

International Journal of Multidisciplinary Research and Growth Evaluation.

Fixed point theorems in extended b metric space based on rational contraction

Shilpa Rathore 1* , Dr. Abha Tenguria 2

- ¹ Research Scholar, Department of Mathematics, Barkatullah University, Bhopal, Madhya Pradesh, India
- ² Professor and Head, Department of Mathematics, Govt. MLB Girls PG. College, Bhopal, Madhya Pradesh, India
- * Corresponding Author: Shilpa Rathore

Article Info

ISSN (Online): 2582-7138 Impact Factor (RSIF): 7.98

Volume: 06 **Issue:** 06

November - December 2025

Received: 15-09-2025 **Accepted:** 14-10-2025 **Published:** 27-11-2025 **Page No:** 801-805

Abstract

In this paper, we use rational type contraction for two self-mappings to prove popular fixed-point theorems in extended complete b-metric spaces. The results demonstrated by Mlaiki *et al.* for a single self-mapping in extended complete b-metric space are improved and expanded by our research. Without assuming that any mapping is continuous, we generalize their findings for two self-mappings.

DOI: https://doi.org/10.54660/.IJMRGE.2025.6.6.801-805

Keywords: Fixed point, rational contractions, self-mappings, b-metric space, Extended b- metric space

1. Introduction

In the setting of complete metric spaces, Banach [2] proved an extremely significant theorem that proves the presence of a single fixed point. Since then, one of the most crucial instruments in many scientific fields, including economics, computer science, engineering, and the advancement of nonlinear analysis, has been the fixed-point theory.

Bakhtin ^[4] and Bourbaki ^[3] introduced the concept of b-metric spaces. To generalize the Banach ^[2] contraction mapping theorem, Czerwik ^[5] formally defined a b-metric space and provided an axiom that was weaker than the triangle inequality. He proposed a function that, depending on certain point interactions, replaces the constant to correct the triangle inequality. This concept was further upon by Kir and Kiziltune ^[6], Boriceanu ^[7], Bota ^[8], and Pacurar ^[9], who demonstrated fixed point theorems and their applications in b-metric spaces.

Non-linear elastic matching (NEM) is a new distance measure that Faginetal. [10] introduced by using relaxation in triangle inequality. In many domains, a similar kind of flexible triangle inequality was also employed. All of these uses served as inspiration for Kamran *et al.* [11], who developed the idea of extended b-metric space and expanded on a number of previously published findings. The extension of rational inequalities was introduced by Alqahtani [12], and new kinds of contractions in extended b-metric spaces were covered by W. Shatanawi in [13].

In this study, we use rational type contraction to show common fixed-point theorems for two self-mappings in extended complete b-metric spaces, without requiring the continuity of any mapping, and we expand and improve the results of Mlaiki *et al.* [1].

2. Preliminaries.

Definition 2.1 [4]: Let U be a non-empty set and let $\alpha \ge 1$ be a real number. A function $d\alpha : U \times U \to [0, \infty)$ is called a b-metric if for all u, v, w \in U, it satisfies:

- (b1) $d\alpha(u, v) = 0$ if and only if u = v;
- (b2) $d\alpha(u, v) = d\alpha(v, u)$;
- (b3) $d\alpha(u, w) \le \alpha [d\alpha(u, v) + d\alpha(v, w)]$

The pair $(U, d\alpha)$ is called a b-metric space.

Example 2.1: Let
$$U = \ell_q(\mathbb{R}) = \{ u_k \subset \mathbb{R} : \Sigma |u_k|^q < \infty \}$$
, with $0 < q < 1$. Define

 $d\alpha(u,v) = (\; \Sigma \; |u_k - v_k|^q)^{(1/q)}, \, u = \{u_k\}, \, v = \{v_k\}$

Then (U, da) is a b-metric space with coefficient $\alpha = 2^{q}$.

