
International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1139 | P a g e

AWS Network Load Balancer (NLB) for High-Performance Traffic Routing: A Research-

Based Study

Satish Yerram

Independent Researcher, USA

* Corresponding Author: Satish Yerram

Article Info

ISSN (online): 2582-7138

Volume: 05

Issue: 02

March-April 2024

Received: 08-03-2024

Accepted: 09-04-2024

Page No: 1139-1141

Abstract
Modern cloud-based applications demand high-performance, fault-tolerant, and
resilient networking architectures that can support millions of requests per second
while maintaining extremely low latency. To meet these requirements, Amazon Web
Services (AWS) provides the Network Load Balancer (NLB) as part of its Elastic Load
Balancing (ELB) family. NLB operates at Layer 4 of the OSI model, focusing on TCP,
UDP, and TLS traffic routing with deterministic performance. Unlike Application
Load Balancer (ALB), which supports path- and host-based routing at Layer 7, NLB
is designed to handle vast volumes of transport-level traffic by using connection-based
hashing algorithms. This paper provides a research-driven overview of NLB’s
architecture, routing logic, target group configurations, deployment patterns, benefits,
challenges, and best practices. By examining the operational principles and
architectural trade-offs of NLB, this study highlights its importance for latency-
sensitive workloads, hybrid cloud deployments, and highly scalable microservices
environments.

DOI: https://doi.org/10.54660/.IJMRGE.2024.5.2.1139-1141

Keywords: AWS NLB, NLB, Network Load Balancer

1. Introduction

Load balancing is a fundamental component in achieving scalability, fault tolerance, and resilience in distributed systems. AWS

offers three primary types of load balancers—Classic Load Balancer (CLB), Application Load Balancer (ALB), and Network

Load Balancer (NLB). Among these, NLB is specifically designed for scenarios where ultra-low latency and deterministic traffic

flow are required. Unlike ALB, which provides sophisticated Layer 7 content-based routing such as path or host header matching,

NLB is a Layer 4 load balancer that routes requests purely on the basis of network and transport-level information. This makes

it a strong candidate for latency-sensitive use cases such as financial trading systems, real-time communications platforms,

gaming applications, and high-throughput APIs. By combining static IP addressing, TLS passthrough, and zonal isolation, NLB

provides a balance between performance, scalability, and security.

2. Architecture of NLB in AWS

The architecture of NLB is designed around high scalability and availability. Each NLB is provisioned across multiple

Availability Zones (AZs) in a Virtual Private Cloud (VPC) and can be assigned static Elastic IP addresses, one per AZ, ensuring

predictable connectivity for clients. When traffic arrives at the NLB, it is routed using a deterministic flow hashing algorithm

that considers the five-tuple of protocol, source IP, source port, destination IP, and destination port. This ensures that packets

belonging to the same connection are always routed to the same backend target, maintaining consistency for stateful applications.

NLB also supports zonal isolation, meaning that each Availability Zone operates independently; in case of failure in one AZ,

other zones continue to serve traffic without disruption. Cross-zone load balancing can be enabled to distribute requests evenly

across all registered targets, but administrators must weigh this against potential inter-AZ data transfer costs. NLB also supports

TLS termination, allowing it to either forward encrypted traffic (TLS passthrough) or decrypt traffic at the load balancer level

https://doi.org/10.54660/.IJMRGE.2024.5.2.1139-1141

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1140 | P a g e

and re-encrypt it before forwarding to targets.

Fig 1: AWS Network Load Balancer (NLB) architecture with clients, Availability Zones, target groups, and microservices.

3. Traffic Routing and Distribution Logic

Unlike ALB, which can inspect application-level headers and

routes traffic based on path or host information, NLB focuses

on transport-level traffic management. Its routing logic is

based on connection-level load distribution, where flows are

consistently mapped to targets using deterministic hashing.

Once a flow is assigned to a target, all packets within that

session continue to be routed to the same backend until the

connection terminates. This ensures low latency and reduces

jitter, which is essential for applications such as voice over IP

(VoIP), streaming services, and gaming platforms. NLB also

provides flexible health checks, supporting both TCP and

HTTP(S) checks to ensure only healthy targets receive traffic.

These health checks can be tuned for intervals, thresholds,

and timeouts to meet workload-specific needs. Additionally,

administrators can configure idle connection timeouts to

control how long inactive connections are maintained before

being reset.

4. Target Groups and Supported Targets

NLB directs traffic to registered targets through target

groups. These target groups can consist of Amazon EC2

instances within the same VPC, containers running on

Amazon Elastic Kubernetes Service (EKS) or Elastic

Container Service (ECS), private IP addresses from on-

premises systems in hybrid cloud setups, and AWS Lambda

functions. By supporting both IP-based and instance-based

targets, NLB enables a flexible architecture that extends load

balancing beyond the boundaries of AWS into hybrid

environments. Each target group is associated with its own

set of health checks, ensuring granular control over routing

behavior. For containerized workloads, NLB can

dynamically register and deregister IP addresses as pods scale

up and down, making it particularly suitable for Kubernetes-

based microservices environments. The ability to route traffic

to AWS Lambda functions also adds serverless integration,

where event-driven workloads can process traffic without

dedicated infrastructure.

5. Deployment Scenarios and Use Cases

NLB is widely adopted in scenarios that require high

throughput and consistent low latency. In the financial

services sector, it is used for trading applications where

microseconds matter, while in telecommunications it

supports VoIP and messaging workloads. For gaming

platforms, NLB ensures smooth player experiences by

maintaining stable connections with low jitter. In hybrid

cloud deployments, organizations can register on-premises IP

addresses as NLB targets, enabling seamless routing between

AWS and local data centers. Another common deployment

pattern involves combining NLB with ALB: NLB provides

static IP addresses and TLS termination at the edge, while

ALB handles advanced Layer 7 routing such as host- and

path-based rules. This hybrid design balances performance

with flexibility, allowing enterprises to serve a diverse range

of workloads securely and efficiently.

