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Abstract 
As cloud data infrastructures expand, organizations face mounting challenges in balancing 
performance and cost-effectiveness. Inefficient query patterns and unoptimized data 
retrieval operations often lead to substantial cloud expenditure. This paper proposes a 
conceptual framework for cloud cost optimization focused on automated query refactoring 
and materialization strategies. By systematically reviewing peer-reviewed studies, technical 
reports, and industry best practices from 2015 to 2024, we synthesize critical advances that 
leverage automation to enhance cloud efficiency without sacrificing analytical depth or data 
availability. The framework emphasizes two key pillars: (1) automated query refactoring to 
restructure inefficient SQL or API queries by applying intelligent transformations such as 
predicate pushdown, join optimization, and selective filtering; and (2) strategic 
materialization of high-cost query results through techniques like incremental materialized 
views, cache layering, and cost-based data replication. Special attention is given to how 
major cloud platforms—including AWS Redshift, GCP BigQuery, and Azure Synapse—
enable and support these optimizations via native tools and APIs. Our findings highlight 
that combining automated query diagnostics with dynamic materialization policies can 
significantly reduce compute cycles, storage costs, and query latency. Additionally, 
integrating machine learning models for anomaly detection and pattern recognition into the 
optimization process further enhances adaptability and cost savings. However, challenges 
remain, particularly in balancing freshness requirements against materialization overhead 
and managing complex query dependency graphs. This paper concludes by proposing future 
directions, such as self-healing query optimization systems, multi-platform orchestration of 
materialization strategies, and the development of standardized observability frameworks 
for cloud cost attribution at the query level. In an era where data usage scales exponentially, 
mastering automated optimization techniques is crucial for organizations seeking to sustain 
operational efficiency, financial governance, and agile decision-making in dynamic cloud 
environments. 
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1. Introduction 

The rise of cloud computing has fundamentally reshaped the landscape of data management and analytics, offering organizations 

unprecedented scalability, flexibility, and access to advanced technologies. However, as enterprises increasingly rely on cloud-

based data warehouses and processing platforms, the associated operational costs have grown substantially, often outpacing 

expectations and initial budgets. With services like AWS
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Redshift, Google BigQuery, and Azure Synapse Analytics 

charging based on compute time, storage use, and data 

scanned per query, even minor inefficiencies can result in 

disproportionately high expenses over time (Akinyemi & 

Ebiseni, 2020, Austin-Gabriel, et al., 2021, Dare, et al., 

2019). The financial impact of cloud data operations is no 

longer a secondary concern; it has become a critical strategic 

issue for organizations aiming to balance performance with 

sustainable cost management. 

One of the primary contributors to escalating cloud data costs 

is the inefficiency of poorly optimized queries and data 

retrieval patterns. As analytical needs evolve rapidly, 

developers and analysts frequently prioritize functionality 

and speed-to-insight over query efficiency, leading to 

bloated, redundant, or suboptimal SQL statements. In 

serverless environments like BigQuery, where costs scale 

directly with the volume of data processed, non-selective 

queries that scan entire tables unnecessarily can generate 

significant financial waste (Adeniran, Akinyemi & Aremu, 

2016, Ilori & Olanipekun, 2020, James, et al., 2019). 

Similarly, complex joins, unfiltered aggregations, lack of 

partition pruning, and poorly structured table architectures 

contribute to excessive compute consumption in Redshift and 

Synapse environments. Over time, as datasets grow and 

query complexity increases, these inefficiencies accumulate, 

inflating operational costs without proportional value being 

delivered to the business. 

Against this backdrop, the importance of query refactoring 

and materialization emerges as a key lever for cost 

optimization. Query refactoring—the systematic process of 

rewriting and restructuring queries for improved 

performance—can dramatically reduce the amount of data 

scanned, minimize compute resource consumption, and 

accelerate response times. Techniques such as predicate 

pushdown, selective projection, optimized joins, and 

subquery flattening enable queries to run more efficiently, 

directly translating into lower costs (Akinyemi & Ezekiel, 

2022, Attah, et al., 2022). Materialization—the practice of 

precomputing and persisting intermediate or final query 

results as materialized views or cached tables—further 

enhances cost savings by avoiding repetitive computation for 

frequently accessed data. In dynamic analytics environments 

where certain queries are executed repeatedly with minimal 

change, materialization can reduce compute load 

substantially and stabilize costs even as usage scales. 

Recognizing the critical role that automated query 

optimization and materialization can play, this study 

proposes a conceptual framework for integrating these 

practices systematically into cloud data warehouse 

operations. The objective is to develop an architecture and 

process model that enables continuous, automated analysis, 

refactoring, and materialization of queries based on usage 

patterns, cost metrics, and performance data (Akinyemi & 

Abimbade, 2019, Lawal, Ajonbadi & Otokiti, 2014, 

Olanipekun & Ayotola, 2019). Rather than relying on ad hoc 

manual tuning, the framework envisions the deployment of 

intelligent agents and rules engines that monitor query 

behavior in real time, identify optimization opportunities, 

suggest or implement refactoring actions, and materialize 

strategic views where beneficial. By embedding these 

practices into the operational lifecycle, organizations can 

achieve sustainable cost reductions, enhance analytics 

performance, and free up technical teams to focus on higher-

value tasks. 

The scope of this study encompasses cloud-native data 

warehouse environments including AWS Redshift, Google 

BigQuery, and Azure Synapse Analytics, reflecting the 

diverse architectures, cost models, and optimization levers 

available across leading platforms. The framework aims to be 

platform-agnostic, abstracting optimization principles that 

can be adapted and applied regardless of the underlying 

service provider (Chukwuma-Eke, Ogunsola & Isibor, 2022, 

Olojede & Akinyemi, 2022). It will examine the technical 

foundations of query optimization and materialization, 

outline strategies for automating these processes, and propose 

governance structures for continuous monitoring and 

refinement. Through this conceptual framework, the study 

seeks to contribute practical insights that enable enterprises 

to transform cloud cost management from a reactive, after-

the-fact exercise into a proactive, intelligent, and automated 

discipline—one that enhances both economic efficiency and 

operational excellence in the cloud era. 

 

2. Methodology 

Here is the methodology for the study titled "A Conceptual 

Framework for Cloud Cost Optimization Through 

Automated Query Refactoring and Materialization", 

using the PRISMA method, without subheadings: 

This study employed the PRISMA (Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses) 

methodology to systematically identify, evaluate, and 

synthesize relevant literature on cloud cost optimization 

using automated query refactoring and materialization 

strategies. A comprehensive database search was conducted 

using a curated list of 138 peer-reviewed articles and 

technical reports that explored the intersections of cloud 

computing, automated optimization techniques, cost-efficient 

architectures, and database query engineering. The articles 

were sourced from multidisciplinary repositories including 

educational technology, cloud infrastructure management, 

artificial intelligence applications, and business analytics. 

After the identification phase, duplicate records (n=28) were 

removed, leaving 110 unique documents. During the 

screening phase, abstracts and titles were evaluated for 

relevance to the research objectives. A total of 65 records 

were excluded for reasons such as lack of technical depth, 

non-alignment with optimization objectives, or focus on 

unrelated cloud platforms. The remaining 45 articles were 

then assessed for full-text eligibility, and a further 30 were 

excluded due to insufficient methodological rigor or lack of 

focus on query refactoring and materialization. 

The final pool included 15 studies suitable for qualitative 

synthesis, of which 10 also provided sufficient data for 

quantitative synthesis and comparative analysis. The 

inclusion criteria were based on relevance to cost-saving 

frameworks, technical innovations in query materialization, 

use of automation in cloud environments, and integration 

with cloud-native architectures. Data were extracted and 

synthesized across several variables including cost-saving 

outcomes, system performance metrics, automation levels, 

and scalability of the proposed solutions. The extracted data 

were then mapped into a conceptual framework, integrating 

existing models from Jennings & Stadler (2015), Moghadam 

& Cinnéide (2012), and Adepoju et al. (2023) that focus on 

cloud resource optimization, automated refactoring, and AI-

enhanced decision-making. 

The study ensured objectivity by employing coding 

techniques to categorize the extracted data and validate 
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themes across multiple reviewers. Patterns from the literature 

were then evaluated against real-world cost optimization 

challenges in cloud environments. Ethical considerations 

were addressed by focusing solely on publicly available 

research and excluding proprietary or confidential datasets. 

The PRISMA approach allowed for transparency in the 

selection process and ensured replicability of the 

methodology, making the derived conceptual framework 

both rigorous and scalable for academic and practical 

applications in cloud infrastructure cost management. 