Example 2.2: Let $U = L_q[0,1]$ be the space of all real functions u(t), $t \in [0,1]$ such that

$$\int_0^1 |u(t)|^q \, \mathrm{d}t < \infty$$

with 0 < q < 1. Define

$$d\alpha(u,v) = (\int_0^1 |u(t) - v(t)|^q dt)^{(1/q)}$$

Then (U, da) is a b-metric space with coefficient $\alpha = 2^{q}$.

Thus, b-metric spaces form a wider class than metric spaces. If $\alpha = 1$, they coincide with metric spaces.

Definition 2.2 [14] Let $(U, d\alpha)$ be a b-metric space. A sequence $\{u_n\} \subset U$ is said to be:

- (i) Cauchy if $d\alpha(u_n, u_m) \to 0$ as $n, m \to \infty$;
- (ii) Convergent if there exists $u \in U$ such that $d\alpha(u_n, u) \to 0$ as $n \to \infty$. In this case, we write $\lim u_n = u$;
- (iii) Complete if every Cauchy sequence in U is convergent.

Definition 2.3 ^[11]: Let U be a non-empty set and $\varphi: U \times U \to [1, \infty)$. A function $d\varphi: U \times U \to [0, \infty)$ is called an extended b-metric if for all $u, v, w \in U$, it satisfies:

```
(d\phi 1) d\phi(u,v) = 0 \text{ iff } u=v;
```

 $(d\varphi 2) d\varphi(u,v) = d\varphi(v,u);$

$$(d\phi 3) d\phi(u,w) \le \phi(u,w) [d\phi(u,v) + d\phi(v,w)]$$

The pair $(U, d\phi)$ is called an extended b-metric space.

Remark 2.1. If $\varphi(u,w) = \alpha \ge 1$, then the extended b-metric reduces to the b-metric.

Example 2.3: Let $U = \mathbb{Z}+$. Define

$$\varphi(\mathbf{u},\mathbf{v}) = \mathbf{u} + \mathbf{v} + 1$$

$$d\phi(u,v) = |u| + |v|$$

Then $(U, d\phi)$ is an extended b-metric space.

Example 2.4: Let $U = C([a,b], \mathbb{R})$ be the space of all continuous real-valued functions on [a,b]. Define

$$d\phi(u,v) = \sup_{t \in [a,b]} |u(t) - v(t)|^2$$

$$\varphi(u,v) = |u(t)| + |v(t)| + 2$$

Then $(U, d\varphi)$ is a complete extended b-metric space.

Definition 2.4 [11] Let $(U, d\varphi)$ be an extended b-metric space.

- (i) A sequence $\{u_n\} \subset U$ converges to $u \in U$ if for every $\epsilon > 0$, there exists $N(\epsilon) \in \mathbb{N}$ such that $d\phi(u_n, u) < \epsilon$ for all $n \ge N$. In this case we write $\lim u_n = u$.
- (ii) A sequence $\{u_n\} \subset U$ is Cauchy if for every $\epsilon \geq 0$, there exists $N(\epsilon) \in \mathbb{N}$ such that $d\phi(u_m, u_n) < \epsilon$ for all $m, n \geq N$.

Definition 2.5 [11]

An extended b-metric space (U, do) is complete if every Cauchy sequence in U converges.

Lemma 2.1 [11]

Let $(U, d\varphi)$ be an extended b-metric space. If $d\varphi$ is continuous, then every convergent sequence has a unique limit.