6. Benefits and Limitations

NLB offers several advantages that distinguish it from other

load balancers in AWS. Its primary benefits include ultra-low

latency, the ability to scale to millions of connections per

second, and support for static IP addresses, which are critical

International Journal of Multidisciplinary Research and Growth Evaluation www.allmultidisciplinaryjournal.com

 1141 | P a g e

for security whitelisting and integration with external

firewalls. NLB’s native integration with ECS, EKS, and

Lambda makes it suitable for modern application

architectures, while its zonal isolation ensures high

availability and resilience against single-AZ failures.

However, NLB also comes with limitations. It lacks Layer 7

intelligence, meaning it cannot inspect or act on HTTP

headers, cookies, or query strings. Observability is also more

limited compared to ALB, with fewer metrics and no direct

access to application-level logs. Furthermore, cross-zone

load balancing can result in additional costs, and debugging

network flows often requires VPC Flow Logs and

CloudWatch metrics.

7. Challenges and Best Practices

Operating NLB effectively requires careful attention to

monitoring, cost management, and hybrid configurations.

One challenge is limited visibility into application-level

traffic, which makes it important to integrate NLB with

CloudWatch metrics and VPC Flow Logs for detailed flow

analysis. Cost optimization is another concern, as enabling

cross-zone load balancing may increase inter-AZ data

transfer expenses. To address these issues, best practices

include designing target groups with proper scaling policies,

using TLS certificates from AWS Certificate Manager

(ACM) for secure traffic handling, and combining NLB with

ALB or API Gateway when Layer 7 functionality is required.

Additionally, workloads that demand fine-grained security

should employ IAM policies, security groups, and network

ACLs in combination with NLB’s transport-level routing to

maintain compliance and control.

8. Backend Communication with Microservices through

NLB

One of the most significant advantages of using AWS

Network Load Balancer is its ability to enhance backend

communication in microservices-based architectures.

Modern applications deployed on Amazon Elastic

Kubernetes Service (EKS) or Amazon Elastic Container

Service (ECS) often consist of hundreds or thousands of

microservices that must communicate reliably and

efficiently. NLB, operating at Layer 4, is optimized for speed

and throughput, allowing it to maintain millions of concurrent

connections with minimal latency. By leveraging

deterministic hashing algorithms, NLB ensures that network

flows are consistently routed to the same microservice

backend, which is particularly beneficial for stateful services

where connection persistence is important. Another key

benefit of NLB in microservices environments is its ability to

handle sudden traffic spikes. Because it is designed for high

scalability, NLB can absorb large bursts of requests without

performance degradation, ensuring seamless service-to-

service communication. In Kubernetes environments, NLB

integrates directly with Service objects, allowing pods to be

registered and deregistered dynamically as they scale in and

out. This results in an infrastructure where communication

between services remains stable even as workloads change.

Additionally, NLB supports both TCP and UDP traffic,

making it suitable for a wide range of inter-service

communication protocols, including gRPC, HTTP/2, and

custom binary protocols often used in high-performance

systems. This protocol flexibility ensures that developers are

not constrained by application-layer routing limitations and

can build microservices that maximize throughput. From a

performance perspective, NLB minimizes overhead by

avoiding packet inspection at higher layers, enabling near-

native network speeds when routing traffic between services.

This combination of scalability, speed, and deterministic

routing makes NLB particularly well-suited for

microservices architectures where backend communication

efficiency directly impacts overall system performance.

9. Conclusion

AWS Network Load Balancer plays a critical role in cloud-

native architectures where performance, scalability, and

deterministic routing are paramount. While it does not

provide context-based routing like ALB, its ability to handle

millions of connections with ultra-low latency makes it ideal

for performance-sensitive workloads. With support for

multiple target types including EC2, containers, IP addresses,

and Lambda, NLB enables both cloud-native and hybrid

cloud deployments. Enterprises often use it alongside ALB to

combine transport-level performance with application-level

intelligence. By following best practices in monitoring, cost

control, and security, organizations can leverage NLB to

build resilient, scalable, and high-performance architectures

in AWS.

10. References

1. Amazon Web Services. Elastic Load Balancing:

Network Load Balancer Features. AWS Documentation;

2021. Available from:

https://docs.aws.amazon.com/elasticloadbalancing

2. Amazon Web Services. How Network Load Balancer

Works. AWS Documentation; 2020. Available from:

https://docs.aws.amazon.com/elasticloadbalancing/lates

t/network/introduction.html

3. Amazon Web Services. Target Groups for Your Network

Load Balancer. AWS Documentation; 2022. Available

from:

https://docs.aws.amazon.com/elasticloadbalancing/lates

t/network/load-balancer-target-groups.html

4. AWS Containers Blog. Integrating Amazon ECS and

EKS with NLB. 2021. Available from:

https://aws.amazon.com/blogs/containers

5. AWS Architecture Center. Patterns for Using ALB and

NLB Together. 2022. Available from:

https://aws.amazon.com/architecture

6. Amazon Web Services. Monitoring Network Load

Balancers. AWS CloudWatch Documentation; 2022.

Available from:

https://docs.aws.amazon.com/elasticloadbalancing/lates

t/network/load-balancer-cloudwatch-metrics.html

7. Amazon Web Services. Securing Load Balancers in

AWS. AWS Security Best Practices; 2020. Available

from: https://docs.aws.amazon.com/security