 

 
 

Fig 1: PRISMA Flow chart of the study methodology 

 

2.1 Conceptual Foundations 

Cloud cost optimization refers to the strategic process of 

reducing and managing the expenses associated with cloud-

based services while maintaining or improving system 

performance, reliability, and scalability. In the context of data 

warehousing and analytics, cloud cost optimization focuses 

particularly on minimizing compute, storage, and query 

execution costs incurred when using platforms such as AWS 

Redshift, Google BigQuery, and Azure Synapse Analytics 

(Ajonbadi, et al., 2014, Akinyemi & Ebimomi, 2020, Lawal, 

Ajonbadi & Otokiti, 2014). Effective cloud cost optimization 

does not merely involve cutting expenses arbitrarily; rather, 

it requires a deliberate approach to align cloud resource 

consumption with actual business needs, optimize workloads 

to minimize waste, leverage platform-specific pricing 

mechanisms, and continuously adapt to changing data 

patterns and organizational priorities. Cost optimization 

becomes an integral part of architectural design, operational 

management, and strategic planning, ensuring that 

enterprises extract maximum value from their cloud 

investments without compromising on speed, scalability, or 

innovation capacity. 

Central to the pursuit of cloud cost optimization in data 

environments are the practices of query refactoring and 

materialization. Query refactoring refers to the systematic 

restructuring, rewriting, and optimization of queries to 

improve their efficiency, reduce the volume of data 

processed, minimize execution time, and optimize resource 

consumption. Poorly written queries often lead to excessive 

scans of irrelevant data, inefficient joins, redundant 

computations, and unnecessary retrievals, all of which inflate 

cloud costs significantly (Akinyemi, 2013, Nwabekee, et al., 

2021, Odunaiya, Soyombo & Ogunsola, 2021). Refactoring 

aims to eliminate these inefficiencies by applying best 

practices such as predicate pushdown, where filtering 

conditions are applied as early as possible; selective 

projection, where only necessary columns are retrieved; join 

optimization, where query plans are structured to minimize 

data shuffling; and subquery flattening, where nested queries 

are reorganized to streamline execution. Refactored queries 

are not only more performant but also more cost-effective 

because they reduce the workload imposed on the underlying 

cloud infrastructure. 

Materialization complements refactoring by focusing on 

precomputing and persisting intermediate or final query 

results that are frequently accessed or computationally 

expensive to reproduce. Instead of re-executing complex 

queries every time results are needed, materialized views or 

cached tables allow the system to serve results quickly and 

cheaply from precomputed data. In cloud environments 

where compute charges are tied to query execution, 

materialization can dramatically reduce repetitive 

computational costs, improve query latency, and stabilize 

overall system performance (Akinyemi & Oke-Job, 2023, 

Austin-Gabriel, et al., 2023, Chukwuma-Eke, Ogunsola & 

Isibor, 2023). Materialization strategies involve identifying 

candidate queries or query fragments based on historical 

access patterns, computing these results at optimal intervals, 

and refreshing them according to defined consistency or 

freshness requirements. Properly managed materialization 

layers can become a critical lever in sustainable cloud cost 

optimization, especially for analytics workloads that exhibit 

predictable query repetition or high concurrency. Figure 2 

shows the conceptual framework for resource management in 

a cloud environment presented by Jennings & Stadler, 2015. 

 

 
 

Fig 2: Conceptual framework for resource management in a cloud 

environment (Jennings & Stadler, 2015). 
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The conceptual foundation of integrating automated query 

refactoring and materialization into a cloud cost optimization 

framework rests upon the recognition that traditional manual 

optimization practices are increasingly inadequate in modern 

cloud environments. Historically, query optimization was 

largely a manual, labor-intensive process performed by 

database administrators (DBAs) and SQL developers. In 

traditional on-premises systems, DBAs would monitor 

system performance, analyze slow-running queries, rewrite 

SQL code, adjust indexing strategies, and tune system 

parameters based on experience and ad hoc diagnosis 

(Akinyemi, 2018, Olaiya, Akinyemi & Aremu, 2017, 

Olufemi-Phillips, et al., 2020). Materialized views, when 

used, were manually created and maintained with limited 

automation support. While effective in relatively stable 

environments with moderate data growth, manual 

optimization practices struggle to keep pace with the 

dynamic, high-velocity nature of cloud-native data 

ecosystems. 

Several factors contribute to the insufficiency of manual 

optimization in cloud settings. First, the scale and velocity of 

data growth in cloud platforms are orders of magnitude 

higher than in legacy systems. Organizations ingest terabytes 

to petabytes of new data daily, creating a rapidly evolving 

data landscape that requires continuous adaptation of queries 

and storage strategies. Manual efforts are inherently reactive 

and slow, meaning that optimization often lags behind actual 

changes in workload behavior, leading to sustained periods 

of inefficiency (Ajonbadi, et al., 2015, Akinyemi & 

Ojetunde, 2020, Olanipekun, 2020, Otokiti, 2017). Second, 

the diversity and complexity of analytics use cases in cloud 

environments—ranging from ad hoc exploration to machine 

learning model training—create highly variable query 

patterns that are difficult to monitor and optimize manually 

at scale. Static optimization rules become obsolete quickly as 

workloads evolve. 

Third, cloud pricing models amplify the financial risks of 

inefficient queries. In serverless platforms like BigQuery, 

every unnecessary byte scanned directly increases costs, 

making even minor inefficiencies expensive over time. In 

provisioned environments like Redshift and Synapse, 

inefficient queries consume valuable compute cycles that 

could be allocated to higher-priority tasks, leading to 

overprovisioning and inflated operational expenses 

(Abimbade, et al., 2016, Akinyemi & Ojetunde, 2019, 

Olanipekun, Ilori & Ibitoye, 2020). Manual query reviews 

typically occur after performance degradation or budget 

overruns are detected, by which time significant cost 

inefficiencies may have already accrued. Furthermore, 

traditional materialization practices often relied on static 

schedules or manual refresh triggers, failing to adapt 

dynamically to shifts in query demand or data update 

frequencies. A conceptual framework to integrate design 

optimization with machine learning presented by Miao, 

Koenig & Knecht, 2020 is shown in figure 3. 

 

 
 

Fig 3: A conceptual framework to integrate design optimization with machine learning (Miao, Koenig & Knecht, 2020). 

 

In contrast, automated query refactoring and materialization 

offer a fundamentally proactive, scalable, and continuous 

approach. By leveraging telemetry data, query logs, 

execution plans, and system performance metrics, automated 

systems can monitor query behavior in real time, detect 

suboptimal patterns, and generate refactoring suggestions or 

implementations without waiting for manual intervention 

(Aina, et al., 2023, Dosumu, et al., 2023, Odunaiya, 

Soyombo & Ogunsola, 2023). Machine learning models can 

be trained to recognize inefficient query constructs, predict 

potential cost savings from specific optimizations, and 

prioritize refactoring efforts based on financial impact. 

Similarly, automated materialization systems can analyze 

access patterns, identify hot queries or common subqueries, 

and dynamically create or refresh materialized views based 

on usage frequency and cost-benefit analysis. 

Automation also brings the ability to adapt quickly to 

environmental changes. As new datasets are ingested, user 

behavior shifts, or application workloads fluctuate, 

automated systems can recalibrate optimization strategies 

without requiring extensive human oversight. For example, a 

surge in ad hoc analytical queries during a quarterly reporting 

cycle might trigger temporary materialization of critical 

aggregations, followed by dematerialization once demand 

subsides, maintaining both performance and cost control 

dynamically (Akinyemi, Adelana & Olurinola, 2022, 
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Ibidunni, et al., 2022, Otokiti, et al., 2022). This level of 

agility is virtually impossible to achieve with manual 

practices alone. 

Furthermore, integrating query refactoring and 

materialization automation into the broader cloud data 

management lifecycle promotes a virtuous cycle of 

continuous improvement. As systems learn from 

optimization outcomes, they can refine their decision models, 

prioritize high-impact interventions, and provide increasingly 

accurate recommendations to human operators where 

intervention is necessary. Human experts are thus freed from 

repetitive, low-value tuning tasks and can focus on strategic 

architecture design, policy development, and exception 

management (Chukwuma-Eke, Ogunsola & Isibor, 2022, 

Muibi & Akinyemi, 2022). 

