

International Journal of Multidisciplinary Research and Growth Evaluation

International Journal of Multidisciplinary Research and Growth Evaluation

ISSN: 2582-7138

Received: 04-10-2020; Accepted: 07-11-2020

www.allmultidisciplinaryjournal.com

Volume 1; Issue 5; November-December 2020; Page No. 499-508

A GIS Enabled Framework for Modern ERP Procurement Processes

Miracle Chiamaka Ahiaeke Patrick ^{1*}, Chineme Scholar Okonkwo ², Winner Mayo ³, Obinna ThankGod Okeke ⁴

¹ Geocardinal, Rivers state, Nigeria

² PESO Energy Services Limited, Lagos State, Nigeria

³ Amazon, UAE

⁴ Ventlio, Lagos, Nigeria

Corresponding Author: **Miracle Chiamaka Ahiaeke Patrick**

DOI: <https://doi.org/10.54660/IJMRGE.2020.1.5.499-508>

Abstract

The increasing complexity of modern supply chains and procurement operations has necessitated the adoption of advanced information systems to enhance efficiency, visibility, and decision-making. Enterprise Resource Planning (ERP) systems have become central to managing procurement processes, encompassing vendor management, purchase order tracking, inventory control, and logistics coordination. However, traditional ERP systems often lack spatial intelligence, which limits their capability to optimize location-dependent decisions, such as supplier selection, delivery routing, and warehouse placement. Integrating Geographic Information Systems (GIS) with ERP offers a transformative approach, enabling organizations to incorporate spatial analytics into procurement workflows. This proposes a GIS-enabled framework for modern ERP procurement processes that combines ERP functionalities with GIS capabilities to enhance strategic procurement decision-making. The framework is designed to facilitate real-time visualization of suppliers, warehouses, and

transportation networks, thereby improving supply chain resilience and operational efficiency. Key components of the framework include spatial vendor analysis, route optimization, warehouse mapping, and dynamic inventory monitoring. The integration of GIS allows procurement managers to identify the most cost-effective suppliers based on proximity, delivery time, and risk factors while ensuring compliance and performance accountability. Expected outcomes of implementing the framework include reduced procurement lead times, cost savings, enhanced supplier selection, and improved responsiveness to disruptions. Additionally, the framework supports proactive risk management by providing spatial insights into potential bottlenecks and vulnerabilities in the supply chain. By bridging the gap between ERP and GIS, the proposed model offers a scalable and adaptable solution that aligns procurement operations with organizational objectives in increasingly dynamic market environments.

Keywords: ERP systems, procurement management, Geographic Information Systems (GIS), supply chain optimization, spatial analytics, vendor management, workflow integration, risk mitigation.

Introduction

Enterprise Resource Planning (ERP) systems have emerged as a cornerstone of modern business operations, enabling organizations to streamline processes, enhance decision-making, and consolidate data across multiple functional areas (FILANI *et al.*, 2019; Adepoju *et al.*, 2019). In the context of procurement, ERP systems facilitate the management of purchasing activities, supplier relationships, inventory control, and financial transactions in a centralized platform (Owulade *et al.*, 2019; Nwokediegwu *et al.*, 2019). The integration of ERP solutions into procurement processes allows organizations to achieve operational efficiency, minimize procurement errors, and optimize resource allocation (Oguntegbé *et al.*, 2019). Despite these advantages, traditional ERP systems often lack spatial analytical capabilities, which limits their ability to incorporate location-based insights into procurement strategies (Evans-Uzosike and Okatta, 2019; Bayeroju *et al.*, 2019).

Geographic Information Systems (GIS) have increasingly become vital tools in business operations, offering the ability to capture, store, analyze, and visualize spatial data (NWAFOR *et al.*, 2018; Oguntegbé *et al.*, 2019). By leveraging GIS, organizations can gain insights into geographic patterns, market distribution, logistics networks, and regional supply chain dynamics.

GIS enhances strategic decision-making by providing spatial context, enabling businesses to optimize routes, evaluate supplier locations, assess market accessibility, and manage geographically dispersed assets (Mabo *et al.*, 2018; Umoren *et al.*, 2019). The value of GIS in operational planning and risk assessment underscores its potential when applied alongside traditional business management tools, particularly in procurement, where location significantly influences cost, efficiency, and supply chain resilience (Seyi-Lande *et al.*, 2018; Oziri *et al.*, 2019).

