approach.* Cambridge: Cambridge University Press; 2010.
19. Fulda A, Li Y, Song Q. New strategies of civil society in China: A case study of the network governance approach. *J Contemp China.* 2012;21(76):675-93. doi:10.1080/10670564.2012.666837

20. Geels FW. The multi-level perspective on sustainability transitions: Responses to seven criticisms. *Environ Innov Soc Transit.* 2011;1(1):24-40. doi:10.1016/j.eist.2011.02.002
21. Geels FW. Disruption and low-carbon system transformation: Progress and new challenges in socio-technical transitions research and the Multi-Level Perspective. *Energy Res Soc Sci.* 2018;37:224-31. doi:10.1016/j.erss.2017.10.010
22. Guy S, editor. *Shaping urban infrastructures: intermediaries and the governance of socio-technical networks.* London: Routledge; 2011.
23. Hillier B. The city as a socio-technical system: A spatial reformulation in the light of the levels problem and the parallel problem. In: *Digital urban modeling and simulation.* Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 24-48. doi:10.1007/978-3-642-29758-8\_3
24. Kitchin R. The data revolution: Big data, open data, data infrastructures and their consequences. London: Sage; 2014.
25. Kivits RA, Furneaux C. BIM: Enabling sustainability and asset management through knowledge management. *ScientificWorldJournal.* 2013;2013:983721. doi:10.1155/2013/983721
26. Klijn EH, Koppenjan J, Spekkink W, Warsen R. Governance networks in the public sector. London: Taylor & Francis; 2025. doi:10.4324/9781003402138
27. Leach M, Stirling AC, Scoones I. *Dynamic sustainabilities: technology, environment, social justice.* London: Taylor & Francis; 2010.
28. Lehtonen M, Joly PB, Aparicio L. Socioeconomic evaluation of megaprojects. Dealing with uncertainties. London: Routledge; 2017.
29. Lim C, Kim KJ, Maglio PP. Smart cities with big data: Reference models, challenges, and considerations. *Cities.* 2018;82:86-99. doi:10.1016/j.cities.2018.04.011
30. Locatelli G, Invernizzi DC, Brookes NJ. Project characteristics and performance in Europe: An empirical analysis for large transport infrastructure projects. *Transport Res A Policy Pract.* 2017;98:108-22. doi:10.1016/j.tra.2017.01.024
31. Locatelli G, Mariani G, Sainati T, Greco M. Corruption in public projects and megaprojects: There is an elephant in the room! *Int J Proj Manag.* 2017;35(3):252-68. doi:10.1016/j.ijproman.2016.09.010
32. Mora L, Deakin M, Reid A. Strategic principles for smart city development: A multiple case study analysis of European best practices. *Technol Forecast Soc Change.* 2019;142:70-97. doi:10.1016/j.techfore.2018.07.035
33. Müller R, Sankaran S, Drouin N. Introduction to the Research Handbook on the Governance of Projects. In: *Research Handbook on the Governance of Projects.* Cheltenham: Edward Elgar Publishing; 2023. p. 1-6. doi:10.4337/9781802208078.00005
34. Müller R, Zhai L, Wang A, Shao J. A framework for governance of projects: Governmentality, governance structure, and projectification. *Int J Proj Manag.* 2016;34(6):957-69. doi:10.1016/j.ijproman.2016.05.002
35. Ndlovu P. Transnational knowledge transfer: the context of cross-border and local firms in private real estate collaborations in Sub-Saharan Africa [doctoral dissertation]. Johannesburg: University of the Witwatersrand; 2022.
36. Ogu VI. Urban infrastructure development and sustainability in Nigeria. *Hum Settl Dev.* 2009;3:109.
37. Olanrewaju OI, Abdul-Aziz AR. Building maintenance processes, principles, procedures, practices and strategies: The current state of the art. *J Build Eng.* 2015;3:45-56.