Main Result

Theorem 3.1: Let A,B:Y \to Y be self-maps on an extended complete b-metric space (Y, d_{Θ}) , for all u, v, w \in Y, with $\Theta:Y\times Y\to [1,\infty)$. Assume that for every distinct p,q \in Y,

$$d_{\Theta}(Ap, Bq) \leq \lambda_{1} \ d_{\Theta}(p, q) + \ \lambda_{2} \frac{\left[\ (d_{\Theta} \ (p, Ap) \ d_{\Theta}(q, Ap) + \ d_{\Theta}(q, Bq) \ d_{\Theta}(p, Bq) \right]}{(d_{\Theta}(p, Bq) + d_{\Theta}(q, Ap))} + \lambda_{3} \frac{(d_{\Theta}(p, Ap) d_{\Theta}(q, Ap) + d_{\Theta}(q, Bq) d_{\Theta}(p, Bq))}{(d_{\Theta}(p, Bq) + d_{\Theta}(q, Ap))} \tag{1}$$

where $d_{\Theta}(p, Bq) + d_{\Theta}(q, Ap) \neq 0$.

Here
$$\lambda_1, \lambda_2, \lambda_3 \in [0,1)$$
 satisfy $0 < \lambda_1 + \lambda_2 + \lambda_3 < 1$.

Then A and B admit a unique common fixed-point $y^* \in Y$, i.e. $Ay^* = By^* = y^*$.

Proof: Let $x_0 \in Y$ be arbitrary. Define a sequence $\{x_n\}$ by alternating application of A and B:

$$x_1 = Ax_0, x_2 = Bx_1, x_3 = Ax_2, x_4 = Bx_3, \dots$$

Thus,

 $x_{2n+1} = Ax_{2n}$ and $x_{2n+2} = Bx_{2n+1}$.

Define $s_n = d_{\Theta}(x_n, x_{n+1})$. Our aim is to show that $s_n \to 0$ as $n \to \infty$ and that (x_n) is Cauchy.

Take $p=x_{n-1}$ and $q=x_n$. Then $Ap=x_n$ and $Bq=x_{n+1}$. Substituting into the given condition (1)

$$\begin{split} &d_{\Theta}(x_{n}, x_{n+1}) \leq \lambda_{1} d_{\Theta}(x_{n-1}, x_{n}) + \lambda_{2} \big[\frac{[\;(d_{\Theta}\;(x_{n-1}, x_{n})\;d_{\Theta}(x_{n}, x_{n-1}) + d_{\Theta}(x_{n}, x_{n})\;d_{\Theta}(x_{n-1}, x_{n}))}{(d_{\Theta}(x_{n-1}, x_{n+1}) + d_{\Theta}(x_{n}, x_{n}))} \big] \\ &+ \lambda_{3} \big[\frac{(d_{\Theta}(x_{n-1}, x_{n})d_{\Theta}(x_{n}, x_{n}) + d_{\Theta}(x_{n}, x_{n+1})d_{\Theta}(x_{n-1}, x_{n+1}))}{(d_{\Theta}(x_{n-1}, x_{n+1}) + d_{\Theta}(x_{n}, x_{n}))} \big]. \end{split}$$

But in this case, the rational terms simplify drastically, and the inequality reduces to

$$s_n \leq \lambda_1 \ s_{n-1} + (\lambda_2 + \lambda_3) \ s_n. \ \frac{\lambda_1}{(1 - \lambda_2 - \lambda_3)} (1 - \lambda_2 - \lambda_3) \ s_n \leq \lambda_1 \ s_{n-1}.$$

Set $K = \frac{\lambda_1}{(1 - \lambda_2 - \lambda_3)}$, we note that since $\lambda_1 + \lambda_2 + \lambda_3 < 1$, we have $0 \le K < 1$.

Thus, $s_n \le K \ s_{n-1}$, and inductively $s_n \le K^{\{n-1\}} \ s_1$.