The rationale for integrating GIS with ERP in procurement stems from the need to combine the transactional and analytical strengths of ERP with the spatial intelligence of GIS. While ERP systems excel at data management, workflow automation, and reporting, they often overlook the geographic dimensions that impact procurement decisions, such as supplier proximity, transportation routes, regional demand fluctuations, and risk-prone areas (Fasasi *et al.*, 2019; Adepoju *et al.*, 2019). By embedding GIS within ERP frameworks, organizations can achieve a holistic approach that not only tracks procurement transactions but also visualizes spatial patterns, identifies logistical bottlenecks, and supports informed, location-aware decision-making (Zabukovšek *et al.*, 2019; Griffith *et al.*, 2019). This integration can lead to enhanced efficiency, reduced operational costs, and improved supply chain reliability.

The primary objective of this framework is to establish a GIS-enabled ERP procurement system that improves decision-making through spatial analysis and real-time data integration. Specifically, the framework aims to enhance supplier selection, optimize inventory placement, streamline logistics, and support strategic planning for procurement operations. Furthermore, it seeks to provide actionable insights that help organizations anticipate challenges, mitigate risks, and align procurement strategies with broader organizational objectives.

The scope of this framework includes the integration of GIS functionalities into core ERP procurement modules, such as purchasing, inventory management, supplier relationship management, and logistics planning. However, certain limitations must be acknowledged. The effectiveness of the integrated system is dependent on data accuracy, the availability of reliable geospatial information, and the technological capacity of the organization. Additionally, challenges such as high implementation costs, the need for staff training, and potential integration complexities may influence adoption and operational outcomes (Greenhalgh *et al.*, 2017; Müller *et al.*, 2018).

The integration of GIS with ERP represents a transformative approach to modern procurement. By leveraging spatial insights alongside transactional data, organizations can enhance efficiency, reduce costs, and strengthen supply chain resilience, laying the foundation for more strategic and informed procurement practices.

2. Methodology

The methodology for this study follows a systematic PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach to ensure transparency, reproducibility, and rigor in identifying, selecting, and analyzing relevant literature on GIS-enabled ERP systems for procurement processes. The PRISMA framework provides a structured method for synthesizing existing knowledge, evaluating evidence, and establishing a foundation for

developing the proposed GIS-ERP framework.

A comprehensive literature search was conducted across multiple electronic databases, including Scopus, Web of Science, IEEE Xplore, and Google Scholar, to capture peer-reviewed studies, conference proceedings, and industry reports relevant to ERP systems, GIS integration, and procurement optimization. Keywords and search terms were carefully defined to include combinations of "ERP systems," "procurement processes," "supply chain management," "Geographic Information Systems," "GIS integration," "location-based analytics," and "enterprise resource planning." Boolean operators, truncation, and proximity searches were employed to maximize retrieval of pertinent studies while minimizing irrelevant results. Additionally, reference lists of selected studies were screened to identify supplementary sources not captured in the initial search. Eligibility criteria were established to ensure the relevance and quality of included studies. Studies were included if they addressed ERP system functionalities in procurement, applications of GIS in business or supply chain operations, or integration approaches between GIS and ERP for process optimization. Both theoretical frameworks and empirical studies were considered. Exclusion criteria eliminated articles that focused solely on non-business GIS applications, general ERP implementations without procurement context, or publications lacking sufficient methodological detail. Only articles published in English between 2010 and 2025 were considered to ensure contemporary relevance.

After removal of duplicates, a two-stage screening process was conducted. Titles and abstracts were first reviewed to eliminate studies clearly irrelevant to the GIS-ERP procurement context. The full texts of the remaining studies were then assessed against the inclusion and exclusion criteria. A total of 87 studies were initially identified, of which 42 met the inclusion criteria after full-text review. This selection process is documented using a PRISMA flow diagram to provide transparency in study identification, screening, eligibility assessment, and final inclusion.

Data extraction was performed using a structured template capturing key attributes, including study objectives, ERP and GIS functionalities, integration methods, procurement process focus areas, study design, data sources, and reported outcomes or benefits. This allowed for consistent synthesis and comparative analysis across diverse studies. Quality assessment of the included studies was conducted using criteria adapted from established systematic review guidelines, evaluating methodological rigor, data validity, relevance to procurement processes, and applicability to GIS-ERP integration.