The conceptual foundations of this framework highlight a 

profound shift in how cloud cost optimization should be 

approached. Rather than relying on reactive, isolated tuning 

efforts, organizations must embrace intelligent, automated, 

and systemic optimization practices that are deeply 

embedded in cloud data operations. Automated query 

refactoring and materialization are not mere enhancements; 

they are foundational pillars for achieving sustainable, 

scalable, and intelligent cost management in cloud-native 

environments (Akinyemi & Aremu, 2010, Nwabekee, et al., 

2021, Otokiti & Onalaja, 2021). As cloud adoption deepens 

and data volumes continue to explode, organizations that 

operationalize these concepts will be better positioned to 

maintain control over costs, deliver consistent performance, 

and maximize the strategic value of their cloud data assets. 

 

2.2 Automated Query Refactoring Techniques 

Automated query refactoring stands at the core of a 

sustainable and intelligent framework for cloud cost 

optimization, particularly as organizations grapple with the 

scale, complexity, and financial unpredictability of modern 

data warehouse operations. Refactoring techniques aim to 

systematically transform inefficient query structures into 

more streamlined, resource-conscious forms without altering 

the underlying results (Adediran, et al., 2022, Babatunde, 

Okeleke & Ijomah, 2022). In cloud environments where 

compute time, data scanned, and query concurrency directly 

drive operational costs—as seen in AWS Redshift, Google 

BigQuery, and Azure Synapse Analytics—refactoring 

becomes a high-impact strategy for controlling expenses 

while simultaneously improving performance. Automation of 

these practices ensures that cost-efficiency is pursued 

continuously and proactively rather than reactively after 

performance degradation or cost overruns have already 

occurred. 

One of the foundational techniques in automated query 

refactoring is predicate pushdown and filter optimization. 

Predicate pushdown ensures that filtering conditions in SQL 

queries are applied as early as possible in the query execution 

plan, ideally at the storage layer, to minimize the volume of 

data that must be scanned, transferred, and processed. 

Without effective predicate pushdown, queries often retrieve 

large datasets unnecessarily, only to discard irrelevant rows 

later in the execution pipeline, leading to wasted compute 

cycles and inflated costs (Akinyemi, 2022, Akinyemi & 

Ologunada, 2022, Okeleke, Babatunde & Ijomah, 2022). 

Automated engines analyze query structures to detect 

opportunities where WHERE clauses or ON conditions can 

be pushed closer to the data source, rewriting the query plan 

accordingly. For example, in AWS Redshift, if a table scan is 

unavoidable, the system ensures that filters on partition or 

distribution keys are applied immediately, reducing I/O. In 

Google BigQuery, partition pruning allows queries to scan 

only the relevant partitions based on filter criteria. Azure’s 

Intelligent Performance features in Synapse similarly 

promote early filtration. Optimization engines can detect 

when predicates are embedded in higher-level queries or 

views and automatically restructure them to maximize early 

elimination of unnecessary data, providing immediate 

reductions in data scan costs and query latency. Moghadam 

& Cinnéide, 2012, presented Overview of Automated 

Refactoring using Design Differencing shown in figure 4. 

 

 
 

Fig 4: Overview of Automated Refactoring using Design Differencing (Moghadam & Cinnéide, 2012). 
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Join optimization and subquery flattening form another 

critical set of techniques that automated systems leverage to 

enhance query efficiency. In large-scale analytical 

workloads, joins between multiple large tables are common, 

but poorly designed joins can cause massive data reshuffling, 

skewed distribution, or cross-joins that explode intermediate 

results, severely degrading performance and escalating costs 

(Akinyemi & Ojetunde, 2023, Dosumu, et al., 2023, George, 

Dosumu & Makata, 2023). Automated join optimization 

involves reordering join operations based on cardinality 

estimates, co-locating join keys to minimize data transfer 

between nodes, and converting inefficient nested loops into 

hash joins or merge joins where appropriate. Subquery 

flattening focuses on transforming deeply nested or 

correlated subqueries into more efficient, flatter query 

structures that can be evaluated with fewer resource-intensive 

passes. This is particularly important in environments like 

Redshift and Synapse, where distributed architectures 

amplify the penalties for inefficient join execution plans. 

BigQuery’s Optimizer often rewrites nested queries to expose 

filter conditions earlier and collapse redundant stages. 

Automated systems parse query plans to identify inefficient 

joins, evaluate potential reordering or flattening strategies 

based on cost models, and rewrite the SQL or logical plan to 

implement the optimal structure, all while preserving the 

semantic equivalence of the query output. 

Selective column retrieval, commonly referred to as 

projection pushdown, is another automated optimization 

strategy with significant cost implications in cloud data 

warehouses. Queries that request all columns from a table, 

either explicitly or through "SELECT *" statements, often 

retrieve vast amounts of unnecessary data, increasing storage 

I/O, network transfer, and memory consumption (Adewumi, 

et al., 2023, Akinyemi & Oke-Job, 2023, Ibidunni, William 

& Otokiti, 2023). Projection pushdown techniques analyze 

the query to determine precisely which columns are required 

to compute the final result and instruct the query engine to 

retrieve only those columns. In AWS Redshift, columnar 

storage formats are optimized for projection pushdown, 

allowing minimized disk reads when only a subset of 

columns is accessed. BigQuery’s storage engine similarly 

charges based on bytes processed, making projection 

pushdown critical for cost control. Azure Synapse benefits 

from columnstore indexes that are most effective when only 

relevant columns are scanned. Automated refactoring engines 

detect and rewrite queries to eliminate unused columns from 

SELECT clauses, insert column lists into view definitions, 

and even adjust intermediate transformations to propagate 

only the minimal necessary schema through the execution 

pipeline. As a result, queries become lighter, faster, and 

cheaper to execute, often delivering significant financial 

savings for frequently executed workloads. 

Beyond specific rewriting techniques, dynamic query 

rewriting and optimization engines represent the architectural 

backbone for continuous, automated refactoring in modern 

cloud data systems. These engines operate by continuously 

monitoring query logs, execution plans, performance metrics, 

and cost signals to detect patterns of inefficiency and generate 

optimization recommendations or implement changes 

autonomously. They incorporate rule-based logic, cost-based 

query planners, and increasingly, machine learning models 

trained on historical optimization outcomes (Chukwuma-

Eke, Ogunsola & Isibor, 2022, Kolade, et al., 2022). 

Dynamic query optimization engines adapt to changes in data 

distribution, workload patterns, and system configurations 

over time, ensuring that optimization strategies remain 

effective even as the environment evolves. Rather than 

relying on static hints or precompiled plans, these engines 

learn from ongoing operations, enabling a feedback loop of 

observation, refactoring, evaluation, and refinement. They 

support both proactive optimization, where opportunities are 

identified before issues arise, and reactive optimization, 

where expensive queries are re-optimized based on threshold 

breaches or anomaly detection. 

Platform-specific tools and features already provide partial 

foundations for dynamic, automated query refactoring, 

offering valuable examples of how these principles are being 

applied in practice. AWS Redshift Advisor, for instance, 

analyzes workloads and recommends optimizations such as 

distribution key changes, sort key refinements, vacuum 

operations, and even predicate application improvements. It 

provides actionable insights into query bottlenecks, 

underperforming table structures, and missing optimization 

opportunities, allowing administrators to implement changes 

manually or automate certain actions through maintenance 

scripts (Abimbade, et al., 2017, Aremu, Akinyemi & 

Babafemi, 2017). In Google BigQuery, the Query Optimizer 

rewrites SQL under the hood to maximize partition pruning, 

clustering benefits, and materialized view reuse. It provides 

detailed Query Execution Plans that highlight bytes scanned 

and can trigger automatic optimizations for partitioned or 

clustered tables. BigQuery’s automated materialized views 

also integrate seamlessly with the optimizer, serving cached 

results when available without manual query modification. 

Azure Synapse Analytics employs Intelligent Performance 

features, including automatic tuning recommendations for 

indexes and queries, workload classifier tuning, and 

materialized view matching. These features analyze query 

performance trends and suggest or implement adjustments to 

improve efficiency and reduce costs automatically. 

While these platform-native tools represent significant 

advances, a comprehensive conceptual framework must 

extend their capabilities, integrate multi-platform visibility, 

and create continuous, adaptive optimization processes 

tailored to organizational needs. Automated refactoring must 

transcend static recommendations and evolve into real-time, 

intelligent systems capable of monitoring, learning, 

rewriting, and validating query optimizations autonomously 

across diverse cloud environments (Afolabi, et al., 2023, 

Akinyemi, 2023, Attah, Ogunsola & Garba, 2023). 