Since $0 \le K \le 1$, we deduce $s_n \to 0$ as $n \to \infty$. Moreover, the series $\sum s_n$ converges:

$$\sum_{n=1}^{\infty} s_n \le s_1 / (1 - K).$$

This finite bound shows that the "total length" of the successive differences is finite. Let m > n. By repeated use of the extended b-metric inequality

$$d_{\Theta}(u,w) \leq \Theta(u,w)(d_{\Theta}(u,v) + d_{\Theta}(v,w)),$$

we obtain an upper bound for $d_{\Theta}(x_n,\,x_m).$ Specifically, there exists a constant $s\geq 1$ such that

$$d_{\Theta}(x_n, x_m) \le s (s_n + s_{n+1} + ... + s_{\{m-1\}}).$$

Since the series $\sum s_n$ converges, to 0 as $n \to \infty$. Hence, (x_n) is a Cauchy sequence. Because (Y, d_{Θ}) is complete, the sequence $\{x_n\}$ converges to some $y^* \in Y$. That is,

$$lim_{\{n\to\infty\}}\ x_n=y^*.$$

Consider the subsequence $\{x_{2n}\} \to y^*$. Apply the contractive condition with

$$p = x_{2n}, q = y^*.$$

In the limit as $n \to \infty$, using continuity of d_{Θ} and the fact that $s_{\{2n\}} \to 0$, we deduce

$$d_{\Theta}(y^*, B y^*) \le (\lambda_2 + \lambda_3) d_{\Theta}(y^*, B y^*).$$

Since $\lambda_2 + \lambda_3 < 1$, this implies $d_{\Theta}(y^*, B \ y^*) = 0$, so $B(y^*) = y^*$. A symmetric argument using $p = y^*, q = x_{2n}$ shows that

$$d_{\Theta}(A y^*, y^*) = 0.$$

Thus, $A(y^*) = y^*$.

Suppose z^* is another common fixed point, i.e., $A(z^*) = B(z^*) = z^*$. Applying the inequality with $p = y^*$, $q = z^*$, we find

$$d_{\Theta}(y^*, z^*) \leq \lambda_1 d_{\Theta}(y^*, z^*).$$

Since $\lambda_1 < 1$, this forces $d_{\Theta}(y^*, z^*) = 0$. Hence $y^* = z^*$.

Corollary: Let T:Y \rightarrow Y be a self-map on an extended complete b-metric space $(Y, d_{\underline{\Theta}})$. Assume that for all distinct $x,y \in Y$,

$$d_{\Theta}(Tx,\,Ty) \leq \lambda_1 \,\, d_{\Theta}(x,\,y) \, + \, \lambda_2 \frac{(d_{\Theta}(x,Tx) \,\, d_{\Theta}(y,Tx) \, + \, d_{\Theta}(y,Ty) \,\, d_{\Theta}(x,Ty))}{(d_{\Theta}(x,Ty) \, + \, d_{\Theta}(y,Tx))} \,\, + \, \lambda_3 \, \frac{[\,\, (d_{\Theta}(x,Tx) \,\, d_{\Theta}(y,Tx) \, + \, d_{\Theta}(y,Ty) \,\, d_{\Theta}(x,Ty) \, + \, d_{\Theta}(y,Ty) \,\, d_{\Theta}(x,Ty) \, + \, d_{\Theta}(y,Ty) \,\, d_{\Theta}(x,Ty) \, + \, d_{\Theta}(y,Tx))}{(d_{\Theta}(x,Ty) \, + \, d_{\Theta}(y,Tx))} \,\, + \, \lambda_3 \, \frac{[\,\, (d_{\Theta}(x,Tx) \,\, d_{\Theta}(x,Ty) \, + \, d_{\Theta}(y,Ty) \,\, d_{\Theta}(x,Ty) \, + \, d_{\Theta}(y,Tx) \,\, d_{\Theta}(x,Ty) \, + \, d_{\Theta}(y,Tx) \,\, d_{\Theta}(x,Ty) \, + \, d_{\Theta}(y,Tx) \,\, d_{\Theta}(x,Ty) \,\, d_{\Theta}(x,Ty)$$

whenever $d_{\Theta}(x, Ty) + d_{\Theta}(y, Tx) \neq 0$, where $\lambda_1, \lambda_2, \lambda_3 \in [0,1)$ satisfy $0 < \lambda_1 + \lambda_2 + \lambda_3 < 1.$

Then T has a unique fixed point $y^* \in Y$, and for any starting point $y_0 \in Y$, the sequence defined by $y_{n+1} = T y_n$ converges to y^* .