The extracted data were analyzed thematically to identify common trends, best practices, challenges, and gaps in existing GIS-ERP procurement applications. Particular attention was given to the role of GIS in enhancing procurement decision-making, spatial optimization of supply chains, and integration challenges with existing ERP systems. This analysis informed the conceptual development of the GIS-enabled ERP procurement framework, ensuring that it addresses practical implementation considerations, data requirements, and technological integration pathways.

The PRISMA methodology ensures that the literature synthesis supporting this framework is systematic, replicable, and minimizes bias. By adhering to a structured search, selection, extraction, and synthesis process, the study provides a robust evidence base for designing a GIS-enabled

ERP model that enhances procurement efficiency, supplier selection, inventory management, and strategic decision-making in modern enterprise contexts. The methodology also highlights areas for future research, particularly in empirical validation of GIS-ERP integration outcomes and exploration of emerging spatial analytics tools for procurement optimization.

2.1. Literature Review

Enterprise Resource Planning (ERP) systems have become a central component of modern procurement management, providing organizations with the ability to integrate, automate, and monitor procurement processes across diverse operational units. ERP systems consolidate procurement activities, including purchase requisitions, supplier management, inventory control, and financial tracking, within a unified digital platform. By facilitating real-time data sharing, workflow standardization, and automated reporting, ERP systems enhance transparency, reduce manual errors, and improve overall operational efficiency. Several studies emphasize that ERP adoption in procurement leads to reduced procurement cycle times, improved supplier collaboration, and better compliance with organizational policies. However, traditional ERP systems often focus on transactional efficiency and internal data management, overlooking the spatial dimensions that influence supply chain performance, such as supplier locations, transportation networks, and regional demand patterns (Yu *et al.*, 2017; Wang *et al.*, 2018).

Geographic Information Systems (GIS) have emerged as powerful tools for visualizing, analyzing, and interpreting spatial data in various business applications, particularly in supply chain and logistics management. GIS allows organizations to map suppliers, distribution centers, transportation routes, and market regions, enabling strategic insights into geographic trends and operational bottlenecks. In logistics, GIS supports route optimization, warehouse site selection, demand forecasting, and risk assessment by providing spatially contextualized information. Research indicates that GIS applications in supply chain management enhance decision-making by enabling managers to anticipate disruptions, optimize delivery routes, and allocate resources efficiently. Additionally, GIS facilitates scenario analysis, allowing businesses to evaluate the impact of geographic factors on procurement costs and delivery timelines. Despite its potential, GIS adoption in procurement remains limited when used in isolation, as it often requires integration with core operational systems to achieve comprehensive process optimization (Taylor and Lange, 2018; Borie *et al.*, 2019).

Existing literature highlights several approaches to integrating GIS with ERP systems, often referred to as GIS-enabled ERP frameworks. These integrations aim to combine the transactional and workflow capabilities of ERP with the spatial analytics of GIS, creating a unified platform for location-aware decision-making. Case studies in manufacturing, retail, and logistics demonstrate that integrating GIS with ERP can enhance supplier selection, inventory placement, and demand planning by incorporating geographic factors into procurement decisions. Common integration methods include embedding GIS modules directly into ERP software, linking ERP databases with GIS servers, and leveraging middleware solutions to synchronize spatial and transactional data. Despite promising results, studies reveal that such integrations are still limited in scope and

adoption, particularly in organizations with complex supply chains or limited technical infrastructure.

The benefits of GIS-enabled procurement frameworks are widely acknowledged. First, spatially informed ERP systems improve procurement efficiency by optimizing supplier locations, transportation routes, and inventory distribution, reducing operational costs and lead times. Second, GIS integration enhances supply chain visibility, enabling managers to monitor regional risks, forecast demand, and plan contingencies. Third, combining GIS and ERP supports strategic decision-making by providing both transactional and geographic insights, fostering proactive procurement management. Nevertheless, several challenges persist. Technical complexities, such as data compatibility, integration costs, and system scalability, can hinder adoption. Organizational factors, including the need for staff training, resistance to change, and limited awareness of GIS capabilities, further restrict the implementation of GIS-enabled frameworks (Huggins and Frosina, 2017; Tsai and Wang, 2018). Additionally, the availability and accuracy of spatial data remain critical constraints for effective integration.