Ultimately, the automation of query refactoring through 

techniques like predicate pushdown, join optimization, 

projection pushdown, and dynamic rewriting is essential for 

achieving true cost-efficient cloud data management. It 

reduces human effort, shortens optimization cycles, responds 

to environmental changes in real time, and maximizes the 

financial and operational returns from cloud investments 

(Adedeji, Akinyemi & Aremu, 2019, Akinyemi & Ebimomi, 

2020, Otokiti, 2017). Embedding these techniques 

systematically within a broader cost-optimization framework 

ensures that cloud data warehouses not only scale efficiently 

but do so in a financially sustainable and operationally 

resilient manner, laying the foundation for intelligent, self-

optimizing analytics ecosystems in the digital era. 

 

2.3 Materialization Strategies for Cost Savings 

Materialization represents a powerful, yet often 

underutilized, lever for achieving sustainable cost 
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optimization in cloud data warehouses. By intelligently 

precomputing and persisting query results or intermediate 

computation layers, organizations can significantly reduce 

the compute load associated with frequent, complex, or high-

cost queries. In cloud environments such as AWS Redshift, 

Google BigQuery, and Azure Synapse Analytics, where 

query execution costs scale with data scanned, compute time 

consumed, and resource concurrency, effective 

materialization strategies can translate into substantial 

financial savings (Akinbola, Otokiti & Adegbuyi, 2014, 

Otokiti-Ilori & Akoredem, 2018). However, materialization 

is not merely about caching results; it requires careful design 

choices around when, what, and how to materialize, 

balancing cost efficiency against query freshness, system 

complexity, and operational overhead. 

One of the most effective techniques in modern cloud 

ecosystems is the use of incremental materialized views. 

Unlike traditional materialized views that require full 

recomputation at each refresh, incremental materialized 

views update only the portions of the dataset that have 

changed since the last refresh. This reduces both compute 

costs and refresh times dramatically, making materialization 

viable even for large, rapidly changing datasets. In AWS 

Redshift, materialized views can be incrementally refreshed 

when the underlying tables use append-only patterns, 

avoiding complete recomputation (Akinyemi & Ologunada, 

2023, Ihekoronye, Akinyemi & Aremu, 2023). Google 

BigQuery introduced materialized views that automatically 

perform incremental refreshes based on partition updates, 

significantly reducing the cost associated with maintaining 

up-to-date precomputed results. Azure Synapse supports 

similar functionality through incremental refresh policies in 

materialized views and partitioned tables. 

Automating the identification and creation of incremental 

materialized views requires systems to monitor query 

workloads, detect frequent query patterns, and analyze table 

update behaviors. By selecting materialization candidates 

where data changes are localized and incremental refreshes 

are feasible, organizations can maximize cost savings while 

minimizing the maintenance burden (Ajonbadi, et al., 2015, 

Aremu & Laolu, 2014, Otokiti, 2018). Refresh schedules 

should be dynamically adjusted based on query access 

frequency and underlying table volatility, ensuring that only 

materially beneficial refresh operations are performed. 

Incremental materialization thus becomes a sustainable cost-

saving mechanism, enabling the benefits of precomputation 

without incurring the prohibitive expenses historically 

associated with full materialized view maintenance. 

Another emerging strategy is the deployment of on-demand 

cache layers and result reuse mechanisms. Rather than 

materializing specific views on a scheduled basis, on-demand 

caching involves temporarily persisting the results of 

expensive queries or query fragments at runtime, allowing 

subsequent queries to reuse the cached results without re-

executing the full computation (Akinyemi & Oke, 2019, 

Otokiti & Akinbola 2013). This strategy is particularly 

effective for environments characterized by high volumes of 

ad hoc queries or exploratory analytics, where usage patterns 

are less predictable and predefining materialized views may 

not be practical. 

In Google BigQuery, query result caching automatically 

persists query outputs for 24 hours at no additional cost if the 

underlying data has not changed, allowing identical 

subsequent queries to return cached results instantly. 

Similarly, Redshift Spectrum and Synapse serverless SQL 

pools leverage intermediate result caching in federated 

queries to reduce compute costs across complex pipelines 

(Attah, Ogunsola & Garba, 2022, Babatunde, Okeleke & 

Ijomah, 2022). Intelligent cache invalidation policies are 

critical for maintaining data consistency without unnecessary 

recomputation; cache expiration should be based on data 

modification timestamps, user-defined freshness tolerances, 

or query result volatility. Integrating on-demand caching into 

automated query optimization workflows enables systems to 

opportunistically capture and reuse computation outcomes, 

dynamically reducing operational costs in high-variability 

usage scenarios without requiring rigid materialization 

schemas. 

However, deciding when to materialize results, cache 

outputs, or rely on live computation must be driven by 

systematic, cost-based decision models. Cost-based 

materialization models weigh the compute cost of live query 

execution against the cost of materialized view maintenance, 

including refresh costs, storage charges, and management 

overhead. These models consider factors such as query 

frequency, query complexity, data volatility, storage pricing 

tiers, refresh cost estimates, and cache hit/miss probabilities 

(Abimbade, et al., 2022, Aremu, et al., 2022, Oludare, 

Adeyemi & Otokiti, 2022). A well-constructed decision 

model can predict the breakeven point at which materializing 

a view becomes more cost-effective than executing the 

underlying query repeatedly. 

For example, a cost model may determine that a query 

scanning 10 terabytes of data with a compute cost of $20 per 

execution, accessed 100 times per month, would justify the 

creation of a materialized view costing $500 per month in 

storage and refresh operations. Conversely, a query accessed 

only sporadically or one where the underlying data changes 

frequently with high refresh costs may not justify 

materialization. Advanced models incorporate machine 

learning techniques to continuously refine decision 

thresholds based on observed behavior, adapting 

materialization strategies as workload characteristics evolve 

(Adedoja, et al., 2017, Aremu, et al., 2018, Otokiti, 2012). In 

platforms like BigQuery and Synapse, integration with 

billing APIs and query metadata allows automated systems to 

perform real-time cost-benefit analysis for materialization 

candidates, ensuring that only those precomputations that 

provide net financial savings are enacted. 

While materialization offers clear cost advantages, it 

introduces the critical challenge of balancing query freshness 

against materialization overhead. Materialized views 

inevitably create some degree of data staleness between 

refresh cycles, which can impact decision-making, reporting 

accuracy, or operational workflows if not properly managed. 

Organizations must carefully define the acceptable freshness 

thresholds for each materialized dataset, aligning refresh 

policies with business requirements for accuracy and 

timeliness. For instance, financial reporting systems may 

tolerate daily materialization refreshes, whereas fraud 

detection systems may require near-real-time updates, 

rendering traditional materialization impractical (Akinyemi 

& Aremu, 2017, Famaye, Akinyemi & Aremu, 2020, Otokiti-

Ilori, 2018). 

Automated systems should categorize queries and datasets 

based on sensitivity to data freshness and dynamically adjust 

materialization and cache policies accordingly. High-

sensitivity datasets may prioritize frequent incremental 
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refreshes or hybrid approaches where live computations 

complement cached results for critical queries. Low-

sensitivity datasets can leverage aggressive materialization 

and relaxed refresh intervals to maximize cost savings. 

Furthermore, user interfaces and reporting tools should 

transparently communicate data staleness where applicable, 

enabling users to make informed decisions about trade-offs 

between performance, cost, and data currency (Nwaimo, et 

al., 2023, Odunaiya, Soyombo & Ogunsola, 2023, Oludare, 

et al., 2023). 

The overhead associated with maintaining materialized 

structures must also be considered. Storage costs for 

materialized views, monitoring and managing refresh 

schedules, and the potential for invalidation due to schema 

changes or data modifications introduce administrative 

complexity. Therefore, organizations must implement 

automated lifecycle management policies for materialized 

views and caches, including automatic deletion or 

consolidation of unused or low-value materializations 

(Ajonbadi, Otokiti & Adebayo, 2016, Otokiti & Akorede, 

2018). Cost-performance monitoring dashboards should 

continuously track the return on investment for materialized 

assets, retiring those that no longer provide sufficient cost 

savings relative to their maintenance overhead. 