Theorem 3.2: Let A,B:Y \rightarrow Y be self-maps on an extended complete b-metric space (Y, d $_{-}\Theta$), for all u,v,w \in Y, with Θ :Y \times Y \rightarrow [1, ∞). Assume that for every distinct p,q \in Y the following rational-type contractive condition holds:

$$\begin{split} d_{\Theta}(Ap, Bq) & \leq \lambda_{1} \ d_{\Theta}(p, q) + \lambda_{2} \frac{\left[\left(d_{\Theta}\left(p, Ap\right) \ d_{\Theta}(q, Ap) + d_{\Theta}(q, Bq) \ d_{\Theta}(p, Bq) \right) \right.}{\left(d_{\Theta}(p, Bq) + d_{\Theta}(q, Ap) \right)} \\ & + \lambda_{4} \frac{\left(d_{\Theta}(p, Ap) d_{\Theta}(q, Ap) + d_{\Theta}(q, Bq) d_{\Theta}(p, Bq) \right)}{\left(d_{\Theta}(p, Bq) + d_{\Theta}(q, Ap) \right)} \\ & \left. + \lambda_{4} \frac{\left(d_{\Theta}(p, Ap) d_{\Theta}(q, Ap) + d_{\Theta}(q, Bq) d_{\Theta}(p, Bq) \right)}{\left(d_{\Theta}(p, Bq) + d_{\Theta}(q, Ap) \right)} \end{split} \tag{2}$$

whenever the $(d_{\Theta}(p, Bq) + d_{\Theta}(q, Ap). \neq 0$ Suppose $0 < \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 < 1$. Then A and B have a unique common fixed point $y^* \in Y$ $(Ay^* = By^* = y^*)$.

Proof: Pick arbitrary $y_0 \in Y$ and define the alternating sequence $y_{n+1} = A$ y_n and $y_{n+2} = B$ y_{n+1} for $n \ge 0$. Apply the contractive condition with $(p,q) = (y_n, y_{n+1})$. Observe:

$$Ap = y_{n+1}, Bq = y_{n+2},$$

Substituting into the given condition (2) we get,

$$\begin{split} &d_{\Theta}(y_{n+1}, y_{n+2}) \!\! \leq \!\! \lambda_{1} d_{\Theta}(y_{n}, \! y_{n+1}) \!\! + \!\! \lambda_{2} \frac{[\,(d_{\Theta}\,(y_{n}, \! y_{n+1})\, d_{\Theta}(y_{n+1}, \! y_{n+1})\, + d_{\Theta}(y_{n+1}, \! y_{n+2})\, d_{\Theta}(y_{n}, \! y_{n+2}))}{(d_{\Theta}(y_{n}, \! y_{n+2})\, + d_{\Theta}(y_{n+1}, \! y_{n+1}))} \\ &+ \!\! \lambda_{3} \frac{\!\! \left(\! d_{\Theta}(y_{n}, \! y_{n+1}) d_{\Theta}(y_{n+1}, \! y_{n+1}) + d_{\Theta}(y_{n+1}, \! y_{n+2}) d_{\Theta}(y_{n}, \! y_{n+2})\right)}{(d_{\Theta}(y_{n}, \! y_{n+2})\, + d_{\Theta}(y_{n+1}, \! y_{n+1}))} \\ &+ \!\! \lambda_{4} \frac{\!\! \left(\! d_{\Theta}(y_{n}, \! y_{n+1}) d_{\Theta}(y_{n+1}, \! y_{n+1}) + d_{\Theta}(y_{n+1}, \! y_{n+2}) d_{\Theta}(y_{n}, \! y_{n+2})\right)}{(d_{\Theta}(y_{n}, \! y_{n+2})\, + d_{\Theta}(y_{n+1}, \! y_{n+1}))} \end{split}$$