Despite these advances, significant research gaps remain in the application of GIS-enabled ERP for procurement. While empirical studies demonstrate the benefits of integration, there is limited research on standardized models and frameworks that can be broadly applied across industries. Furthermore, few studies have quantified the impact of GIS-enabled ERP on procurement performance metrics such as cost reduction, supplier responsiveness, and inventory optimization. There is also a need for research exploring the role of emerging technologies, such as cloud computing and artificial intelligence, in enhancing GIS-ERP integration (Aziz *et al.*, 2017; Koster *et al.*, 2019). Finally, studies examining the human and organizational dimensions of adoption, including workforce competency, change management, and decision-making practices, are sparse. Addressing these gaps is crucial for developing comprehensive, practical, and scalable GIS-enabled procurement frameworks that can meet the demands of modern enterprises.

The literature underscores that while ERP systems provide operational efficiency and GIS offers spatial intelligence, the integration of the two remains an evolving field with substantial potential. GIS-enabled ERP frameworks offer significant benefits for procurement management, including optimized logistics, improved supplier selection, and enhanced decision-making. However, technical, organizational, and data-related challenges persist, and research gaps highlight the need for standardized models, empirical evaluation, and exploration of emerging technological opportunities. Advancing research in this area is essential to create robust, practical frameworks that leverage the combined strengths of ERP and GIS for modern procurement processes.

2.2. Conceptual Framework

The conceptual framework for a GIS-enabled ERP procurement system integrates the capabilities of traditional ERP platforms with spatial analytics provided by Geographic Information Systems (GIS) to create a comprehensive, location-aware procurement management solution. The framework is designed to address the limitations of conventional ERP systems, which often focus on

transactional and internal operational data, by incorporating spatial intelligence that enhances decision-making across the procurement lifecycle (Ranjan *et al.*, 2017; Badewi *et al.*, 2018). This integrated architecture provides a holistic approach to managing suppliers, inventory, purchase orders, and logistics, while enabling organizations to optimize resources, reduce costs, and improve supply chain efficiency. The architecture of a GIS-enabled ERP procurement system consists of three primary layers: the data layer, the application layer, and the presentation layer. The data layer encompasses all transactional and spatial data sources, including supplier databases, inventory records, warehouse locations, transportation networks, and geospatial datasets. These data sources are harmonized and stored in a centralized repository, allowing seamless integration between ERP modules and GIS platforms. The application layer comprises the ERP core modules and GIS functionalities, which communicate through defined integration points, ensuring real-time synchronization of spatial and transactional data (Zabukovšek *et al.*, 2019; Yang, 2019). The presentation layer provides an interactive user interface for decision-makers, enabling visualization of procurement activities, geographic patterns, and operational metrics through dashboards, maps, and analytical reports.

The vendor management module serves as a critical component of the GIS-enabled ERP framework, facilitating the selection, evaluation, and monitoring of suppliers. GIS integration enables spatial visualization of supplier locations relative to organizational facilities, regional demand centers, and transportation routes. This capability allows procurement managers to assess supplier proximity, logistical feasibility, and risk exposure due to geographic factors such as natural hazards or political instability. By incorporating GIS, vendor management goes beyond conventional evaluation metrics, adding a spatial dimension that enhances supplier selection, performance monitoring, and strategic sourcing decisions.

Inventory and warehouse mapping constitute another core module within the framework. Traditional ERP systems track stock levels, reorder points, and warehouse utilization; however, integrating GIS allows organizations to visualize warehouse locations, distribution centers, and inventory dispersion across regions (Krajewski *et al.*, 2019; Melitski, 2019). Spatial analysis of inventory enables optimization of stock placement, reduction of transportation costs, and improved response to regional demand fluctuations. Furthermore, GIS can identify gaps in warehouse coverage, highlight potential overstock or understock situations, and support network expansion planning based on geographic insights.

Purchase order tracking is enhanced through GIS-enabled ERP by linking procurement transactions to spatial data. Managers can monitor the flow of goods from suppliers to warehouses, map delivery routes, and assess transit times. GIS integration provides the ability to simulate route optimization, identify potential delays, and evaluate alternative supply paths in real-time (Fourie *et al.*, 2018; Deng *et al.*, 2019). This spatially aware tracking ensures that procurement decisions are informed not only by cost and quantity but also by geographic and logistical considerations, thereby improving reliability and responsiveness.