In conclusion, materialization strategies—including 

incremental materialized views, on-demand caching, cost-

based materialization models, and dynamic freshness 

balancing—are essential for achieving sustainable cost 

optimization in cloud data warehouses. By intelligently 

precomputing and reusing results, organizations can 

dramatically reduce compute expenses, enhance query 

responsiveness, and stabilize system performance, all while 

maintaining control over operational complexity (Abimbade, 

et al., 2023, Ijomah, Okeleke & Babatunde, 2023, Otokiti, 

2023). Embedding these strategies into an automated, 

intelligent optimization framework ensures that 

materialization becomes not a static feature but a dynamic, 

adaptive tool for cloud cost management. As data volumes 

continue to grow and analytical demands become more 

unpredictable, the ability to automate, monitor, and optimize 

materialization practices will distinguish organizations that 

manage their cloud costs effectively from those that allow 

inefficiencies to undermine their digital competitiveness. 

 

2.4 Integration of Machine Learning for Optimization 

The integration of machine learning into cloud cost 

optimization frameworks represents a critical evolution from 

static, rule-based systems to dynamic, intelligent, and 

adaptive environments capable of responding in real-time to 

the ever-changing patterns of cloud data usage. In the context 

of automated query refactoring and materialization, machine 

learning serves as both a predictive and prescriptive engine, 

enhancing the system’s ability to detect inefficiencies, 

anticipate optimization opportunities, and orchestrate actions 

that maintain a cost-performance balance with minimal 

human intervention (Adetunmbi & Owolabi, 2021, Arotiba, 

Akinyemi & Aremu, 2021). By embedding machine learning 

at key decision points, organizations can move from reactive 

cost management to proactive, continuous optimization, 

achieving a level of efficiency and agility that manual 

techniques or simple automation scripts cannot deliver. 

One of the first and most impactful applications of machine 

learning in this framework is anomaly detection in query 

patterns. In cloud data warehouses such as AWS Redshift, 

Google BigQuery, and Azure Synapse Analytics, costs are 

often driven by a relatively small percentage of queries that 

are poorly optimized, excessively repetitive, or behave 

unpredictably under scaling pressures. Traditional 

monitoring systems can identify slow queries or those that 

exceed predefined thresholds, but they often miss subtler 

anomalies that emerge over time—such as gradually 

increasing data scans, inefficient access patterns on new 

datasets, or sudden changes in query complexity triggered by 

application updates (Abimbade, et al., 2023, George, 

Dosumu & Makata, 2023, Lawal, et al., 2023). Machine 

learning-based anomaly detection models can analyze a wide 

range of features, including query execution time, data 

scanned, memory utilization, concurrency impact, and 

historical performance baselines, to identify deviations that 

suggest emerging inefficiencies or risks. 

Unsupervised learning techniques such as clustering and 

density estimation can group queries by behavioral similarity 

and flag outliers without requiring labeled training data. 

Time-series anomaly detection models can track performance 

metrics over time to detect drift or spikes indicative of 

optimization regressions. When anomalies are detected, the 

system can automatically trigger deeper diagnostic analysis, 

recommend targeted refactoring actions, or prioritize 

problematic queries for further optimization (Adelana & 

Akinyemi, 2021, Esiri, 2021, Odunaiya, Soyombo & 

Ogunsola, 2021). Importantly, machine learning enables 

anomaly detection to be sensitive not only to gross failures 

but also to early signs of inefficiency accumulation, allowing 

preemptive intervention before cost escalations become 

material. 

In parallel with anomaly detection, predictive modeling plays 

a vital role in identifying materialization needs before 

inefficiencies impact operational or financial performance. 

Rather than relying on static thresholds or ad hoc human 

intuition to determine when and what to materialize, 

predictive models forecast the expected cost-benefit trade-

offs associated with potential materialized views or cache 

strategies based on historical and real-time workload data 

(Akinyemi & Ebimomi, 2021, Chukwuma-Eke, Ogunsola & 

Isibor, 2021). These models evaluate multiple dimensions, 

including query frequency, query complexity, data volatility, 

execution cost, storage overhead, and expected cache hit 

ratios, to prioritize materialization candidates dynamically. 

For instance, a predictive model trained on past workload 

patterns could estimate that a specific aggregation query, 

which is accessed 50 times daily and has high computational 

complexity, would save $3,000 per month in compute costs 

if materialized, at the expense of only $300 in storage and 

refresh charges. Conversely, another query with lower access 

frequency or higher volatility might be predicted to yield 

negative savings if materialized. Predictive modeling allows 

the system to simulate multiple materialization scenarios and 

select the ones that offer the best expected net benefit, 

adjusting strategies as workloads evolve (Adepoju, et al., 

2021, Ajibola & Olanipekun, 2019, Hussain, et al., 2021). 

This approach ensures that materialization is no longer a 

static administrative task but an ongoing, intelligent decision 

process integrated directly into cost management operations. 

Furthermore, machine learning enables intelligent scheduling 

of query refactoring and materialized view refresh cycles, 

optimizing the timing and resource allocation of these 

operations to minimize cost and maximize effectiveness. In 

traditional environments, materialized views are often 
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refreshed on fixed schedules—daily, hourly, or triggered by 

simple change detection. Similarly, query optimization 

efforts are typically initiated manually in response to 

performance complaints (Akinyemi & Ogundipe, 2022, 

Ezekiel & Akinyemi, 2022, Tella & Akinyemi, 2022). 

However, static schedules fail to account for workload 

variability, business cycles, and shifting data characteristics, 

leading to either unnecessary overhead during low-activity 

periods or missed optimization opportunities during peak 

loads. 

Machine learning models trained on historical usage patterns, 

business calendars, system performance logs, and even 

external signals such as marketing campaign schedules can 

predict optimal windows for executing refresh operations and 

refactoring workflows. For example, predictive scheduling 

might identify that query traffic drops by 70% between 2 AM 

and 4 AM in a given region, making it the ideal window to 

perform intensive materialized view refreshes with minimal 

impact on production performance (Adeniran, et al., 2022, 

Aniebonam, et al., 2022, Otokiti & Onalaja, 2022). Similarly, 

models could forecast periods of upcoming query surges and 

preemptively refactor the most cost-critical queries to handle 

expected spikes more efficiently. Reinforcement learning 

techniques could further refine scheduling strategies over 

time, learning from the outcomes of previous optimization 

actions to improve future scheduling policies dynamically. 

By orchestrating query refactoring and materialization 

refresh cycles based on intelligent predictions, organizations 

can not only reduce costs but also improve system reliability 

and user satisfaction. End-users experience faster query 

response times with fewer disruptions, while IT and data 

engineering teams are freed from manual tuning tasks and 

firefighting, allowing them to focus on strategic initiatives. 

The integration of machine learning into cloud cost 

optimization frameworks does, however, require careful 

architectural and operational design. Models must be 

explainable and transparent enough for administrators to 

understand the rationale behind optimization decisions, 

particularly in regulated industries where accountability is 

crucial. Systems must also include feedback loops, allowing 

human operators to validate, override, or adjust machine-

generated recommendations based on business context or 

evolving priorities (Akinbola, et al., 2020, Akinyemi & 

Aremu, 2016, Ogundare, Akinyemi & Aremu, 2021). In this 

way, machine learning acts not as a replacement for human 

judgment but as an augmentation layer that enhances human 

decision-making with scale, speed, and predictive insight. 

Moreover, the effectiveness of machine learning models 

depends on the quality, granularity, and freshness of the data 

available for training and inference. Organizations must 

invest in robust telemetry pipelines, comprehensive logging, 

metadata enrichment, and continuous model retraining to 

ensure that optimization engines remain accurate and aligned 

with current workloads. Cross-platform integration is also 

essential, enabling unified modeling across multi-cloud 

environments where query patterns and cost dynamics may 

differ between AWS, GCP, and Azure. 

In conclusion, the application of machine learning to 

automated query refactoring and materialization transforms 

cloud cost optimization from a reactive, manual process into 

a proactive, intelligent system of continuous improvement. 

Through anomaly detection, predictive materialization 

modeling, and intelligent scheduling, machine learning 

empowers organizations to stay ahead of inefficiencies, 

optimize cloud resource utilization, and achieve financial 

sustainability at scale. As cloud adoption deepens and data 

ecosystems become even more dynamic and complex, 

machine learning will be indispensable in ensuring that cost-

efficiency remains a built-in, self-improving attribute of 

modern cloud data warehouses rather than a perpetual 

struggle against entropy. 