Plugging into the inequality yields

$$d_{\Theta}(y_{n+1},\,y_{n+2}) \leq \lambda_1 \,\, d_{\Theta}(y_n,y_{n+1}) + \left(\lambda_2 + \lambda_3 + \lambda_4\right) \, d_{\Theta}(y_{n+1},y_{n+2}). \, \frac{\rho^n}{(1-\rho)}$$

Rearrange to obtain

$$\begin{split} &\left(1-\left(\lambda_2+\lambda_3+\lambda_4\right)\right)\,d_\Theta(y_{n+1},\,y_{n+2}) \leq \lambda_1\,\,d_\Theta(y_n,y_{n+1}).\\ &\text{Set }\rho = \frac{\lambda_1}{1-\left(\lambda_2+\lambda_3+\lambda_4\right)} \end{split}$$

Since $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 < 1$, we have $0 \le \rho < 1$, so

$$d_{\Theta}(y_{n+1},\,y_{n+2}) \leq \rho \ d_{\Theta}(y_n,y_{n+1}) \ \text{for all} \ n \geq 0.$$

By induction,

$$d_{\Theta}(y_{n+1}, y_{n+2}) \leq \rho^n d_{\Theta}(y_0, y_1) \to 0 \text{ as } n \to \infty.$$

Using the extended b-metric inequality repeatedly along the chain $y_n, y_{\{n+1\}}, ..., y_{\{n+m\}}$, we get

$$d_{\Theta}(y_n, y_{n+m}) \leq \prod_{k=0}^{m-1} \Theta(y_{n+k}, y_{n+m}) \cdot \sum_{k=0}^{m-1} d\Theta(y_{n+k}, y_{n+k+1}).$$

Each $\Theta \ge 1$, and the sum is bounded by $d_{\Theta}(y_0, y_1) \cdot \frac{\rho^n}{(1-\rho)}$. Thus for fixed m,

 $d_{\Theta}(y_n, y_{n+m}) \to 0$ as $n \to \infty$, so $\{y_n\}$ is Cauchy. Completeness of (Y, d_{Θ}) yields a limit $y^* \in Y$ with $y_n \to y^*$.

Using the contractive inequality with $(p, q) = (y^*, y_{n+1})$ and taking limits as $n \to \infty$ (together with the extended b-triangle), one shows that $d_{\Theta}(Ay^*, y^*) = 0$, hence $Ay^* = y^*$. The same argument interchanging roles of A and B gives $By^* = y^*$.

hence y* is a common fixed point.

If $z \in Y$ is another common fixed point (Az = Bz = z), plug $(p,q) = (z, y^*)$ into the contractive condition. All self-distance terms vanish and we obtain

$$d_{\Theta}(z,y^*) = d_{\Theta}(Az, By^*) \le \lambda_1 \ d_{\Theta}(z,y^*).$$

Since $\lambda_1 \le 1$ (it is part of the hypothesis $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 \le 1$), this forces $d_{\Theta}(z,y^*) = 0$, hence $z = y^*$. Uniqueness follows. This completes the proof.

Corollary 3.2.1: Let T:Y \to Y be a self-map on an extended complete b-metric space (Y, d_{Θ}) with $\Theta: Y \times Y \to [1, \infty)$. Assume that for every distinct $x, y \in Y$ the following rational-type contractive condition holds