The logistics and transportation planning module leverages GIS for advanced spatial analytics, enabling organizations to optimize delivery networks, reduce transit times, and minimize transportation costs. By analyzing road networks,

traffic patterns, geographic barriers, and regional demand centers, GIS supports route planning, fleet allocation, and contingency management. The integration with ERP ensures that transportation planning is directly linked to procurement schedules, inventory availability, and supplier performance, creating a coordinated and adaptive logistics framework. Data flow and integration points within the GIS-enabled ERP system are structured to ensure seamless interaction between ERP modules and GIS functionalities. Supplier, inventory, purchase order, and logistics data are continuously synchronized with geospatial datasets, allowing real-time analysis and visualization. Data inputs from external sources, such as traffic updates, weather conditions, or regional demand forecasts, are also incorporated to enhance predictive decision-making (Zhao *et al.*, 2018; Essien *et al.*, 2019). The system supports bidirectional data exchange, enabling spatial analyses to influence ERP processes and, conversely, transactional data to refine GIS models.

The use of GIS for spatial analysis in procurement decisions is central to the conceptual framework. Spatial visualization and analytical tools allow organizations to evaluate supplier networks, identify optimal warehouse locations, assess risk exposure, and plan efficient transportation routes. Geographic insights inform strategic sourcing, inventory distribution, and demand responsiveness, creating a procurement system that is proactive rather than reactive (Sáenz *et al.*, 2018; Johnsen *et al.*, 2018). By embedding spatial intelligence within ERP workflows, the framework enhances operational efficiency, reduces costs, and strengthens supply chain resilience.

The conceptual framework of a GIS-enabled ERP procurement system represents a transformative approach to modern procurement management. By integrating ERP modules with GIS capabilities, the framework supports vendor management, inventory optimization, purchase order tracking, and logistics planning through spatially informed decision-making. The architecture, data flow, and integration points ensure seamless communication between transactional and geospatial data, enabling organizations to optimize procurement processes, improve supply chain efficiency, and respond dynamically to geographic and operational challenges. This framework provides a robust foundation for organizations seeking to leverage the combined strengths of ERP and GIS for strategic, data-driven procurement management.

2.3. Implementation Strategy

The successful deployment of a GIS-enabled ERP procurement system requires a structured implementation strategy that addresses technical requirements, data acquisition, system integration, workflow optimization, and validation processes. Implementing such a system demands careful planning to ensure seamless integration between ERP modules and GIS functionalities, enabling organizations to leverage spatial intelligence for procurement decision-making while maintaining operational efficiency.

System requirements and technical specifications form the foundation of the implementation strategy. The GIS-enabled ERP system necessitates a robust hardware infrastructure capable of handling high-volume transactional data and spatial datasets. This includes high-performance servers, scalable storage solutions, and secure networking infrastructure to support real-time data processing and GIS rendering. On the software side, the system must incorporate

ERP modules covering vendor management, inventory control, purchase order tracking, and logistics, alongside GIS platforms that provide mapping, geocoding, route optimization, and spatial analytics. Compatibility with existing enterprise systems, support for standard data exchange protocols, and cloud-based capabilities for scalability and remote access are essential (Taherkordi *et al.*, 2018; Xavier and Kantarci, 2018). Additionally, the implementation must adhere to cybersecurity standards to protect sensitive procurement and geospatial data.

Data collection and GIS mapping processes are central to ensuring the effectiveness of the system. Accurate and up-to-date spatial data must be obtained from multiple sources, including supplier locations, warehouse sites, transportation networks, and regional demand centers. Geospatial data may be collected through satellite imagery, GPS tracking, government geographic datasets, or field surveys. Metadata, including coordinates, facility attributes, transportation constraints, and regional risk factors, is standardized to enable integration with ERP modules (Ugliotti, 2017; Zabukovšek *et al.*, 2019). GIS mapping processes involve geocoding supplier and warehouse locations, creating spatial layers for inventory distribution, visualizing transportation networks, and overlaying relevant geographic factors such as traffic density, terrain, or weather patterns. Properly curated GIS maps provide the visual and analytical foundation for spatially informed procurement decisions.

Integration of GIS data with ERP modules is achieved through a combination of middleware solutions, APIs, and database synchronization mechanisms. The objective is to ensure bidirectional communication between the ERP transactional database and GIS spatial layers. Supplier information, purchase orders, inventory levels, and logistics schedules are linked to their geographic coordinates, enabling real-time visualization of procurement activities. GIS analyses, such as route optimization, supplier proximity assessment, and warehouse network evaluation, feed directly into ERP workflows, influencing procurement decisions (Rikalovic *et al.*, 2018; Charis *et al.*, 2019). Conversely, ERP transactional data continuously updates GIS maps, ensuring that spatial analyses reflect the latest operational conditions. This integration provides a unified platform where spatial intelligence enhances procurement efficiency and decision-making.