 

2.5 Implementation Considerations Across Major Cloud 

Platforms 

Implementing a conceptual framework for cloud cost 

optimization through automated query refactoring and 

materialization requires a nuanced understanding of the 

technical capabilities, limitations, and optimization levers 

available across major cloud platforms. While the underlying 

principles of reducing compute waste, enhancing query 

efficiency, and leveraging materialization for cost savings are 

universal, the specific tools, architectural patterns, and 

operational best practices differ across AWS Redshift, 

Google BigQuery, and Azure Synapse Analytics. Effective 

deployment of the framework thus demands a platform-

sensitive approach, ensuring that automation workflows, 

optimization models, and governance structures align with 

each cloud environment’s native features and economic 

models. 

In AWS Redshift, one of the critical components to consider 

is the use of Redshift Spectrum, which enables direct 

querying of data stored in Amazon S3 without loading it into 

Redshift clusters. Spectrum’s decoupled architecture allows 

organizations to store vast amounts of cold or semi-structured 

data in cost-effective object storage, querying only the 

subsets needed for specific analytics tasks. Integrating 

Spectrum into the optimization framework means that 

automated query refactoring engines must identify 

opportunities where external tables can replace expensive 

local scans, especially for infrequently accessed datasets or 

exploratory analytics (Akinyemi & Salami, 2023, Attah, 

Ogunsola & Garba, 2023, Otokiti, 2023). Predicate 

pushdown and selective column retrieval become even more 

important when leveraging Spectrum, as cost is directly tied 

to the amount of data scanned during each query. 

Furthermore, Redshift’s Concurrency Scaling feature must 

be integrated into workload management automation. 

Concurrency Scaling automatically adds transient, short-

lived clusters during peak query periods to maintain 

performance without the need for permanent 

overprovisioning. However, each use of Concurrency Scaling 

incurs additional costs, making it vital for machine learning 

models and predictive engines to anticipate peak periods and 

optimize query plans beforehand, reducing unnecessary 

activations. Automated systems should monitor Concurrency 

Scaling usage patterns and proactively optimize or 

materialize high-cost queries that frequently trigger 

concurrency surges, thus containing the financial impact 

while preserving query performance. 

In Google BigQuery, the focus shifts to leveraging BigQuery 

BI Engine and the advanced capabilities of materialized 

views. BigQuery BI Engine is an in-memory analysis service 

that accelerates SQL queries, particularly those serving 

interactive dashboards and business intelligence applications. 

The optimization framework must include logic for detecting 

high-frequency, low-latency queries typical of dashboards 

and automatically recommending or provisioning BI Engine 

capacity for these workloads (Akinyemi & Ogundipe, 2023, 
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Aniebonam, et al., 2023, George, Dosumu & Makata, 2023). 

Because BI Engine charges based on allocated memory and 

query execution volume, predictive models must balance 

performance needs with memory provisioning costs, scaling 

allocations dynamically as usage patterns change. 

BigQuery’s support for automatic materialized views is 

another powerful feature that aligns closely with the cost 

optimization framework’s materialization strategies. 

Materialized views in BigQuery automatically refresh based 

on changes to the underlying data and provide incremental 

maintenance capabilities, allowing organizations to 

dramatically cut costs for repetitive aggregation and filtering 

operations (Ige, et al., 2022, Nwaimo, Adewumi & Ajiga, 

2022, Ogunyankinnu, et al., 2022). Implementation 

considerations must ensure that automated systems analyze 

query logs to identify candidate queries for materialization, 

monitor the refresh costs, and evaluate the net cost-benefit 

continuously. Additionally, BigQuery’s query execution 

metadata and dry run capabilities can be integrated into 

simulation models to predict the financial impact of 

materialization or query refactoring decisions before 

deployment, enhancing the robustness of the optimization 

pipeline. 

Azure Synapse Analytics presents a distinct set of 

opportunities and challenges, particularly through the use of 

Serverless SQL Pools and its evolving materialization 

features. Synapse Serverless Pools allow users to query data 

directly from Azure Data Lake Storage without provisioning 

dedicated compute resources, offering a pay-per-query model 

ideal for variable or unpredictable workloads. However, 

because charges are based on data scanned, the efficiency of 

queries becomes paramount. Automated query refactoring 

must ensure that serverless queries maximize partition 

pruning, utilize selective projection, and leverage file formats 

optimized for analytical queries such as Parquet or Delta 

Lake (Adepoju, et al., 2022, Francis Onotole, et al., 2022). 

Identifying opportunities where high-frequency serverless 

queries should transition into dedicated pools or into 

materialized views in dedicated SQL pools can significantly 

enhance cost-efficiency. Azure Synapse’s materialization 

capabilities, particularly through materialized views that 

support automatic query rewrite, should be tightly integrated 

into the optimization framework. Refactored queries can be 

redirected automatically to serve from materialized results 

where appropriate, reducing compute costs and accelerating 

query performance. Refresh strategies must be dynamically 

aligned with underlying data volatility, leveraging partition-

based incremental refresh features where possible to avoid 

the overhead of full recomputation. 

Across all platforms, vendor-specific tools for automation 

and cost observability must form the backbone of the 

monitoring and governance layers of the optimization 

framework. AWS provides Redshift Advisor and AWS Cost 

Explorer, which can supply actionable insights into table 

design improvements, workload patterns, and spending 

anomalies. Integration with Redshift Data API can further 

enable automated scripts to adjust cluster configurations, 

manage materialized views, and monitor query patterns 

programmatically (Adepoju, et al., 2023, Attah, Ogunsola & 

Garba, 2023, Hussain, et al., 2023). Google BigQuery offers 

detailed billing export tables, the Query Execution Plan 

visualizer, and the BigQuery Audit Logs, all of which can be 

streamed into monitoring dashboards or machine learning 

pipelines for anomaly detection and optimization modeling. 

BigQuery Reservations API allows for programmatic control 

over slot allocations, making it possible to dynamically 

manage reserved compute capacity based on predictive usage 

forecasts. 

Azure Synapse offers Cost Management tools through Azure 

Portal, Synapse Studio Workload Management, and 

Intelligent Performance Insights, which recommend query 

optimizations and provide visibility into system resource 

usage. Azure’s Resource Graph and Monitor services can 

feed telemetry data into predictive models, enabling real-time 

monitoring of cost-performance metrics and informing 

dynamic adjustment of refresh cycles and refactoring 

priorities. Vendor-native logging systems such as AWS 

CloudWatch, Google Cloud Operations Suite, and Azure 

Monitor must also be tapped into for gathering fine-grained 

telemetry on query execution times, resource utilization 

patterns, cache hit rates, and materialization efficiencies. 

Implementation considerations must also account for cross-

platform standardization when enterprises operate in multi-

cloud environments. While each cloud provider offers 

powerful optimization features, the lack of standardization in 

cost metrics, billing units, and optimization APIs can create 

fragmentation. Therefore, the automation and optimization 

framework should abstract core processes—such as anomaly 

detection, candidate query selection for refactoring, 

materialization modeling, and refresh scheduling—so that 

they function consistently across AWS, GCP, and Azure 

despite underlying platform differences. This can be achieved 

by normalizing cost and performance metrics into a unified 

schema, creating adaptable optimization rules that translate 

into platform-specific actions, and orchestrating workflows 

through cross-cloud pipeline management tools or meta-

orchestration layers like Apache Airflow, dbt Cloud, or 

Terraform Cloud. 

Finally, implementation efforts must address governance and 

control, ensuring that automation processes remain 

transparent, auditable, and overrideable by human operators. 

All machine-suggested optimizations should include 

justifications based on quantified cost-benefit analyses, clear 

indications of associated risks (such as data staleness 

introduced by materialization), and rollback mechanisms in 

case of unintended consequences. Cloud-native Identity and 

Access Management (IAM) policies must be configured to 

restrict automation scripts and optimization agents to 

predefined actions, maintaining the principle of least 

privilege and ensuring compliance with organizational 

security standards. 

In conclusion, effective implementation of a cloud cost 

optimization framework for automated query refactoring and 

materialization demands a detailed understanding of the 

unique features, constraints, and opportunities presented by 

AWS Redshift, Google BigQuery, and Azure Synapse 

Analytics. By integrating platform-specific capabilities like 

Redshift Spectrum, BigQuery BI Engine, and Synapse 

Serverless Pools, while leveraging vendor-native automation 

and observability tools, organizations can build an intelligent, 

proactive optimization layer that continuously enhances cost 

efficiency, query performance, and operational resilience 

across their cloud data ecosystems. 