$$\begin{split} & d_{\Theta}(Tx, Ty) \!\! \leq \!\! \lambda_{1} d_{\Theta}(x, \! y) \!\! + \!\! \lambda_{2} \!\! \frac{ \left[\, d_{\Theta}(x, \! Tx) \, d_{\Theta}(y, \! Tx) + d_{\Theta}(y, \! Ty) \, d_{\Theta}(x, \! Ty) \, \right] }{ \left[\, d_{\Theta}(x, \! Tx) \, d_{\Theta}(y, \! Tx) + d_{\Theta}(y, \! Tx) \, \right] } + \, \lambda_{3} \!\! \frac{ \left[\, d_{\Theta}(x, \! Tx) \, d_{\Theta}(y, \! Tx) + d_{\Theta}(y, \! Ty) \, d_{\Theta}(x, \! Ty) \, \right] }{ \left[\, d_{\Theta}(x, \! Tx) \, d_{\Theta}(y, \! Tx) + d_{\Theta}(y, \! Tx) \, \right] } \\ & + \! \lambda_{4} \!\! \frac{ \left[\, d_{\Theta}(x, \! Tx) \, d_{\Theta}(y, \! Tx) + d_{\Theta}(y, \! Tx) \, d_{\Theta}(y, \! Tx) \, d_{\Theta}(y, \! Tx) \, \right] }{ \left[\, d_{\Theta}(x, \! Ty) + d_{\Theta}(y, \! Tx) \, \right] } \end{split}$$

whenever the denominator is nonzero. Here $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in [0,1)$ satisfy

$$0<\lambda_1+\lambda_2+\lambda_3+\lambda_4<.$$

Then T has a unique fixed point $y^* \in Y$ (T $y^* = y^*$). Moreover, for any initial $y_0 \in Y$ the Picard iteration $y_{n+1} = T$ y_n converges to y^*

Conclusion

In this research, rational type contractions are used to demonstrate common fixed-point theorems for two self-mappings in extended complete b-metric spaces. By eliminating continuity assumptions, the results expand the scope and applications of fixed-point theory and generalize previous work.

References

- 1. Mlaiki N, Shah SK, Sarwar M. Rational-type contractions and their applications in extended b-metric spaces. Results in Control and Optimization. 2024;16:1–11.
- 2. Banach S. Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundamenta Mathematicae. 1922;3:133–181.
- 3. Bourbaki N. Topologie Générale. Paris: Hermann; 1974.
- 4. Bakhtin IA. The contraction mapping principle in almost metric spaces. Functional Analysis, Unianowsk Gos Ped Inst. 1989;30:26–37.
- 5. Czerwik S. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis. 1993;1:5–11.
- 6. Kir M, Kiziltunç H. On some well-known fixed point theorems in b-metric space. Turkish Journal of Analysis and Number Theory. 2013;1:13–16.
- 7. Boriceanu M. Fixed point theory for multivalued generalized contraction on a set with two b-metrics. Studia Universitatis Babeş-Bolyai, Mathematica. 2009;3:1–14.
- 8. Bota M, Molnar A, Varga C. On Ekeland's variational principle in b-metric spaces. Fixed Point Theory. 2011;12(2):21–28.
- 9. Pacurar M. Sequences of almost contractions and fixed points in b-metric spaces. Analele Universității de Vest Timișoara, Seria Matematică-Informatică. 2010;XLVIII(3):125–137.
- 10. Fagin R, Stockmeyer L. Relaxing the triangle inequality in pattern matching. International Journal of Computer Vision. 1998;30:219–231.
- 11. Kamran T, Samreen M, Ain QU. A generalization of b-metric space and some fixed point theorems. Mathematics (MDPI). 2017;5(19):1–7.
- 12. Alqahtani B, Fulga A, Karapınar E, Rakocevic V. Contractions with rational inequalities in the extended b-metric space. Journal of Inequalities and Applications. 2019;2019:1–13.
- 13. Shatanawi W, Shatnawi TA. Some fixed point results based on contractions of new types for extended b-metric spaces. AIMS Mathematics. 2023;8(5):10929–10946.
- 14. Kadak U. On the classical sets of sequences with fuzzy b-metric. General Mathematics Notes. 2014;23:2199-2184.

How to Cite This Article

Rathore S, Tenguria A. Fixed point theorems in extended b-metric space based on rational contraction. Int J Multidiscip Res Growth Eval. 2025;6(6):801-805. doi:10.54660/IJMRGE.2025.6.6.801-805.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.