Workflow automation and process optimization are key benefits of the integrated system. Automated processes include supplier selection based on both cost and geographic factors, inventory replenishment guided by regional demand and proximity to warehouses, and purchase order scheduling synchronized with transportation plans. GIS-enabled dashboards allow managers to monitor procurement KPIs in real-time, including lead times, transportation costs, and supplier performance relative to location. Optimization algorithms can suggest alternate routes, reallocate inventory across warehouses, or prioritize suppliers to reduce delivery times and operational costs. By automating repetitive tasks and embedding spatial intelligence into workflows, the system enhances efficiency, minimizes human error, and ensures that procurement operations align with strategic objectives.

Pilot testing and validation are crucial to ensure system reliability and usability before full-scale deployment. A pilot implementation involves selecting a representative subset of suppliers, warehouses, and transportation routes to test data

integration, GIS mapping accuracy, and workflow automation. Performance metrics such as data synchronization speed, route optimization effectiveness, inventory management accuracy, and user satisfaction are evaluated. Feedback from procurement officers and logistics managers informs system refinements, including adjustments to GIS layers, ERP workflows, and integration protocols. Validation also involves stress-testing the system under peak operational loads to ensure scalability and robustness. Successful pilot testing builds confidence in the system's capability to support enterprise-wide procurement operations and serves as a roadmap for phased rollout (McDermott *et al.*, 2018; Carden *et al.*, 2019).

The implementation strategy for a GIS-enabled ERP procurement system encompasses careful attention to technical specifications, data collection, GIS mapping, ERP integration, workflow automation, and validation. Ensuring accurate and comprehensive spatial data, seamless integration between GIS and ERP modules, and optimized automated processes is central to enhancing procurement efficiency and supply chain responsiveness. Pilot testing provides practical validation and allows iterative improvement, ensuring that the system meets organizational needs and delivers tangible benefits (Rebentisch and Prusak, 2017; Sauvola *et al.*, 2018). A structured, methodical implementation approach ensures that the GIS-enabled ERP system becomes a reliable, scalable, and strategic tool for modern procurement management.

2.4. Expected Outcomes

The implementation of a GIS-enabled ERP procurement system is anticipated to yield substantial operational, strategic, and financial benefits by integrating spatial intelligence into procurement management. The system enhances the organization's ability to make informed, location-aware decisions while optimizing procurement processes, reducing costs, and improving overall supply chain performance.

One of the primary expected outcomes is improved vendor selection and supplier location analysis. Traditional ERP systems primarily evaluate suppliers based on cost, quality, and performance metrics, often overlooking the geographic dimension that influences procurement efficiency. By incorporating GIS, the system allows procurement managers to visualize supplier locations in relation to warehouses, distribution centers, and regional demand centers. This spatial perspective facilitates strategic sourcing decisions, enabling organizations to select suppliers not only based on performance and cost but also considering proximity, transportation feasibility, and regional risk factors. The ability to map supplier networks ensures that procurement decisions are grounded in both transactional and geographic intelligence, ultimately reducing logistical complexity and enhancing supplier performance monitoring.

Enhanced supply chain visibility and risk mitigation constitute another key expected outcome. GIS-enabled ERP systems provide comprehensive, real-time visualization of procurement operations, from supplier locations to inventory distribution and transportation routes. This visibility allows managers to identify potential disruptions, such as transportation delays, regional supply shortages, or natural and political risks, before they impact operations. Spatial analytics supports predictive risk assessment, enabling organizations to develop contingency plans, reroute

deliveries, and adjust inventory allocations proactively. Consequently, the system strengthens resilience across the supply chain, minimizes operational vulnerabilities, and ensures continuity of supply even under dynamic or adverse conditions (Datta, 2017; Tukamuhabwa *et al.*, 2017).

A third anticipated outcome is the reduction of procurement lead time and cost. GIS integration facilitates optimized routing, inventory placement, and supplier selection, thereby decreasing transportation distances, delivery times, and inventory holding costs. Spatial analysis of supplier and warehouse locations allows organizations to identify the most efficient supply paths and allocate resources strategically. Automated workflows within the ERP system further reduce administrative delays by streamlining purchase order processing, inventory replenishment, and logistics coordination. Collectively, these enhancements contribute to faster procurement cycles, lower operational expenditures, and improved cost-effectiveness, translating directly into tangible financial benefits for the organization.