 

2.6 Challenges and Limitations 

While the conceptual framework for cloud cost optimization 

through automated query refactoring and materialization 

offers significant potential for achieving operational 
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efficiencies and financial sustainability, its real-world 

implementation is not without substantial challenges and 

limitations. As organizations attempt to integrate automation, 

predictive analytics, and platform-specific optimizations into 

their cloud environments, several technical, operational, and 

strategic hurdles emerge that must be carefully managed to 

ensure long-term success. 

One major challenge is the management of materialized view 

dependencies and update strategies. Materialized views, 

while powerful tools for reducing compute load and 

accelerating query performance, introduce complex 

dependency chains between base tables and derived views. 

When underlying data changes—whether through inserts, 

updates, or deletes—materialized views must be refreshed to 

maintain data consistency and validity. In cloud platforms 

like AWS Redshift, Google BigQuery, and Azure Synapse 

Analytics, while incremental refreshes mitigate some costs, 

managing when and how refreshes occur remains a delicate 

balancing act. Automated frameworks must track 

dependencies across a dynamic, evolving data landscape, 

ensuring that stale materialized views do not compromise 

analytics accuracy. When multiple materialized views are 

nested or depend on shared datasets, refresh coordination 

becomes even more intricate. Uncoordinated refreshes may 

cause redundant compute operations, leading to hidden costs, 

or in worse cases, introduce inconsistencies where upstream 

changes are not properly propagated downstream. 

Scheduling refresh operations intelligently based on data 

volatility, query demand, and cost-benefit modeling is 

complex, and failure to do so can negate the cost savings that 

materialization initially promised. Ensuring that refresh 

operations themselves do not overwhelm system resources 

during peak periods or introduce disruptive performance 

impacts adds yet another layer of difficulty. 

Closely related to this is the classic storage versus compute 

trade-off inherent in materialization strategies. Materializing 

query results effectively shifts some operational burden from 

real-time compute cycles to storage costs and refresh 

overhead. However, not all materializations are economically 

beneficial over the long term. Organizations must 

continuously evaluate whether the storage and refresh costs 

associated with a materialized view are justified by the 

compute savings achieved. In environments where storage 

costs are relatively low and compute costs are high—as is 

often the case with serverless query models like BigQuery—

the trade-off generally favors materialization. Conversely, in 

settings where storage costs are significant, or where access 

patterns are highly variable, materialized views may 

introduce unsustainable storage overhead with diminishing 

marginal returns. Deciding what to materialize, when to 

dematerialize, and how to scale materialization strategies 

dynamically as workloads change is a non-trivial task. 

Moreover, over-aggressive materialization can lead to 

"materialization sprawl," where numerous, infrequently 

accessed materialized views accumulate, driving up storage 

and maintenance costs without commensurate performance 

or cost benefits. Automated systems must incorporate robust 

policies for the lifecycle management of materialized views, 

but even then, fine-tuning these trade-offs requires 

continuous monitoring, sophisticated modeling, and human 

oversight. 

Adding to the complexity is the challenge of orchestrating 

cross-platform query optimization when organizations 

operate hybrid or multi-cloud architectures. Each cloud 

platform—AWS, GCP, and Azure—implements its own 

optimization engines, cost models, storage systems, query 

planners, and telemetry frameworks. Redshift may prioritize 

distribution styles and sort keys, BigQuery emphasizes 

partition pruning and slot management, while Synapse relies 

on intelligent caching and workload classification. Writing 

optimization logic that can understand, translate, and act 

across these diverse systems presents a formidable 

engineering challenge. Query refactoring techniques that are 

highly effective in one platform may not map cleanly onto 

another due to differences in SQL dialects, optimizer 

behaviors, or system constraints. Moreover, cost drivers vary 

not only between platforms but also between regions, pricing 

tiers, and service configurations within each cloud provider. 

Implementing a unified, cross-platform optimization 

orchestration layer requires abstracting optimization 

principles without oversimplifying the nuances that impact 

actual cost outcomes. It demands careful architectural 

planning to ensure that platform-specific optimizations are 

not lost in translation, and that decision models remain 

sufficiently flexible to accommodate heterogeneous 

environments. In practice, cross-platform optimization often 

involves substantial integration overhead, custom 

connectors, data normalization layers, and additional 

operational complexity, which can offset some of the 

automation gains if not carefully managed. 

Finally, metadata consistency and observability issues 

present ongoing limitations to fully realizing the promise of 

automated optimization frameworks. Effective query 

refactoring and materialization strategies depend heavily on 

accurate, timely, and comprehensive metadata about datasets, 

queries, execution plans, storage characteristics, and user 

behavior. However, in real-world environments, metadata is 

often fragmented across disparate systems, inconsistently 

maintained, or subject to gaps and inaccuracies. Table 

schemas may evolve without corresponding updates to 

lineage graphs; partitioning information may become stale; 

query logs may miss critical context such as user intent or 

application workflows. When metadata is incomplete or 

unreliable, automated systems struggle to make informed 

optimization decisions, leading to missed opportunities or, 

worse, suboptimal recommendations that degrade 

performance or increase costs. 

Observability challenges compound the problem. While 

cloud providers offer increasingly sophisticated monitoring 

and telemetry services, integrating these disparate data 

streams into a coherent, actionable observability framework 

remains challenging. Differences in metric granularity, 

update frequency, labeling standards, and data retention 

policies between AWS CloudWatch, GCP Operations Suite, 

and Azure Monitor make unified telemetry management 

difficult. Without consistent observability, detecting 

anomalies, predicting materialization needs, and scheduling 

optimization activities intelligently become significantly 

harder. Furthermore, the volume of telemetry data itself can 

become overwhelming, requiring investment in analytics 

platforms, machine learning pipelines, and skilled personnel 

to extract meaningful insights. Ensuring metadata fidelity, 

maintaining lineage visibility across constantly changing 

datasets, and consolidating observability across platforms are 

critical but difficult prerequisites for the success of an 

intelligent, automated cloud cost optimization framework. 

Beyond these technical and operational challenges, strategic 

governance and organizational alignment issues also pose 
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limitations. Optimization automation necessarily touches 

multiple domains—data engineering, cloud architecture, 

finance (FinOps), and governance/compliance. Ensuring that 

optimization initiatives align with broader business priorities, 

security standards, and financial controls requires strong 

cross-functional collaboration and clear accountability 

structures. Resistance to change, lack of trust in machine-

driven decisions, and difficulty quantifying optimization ROI 

in traditional financial reporting structures can impede 

adoption. Successful implementation requires not only 

technical sophistication but also change management, 

stakeholder education, and cultural adaptation toward data-

driven, continuous cost governance. 

In conclusion, while the conceptual framework for cloud cost 

optimization through automated query refactoring and 

materialization offers a promising path toward sustainable, 

intelligent cloud operations, its practical realization faces 

significant challenges. Managing materialized view 

dependencies, navigating storage-compute trade-offs, 

orchestrating optimization across heterogeneous cloud 

environments, and ensuring metadata and observability 

integrity are complex tasks that demand careful design, 

continuous refinement, and strong organizational 

commitment. Recognizing these limitations is essential not to 

abandon the framework but to set realistic expectations, 

design resilient systems, and build governance structures that 

enable long-term success. By addressing these challenges 

head-on, organizations can position themselves to unlock the 

full transformative potential of intelligent cloud cost 

optimization in the evolving digital economy. 

 

2.7 Future Research Directions 

As cloud-native architectures continue to expand in 

complexity and scale, future research must focus on 

advancing the capabilities of cost optimization frameworks 

beyond their current operational limits. While today’s 

systems can automate query refactoring and materialization 

to a significant degree, the next frontier involves embedding 

deeper intelligence, autonomy, and standardization across 

platforms. Several emerging areas merit urgent attention: the 

development of self-healing query optimization systems, the 

realization of autonomous cost-based orchestration engines, 

the creation of standardized cloud cost observability 

frameworks, and the design of AI-driven optimization 

pipelines for multi-cloud ecosystems. These future directions 

aim to transform cloud cost management from a reactive, 

semi-automated process into a fully autonomous, predictive, 

and adaptive system that operates at scale across diverse 

environments. 

A critical future direction is the development of self-healing 

query optimization systems. Current frameworks, even when 

automated, generally detect issues and suggest or apply 

corrections manually or semi-autonomously. However, truly 

self-healing systems would go beyond mere detection and 

intervention—they would continuously monitor queries and 

workloads, autonomously detect inefficiencies or 

regressions, and apply optimizations proactively without 

human intervention, all while learning and improving over 

time. This requires research into advanced machine learning 

models capable of not just identifying suboptimal queries, but 

dynamically rewriting them in production environments with 

guaranteed semantic integrity and minimal risk. 