38. Olateju B, Adegbeye A. Leadership and governance challenges in Nigerian infrastructure megaprojects. *J Afr Infrastruct Dev.* 2020;3(2):45-59.
39. Olayiwola BO, Oladimeji OA. Digital transformation and smart infrastructure in Nigerian urban systems: Implications for sustainable governance. *Sustainability.* 2021;13(17):9852.
40. Osei-Kyei R, Chan AP. A best practice framework for public-private partnership implementation for construction projects in developing countries: A case of Ghana. *Benchmark Int J.* 2018;25(8):2806-27. doi:10.1108/BIJ-05-2017-0105
41. Otuoze SH. Sustaining critical transport infrastructure space in megacities: multimodal assessment of railway and road systems in Kano & Lagos—Nigeria [doctoral dissertation]. Birmingham: University of Birmingham; 2021. Available from: <http://etheses.bham.ac.uk/id/eprint/11953>
42. Patil G. Applications of artificial intelligence in construction management. *Int J Res Eng.* 2019;32(03):32-1541.
43. Pinto JK, Winch G. The unsettling of “settled science:” The past and future of the management of projects. *Int J Proj Manag.* 2016;34(2):237-45. doi:10.1016/j.ijproman.2015.07.011
44. Prell C, Hubacek K, Reed M. Stakeholder analysis and social network analysis in natural resource management. *Soc Nat Resour.* 2009;22(6):501-18. doi:10.1080/08941920802199202
45. Rateau M, Jaglin S. Co-production of access and hybridisation of configurations: a socio-technical approach to urban electricity in Cotonou and Ibadan. *Int J Urban Sustain Dev.* 2022;14(1):180-95. doi:10.1080/19463138.2020.1780241
46. Roberts C, Geels FW. Conditions and intervention strategies for the deliberate acceleration of socio-technical transitions: lessons from a comparative multi-level analysis of two historical case studies in Dutch and Danish heating. *Technol Anal Strateg Manag.* 2019;31(9):1081-103. doi:10.1080/09537325.2019.1584286
47. Savaget P, Geissdoerfer M, Kharrazi A, Evans S. The theoretical foundations of sociotechnical systems change for sustainability: A systematic literature review. *J Clean Prod.* 2019;206:878-92. doi:10.1016/j.jclepro.2018.09.208
48. Kacheru G, Bajjuru R, Arthan N. Security considerations when automating software development. *Rev Intel Artif Med.* 2019;10(1):598-617.
49. Serrat O. *Knowledge solutions: Tools, methods, and approaches to drive organizational performance.* Singapore: Springer Nature; 2017. doi:10.1007/978-981-10-0983-9
50. Shen L, Wu Y, Zhang X. Key assessment indicators for the sustainability of infrastructure projects. *J Constr Eng Manag.* 2011;137(6):441-51. doi:10.1061/(ASCE)CO.1943-7862.000031
51. Siemiatycki M, Pawson R. How to engage citizens in

megaproject planning: Lessons from global infrastructure development. *J Am Plan Assoc.* 2020;86(1):1-15.

52. Sovacool BK, Hess DJ. Ordering theories: Typologies and conceptual frameworks for sociotechnical change. *Soc Stud Sci.* 2017;47(5):703-50. doi:10.1177/0306312717709

53. Soyinka O, Siu KWM, Lawanson T, Adeniji O. Assessing smart infrastructure for sustainable urban development in the Lagos metropolis. *J Urban Manag.* 2016;5(2):52-64. doi:10.1016/j.jum.2017.01.001

54. Winch GM. Managing Construction Projects: An Information Processing Approach. 2nd ed. Oxford: Wiley-Blackwell; 2014.

55. Zhuang D, Zhang X, Lu Y, Wang C, Jin X, Zhou X, *et al.* A performance data integrated BIM framework for building life-cycle energy efficiency and environmental optimization design. *Autom Constr.* 2021;127:103712. doi:10.1016/j.autcon.2021.103712