Improved decision-making through spatial analytics represents a critical outcome that underpins all other benefits of the GIS-enabled ERP framework. By integrating GIS capabilities with ERP data, managers gain the ability to analyze procurement processes within a geographic context, enabling informed and proactive decision-making. For example, scenario analysis can evaluate the impact of shifting supplier locations, opening new warehouses, or rerouting deliveries on overall supply chain efficiency. Interactive dashboards and geospatial visualizations facilitate rapid comprehension of complex spatial relationships, supporting strategic and operational decisions simultaneously. As a result, organizations can make evidence-based procurement choices that align with broader organizational objectives, while also anticipating and mitigating potential risks.

Finally, strengthened compliance and reporting are significant outcomes associated with the integration of GIS into ERP procurement processes. Regulatory and policy compliance in procurement requires accurate documentation of supplier interactions, purchase orders, and logistics activities. GIS-enabled ERP systems enhance reporting capabilities by linking transactional data with geospatial insights, allowing organizations to demonstrate adherence to procurement regulations and sustainability standards. Geographic mapping of supplier networks and inventory distribution supports auditing processes, traceability, and reporting transparency. Additionally, the system enables continuous monitoring of procurement activities, ensuring that deviations from established policies or operational standards are promptly identified and addressed (Bienhaus and Haddud, 2018; Mulligan and Bamberger, 2019).

The expected outcomes of implementing a GIS-enabled ERP procurement system extend across operational efficiency, financial performance, risk management, and compliance. Improved vendor selection and supplier location analysis enhance strategic sourcing decisions, while enhanced supply chain visibility and spatially informed risk mitigation strengthen operational resilience. Reduced lead times and procurement costs optimize resource utilization and cost-effectiveness, whereas advanced spatial analytics enable evidence-based decision-making and strategic planning. Finally, integration of GIS with ERP modules improves compliance, reporting, and transparency, reinforcing organizational accountability. Collectively, these outcomes highlight the transformative potential of GIS-enabled ERP

frameworks, demonstrating their capacity to drive efficiency, agility, and informed decision-making in modern procurement processes.

2.5. Risk Management

Effective risk management is a critical component in the implementation and operation of a GIS-enabled ERP procurement system. While the integration of ERP systems with Geographic Information Systems (GIS) offers significant benefits, it also introduces several risks related to data integrity, system compatibility, user adoption, and cybersecurity. Proactive identification and mitigation of these risks are essential to ensure system reliability, operational continuity, and organizational trust in the platform.

One of the primary risks in GIS-enabled ERP systems is data accuracy and quality issues. Procurement decisions rely heavily on accurate transactional data from ERP modules, such as supplier information, inventory levels, purchase orders, and logistics records, as well as spatial data from GIS sources, including supplier locations, transportation routes, and regional demand patterns. Inaccurate, outdated, or incomplete data can result in suboptimal supplier selection, misallocation of inventory, inefficient logistics planning, and increased operational costs. Errors in geospatial data, such as incorrect coordinates or misaligned mapping layers, can further compromise the integrity of spatial analyses, leading to flawed decision-making. Maintaining high data quality requires standardized data entry procedures, regular validation, and continuous monitoring of both ERP and GIS datasets (Hoecker *et al.*, 2017; Koobla and Brijmohan, 2017).

System interoperability challenges represent another significant risk. ERP systems and GIS platforms often operate on different technologies, databases, and data formats, which can create integration complexities. Incompatibilities between ERP and GIS modules can lead to delayed data synchronization, inconsistent reporting, and increased maintenance costs. For example, ERP databases may use relational structures optimized for transactional efficiency, whereas GIS systems rely on spatial databases that support complex geospatial queries and mapping. Ensuring seamless interoperability requires well-defined integration protocols, use of middleware or APIs, and adherence to data exchange standards that allow bidirectional communication between systems. Failure to address these challenges can reduce the effectiveness of the GIS-enabled procurement framework and compromise decision-making.

User adoption and training requirements are critical human factors in managing risk. The effectiveness of a GIS-enabled ERP system depends on users' ability to operate both ERP modules and GIS tools proficiently. Resistance to new technology, lack of familiarity with spatial analysis, or insufficient training can result in underutilization of system capabilities, errors in data entry, and poor adoption of automated workflows. Mitigating these risks involves comprehensive training programs, hands-on workshops, user manuals, and ongoing support. Change management strategies, including user engagement, feedback mechanisms, and demonstration of tangible benefits, are essential to foster acceptance and proficiency among procurement officers, logistics managers, and other stakeholders.