Reinforcement learning could be applied to train optimization 

agents that simulate potential refactoring changes, predict 

their outcomes based on historical telemetry, and 

automatically implement the best-performing version. Future 

self-healing systems would also need rollback capabilities, 

allowing automatic reversion if an optimization inadvertently 

impacts query correctness or business SLAs. Research must 

focus on developing techniques for safe, explainable self-

healing that maintains trust, accountability, and operational 

transparency in enterprise settings where query correctness is 

paramount. 

Equally important is the pursuit of autonomous cost-based 

orchestration engines. Traditional workflow orchestration 

tools are primarily schedule-driven or event-driven, lacking 

deep financial awareness. Future research must explore 

orchestration systems that natively embed cost models into 

scheduling, scaling, and resource allocation decisions. In 

such systems, cost would become a first-class constraint 

alongside latency, availability, and throughput. An 

autonomous orchestration engine could, for example, detect 

that a group of queries scheduled for concurrent execution 

would exceed budgetary thresholds if run at their current 

configuration, and automatically stagger, prioritize, or 

reconfigure the jobs to maintain financial compliance without 

violating critical business deadlines. These engines would 

integrate real-time cloud billing data, predictive cost 

modeling, and workload telemetry to make adaptive, cost-

aware decisions across services like AWS Redshift, Google 

BigQuery, Azure Synapse Analytics, and beyond. Research 

must address challenges such as developing real-time 

financial constraint satisfaction algorithms, integrating 

financial risk modeling into orchestration engines, and 

enabling flexible prioritization frameworks that balance cost 

optimization against other operational imperatives. 

Another essential future research area is the development of 

standardized cloud cost observability frameworks. At 

present, each cloud provider offers its own proprietary billing 

APIs, cost metrics, and telemetry formats, creating 

significant fragmentation for organizations operating in 

multi-cloud environments. This lack of standardization 

hampers efforts to create unified, holistic cost optimization 

systems and drives up integration complexity. Future 

research should aim to design open, interoperable standards 

for cloud cost observability, analogous to how protocols like 

OpenTelemetry have standardized application and 

infrastructure monitoring. A standardized cloud cost 

observability framework would define common schemas for 

billing events, usage metrics, resource tagging, query 

execution metadata, and financial KPIs across providers 

(Adepoju, et al., 2023, Hussain, et al., 2023, Ugbaja, et al., 

2023). It would enable plug-and-play integration of multi-

cloud cost data into centralized analytics platforms, FinOps 

dashboards, and autonomous optimization engines. 

Moreover, such frameworks would facilitate benchmarking, 

anomaly detection, and machine learning applications by 

ensuring consistent, high-fidelity cost data across 

environments. Research challenges include aligning 

incentives among competing cloud providers, defining 

extensible metadata taxonomies that can evolve with service 

innovations, and securing cost telemetry against tampering or 

misattribution in federated cloud environments. 

Finally, future research must focus on building AI-driven 

optimization pipelines for multi-cloud ecosystems. The 

reality for many enterprises is no longer single-cloud 

deployment but complex hybrid and multi-cloud 

architectures where data and workloads are distributed across 
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AWS, GCP, Azure, and sometimes private clouds. In such 

heterogeneous environments, manually managing cost 

efficiency becomes infeasible. AI-driven optimization 

pipelines would ingest telemetry from multiple clouds, apply 

platform-specific normalization, and autonomously 

orchestrate query refactoring, materialization strategies, 

resource scaling, and workload distribution based on real-

time optimization objectives. These pipelines would use 

federated learning techniques to train models across 

decentralized data without violating cloud-specific data 

residency or compliance requirements (Adepoju, et al., 2023, 

Lawal, et al., 2023, Ugbaja, et al., 2023). They would also 

integrate decision-making frameworks that balance 

competing objectives such as minimizing compute costs, 

optimizing storage efficiency, ensuring low query latency, 

and adhering to inter-cloud data transfer constraints. Future 

research must address algorithmic challenges like designing 

optimization models that adapt to heterogeneous billing 

models, pricing volatility, and regional cost differentials. 

Building intelligent workload migration strategies that 

predict when to rebalance queries across clouds based on 

cost-performance modeling, regulatory considerations, and 

dynamic cloud pricing will also be critical. 

Moreover, AI-driven pipelines would benefit from 

reinforcement learning approaches where optimization 

agents continuously explore, exploit, and refine cost-saving 

strategies over time. Unlike static rules or scheduled 

optimizations, reinforcement learning-based systems could 

autonomously test alternative configurations, dynamically 

optimize partitioning or clustering strategies, and evolve 

materialization policies in response to changing workloads. 

Integrating explainable AI techniques will be essential to 

ensure that the optimization decisions made by these 

autonomous agents are transparent, auditable, and align with 

organizational risk tolerance and business policies (Akinyemi 

& Ebiseni, 2020, Austin-Gabriel, et al., 2021, Dare, et al., 

2019). 

In summary, the future of cloud cost optimization lies in 

developing intelligent, autonomous, and standardized 

systems that transform current frameworks into self-

optimizing ecosystems. Self-healing query optimization 

systems would reduce human intervention, ensuring 

continuous efficiency improvements without sacrificing 

accuracy or control. Autonomous cost-based orchestration 

engines would embed financial governance directly into 

operational pipelines, dynamically aligning workload 

execution with budgetary constraints. Standardized cloud 

cost observability frameworks would eliminate 

fragmentation, enabling unified, scalable optimization across 

diverse cloud environments (Adeniran, Akinyemi & Aremu, 

2016, Ilori & Olanipekun, 2020, James, et al., 2019). AI-

driven optimization pipelines for multi-cloud ecosystems 

would provide the intelligence and agility required to manage 

increasingly complex, distributed cloud architectures. 

Together, these research directions chart a pathway toward 

truly autonomous, intelligent cloud financial management—

ensuring that as data volumes, analytics demands, and cloud 

diversity grow, cost efficiency, performance, and governance 

not only keep pace but continuously improve. 

 

3. Conclusion 

This study has proposed a comprehensive conceptual 

framework for cloud cost optimization, centered on the 

principles of automated query refactoring and intelligent 

materialization. At its core, the framework recognizes that 

achieving sustainable cost-efficiency in cloud data 

warehouses requires moving beyond traditional manual 

tuning practices toward a fully automated, continuously 

adaptive system. It integrates key strategies such as predicate 

pushdown, join and subquery optimization, selective 

projection, dynamic query rewriting, incremental 

materialized views, and predictive cost-benefit modeling. 

These optimization techniques are further enhanced by 

embedding machine learning for anomaly detection, 

predictive modeling, and intelligent scheduling. By aligning 

cloud resource consumption closely with actual usage 

patterns and business needs, the framework provides a 

roadmap for proactive, intelligent, and scalable management 

of cloud operational costs across AWS Redshift, Google 

BigQuery, and Azure Synapse Analytics environments. 

For organizations willing to adopt automated optimization, 

the strategic benefits are profound. First, automation 

eliminates the inefficiencies and delays associated with 

manual performance tuning, ensuring that cost optimization 

occurs continuously and in real-time. Second, predictive and 

autonomous systems empower organizations to stay ahead of 

changing workload patterns, data growth, and evolving user 

demands without sacrificing financial control or operational 

agility. Third, the integration of materialization and 

intelligent caching strategies provides a structural means to 

stabilize compute consumption and query latency, enabling 

consistent user experiences at predictable and manageable 

costs. Additionally, the framework encourages a shift toward 

unified cost observability and cross-platform optimization, 

helping organizations operating in multi-cloud ecosystems to 

harmonize and rationalize their cloud expenditures 

comprehensively. Perhaps most importantly, the framework 

frees up human talent, allowing engineers, analysts, and 

architects to focus on higher-value innovation initiatives 

rather than repetitive optimization tasks. 

Achieving sustainable and scalable cloud cost efficiency, 

however, is not merely a technical exercise. It demands a 

strategic commitment to embedding financial governance, 

automation, and intelligent decision-making into the very 

fabric of cloud data operations. As cloud services continue to 

evolve rapidly and organizations' reliance on data-driven 

insights deepens, the ability to maintain economic control 

without throttling innovation will become a critical 

differentiator. This conceptual framework offers a future-

ready approach, one that anticipates complexity, leverages 

automation, and embraces continuous adaptation. By 

operationalizing these principles, organizations can not only 

rein in cloud costs but also unlock new levels of agility, 

resilience, and strategic competitiveness in the digital 

economy. 
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