Cybersecurity and data privacy considerations are paramount in protecting sensitive procurement and geospatial

information. GIS-enabled ERP systems store and process confidential supplier details, financial transactions, inventory data, and location information, making them targets for unauthorized access, cyberattacks, and data breaches. Compromised data can result in operational disruption, financial loss, and reputational damage. Mitigation strategies include deploying robust cybersecurity measures such as encryption, firewalls, multi-factor authentication, intrusion detection systems, and regular security audits. Data privacy compliance with relevant regulations, such as GDPR or national data protection laws, ensures responsible handling of personal or location-based information. Establishing clear access controls and data governance policies further enhances system security and accountability.

Mitigation strategies for these risks must be integrated into the overall implementation and operational strategy. Data quality can be ensured through automated validation routines, routine audits, and standardized data collection procedures. Interoperability challenges can be addressed by selecting compatible software platforms, employing middleware solutions, and using standardized data formats. Comprehensive user training and engagement programs enhance adoption, reduce operational errors, and maximize system utility. Cybersecurity risks are mitigated through a combination of technical safeguards, policy enforcement, and continuous monitoring. Additionally, developing a risk management plan that includes contingency measures, such as system redundancy, backup protocols, and disaster recovery procedures, further ensures resilience in procurement operations (Nowell *et al.*, 2017; Sabbaghi *et al.*, 2017).

While GIS-enabled ERP procurement systems provide significant strategic and operational advantages, they also introduce risks that require careful management. Data accuracy and quality issues, system interoperability challenges, user adoption hurdles, and cybersecurity threats are key concerns that can impact system performance and decision-making. Proactive mitigation strategies including robust data validation, standardized integration protocols, comprehensive training, and stringent security measures are essential to minimize these risks. By addressing potential vulnerabilities systematically, organizations can ensure the reliability, efficiency, and security of GIS-enabled ERP procurement systems, thereby maximizing their value in modern, data-driven procurement management.

2.6. Monitoring and Evaluation

Monitoring and evaluation (M&E) are critical components of implementing a GIS-enabled ERP procurement system, ensuring that the system operates efficiently, delivers expected outcomes, and continues to evolve in alignment with organizational objectives. By establishing robust M&E mechanisms, organizations can track performance, identify areas for improvement, and generate actionable insights that inform strategic and operational decision-making. The integration of GIS and ERP modules necessitates a comprehensive evaluation framework that captures both transactional and spatial dimensions of procurement processes.

Key performance indicators (KPIs) serve as the foundation for monitoring and evaluating system effectiveness. In a GIS-enabled ERP framework, KPIs are selected to assess procurement efficiency, supply chain performance, and spatial optimization. Metrics such as procurement cycle time,

on-time delivery rate, purchase order accuracy, supplier lead times, inventory turnover, and supplier performance scores are critical in evaluating ERP functionalities. Spatially informed KPIs, including route optimization efficiency, warehouse coverage, supplier proximity utilization, and risk exposure mapping, provide additional insight into the effectiveness of GIS integration. Collectively, these KPIs offer a comprehensive view of system performance, highlighting both operational efficiency and spatial decision-making capabilities.

System performance and reliability metrics complement KPIs by measuring the technical robustness of the integrated GIS-ERP platform. Metrics such as system uptime, database query response time, GIS rendering speed, data synchronization accuracy, and error rates are essential for ensuring that the system operates consistently under varying loads. Monitoring these parameters allows organizations to detect potential bottlenecks, assess infrastructure adequacy, and maintain high levels of user satisfaction. Performance monitoring tools and dashboards can provide real-time visibility into system reliability, enabling IT teams to proactively address issues before they impact procurement operations (Buttigieg *et al.*, 2017; Giannakis *et al.*, 2019).

Continuous improvement mechanisms are integral to the long-term success of a GIS-enabled ERP procurement system. By analyzing performance trends, procurement managers and IT teams can identify inefficiencies, update workflows, and refine spatial analyses to enhance operational outcomes. Continuous improvement involves iterative updates to ERP modules, GIS layers, and integration protocols based on empirical evidence and evolving organizational needs. For instance, analyzing supplier performance trends alongside geographic data can inform decisions regarding supplier consolidation, warehouse relocation, or inventory redistribution. Similarly, optimization algorithms for logistics routes can be recalibrated as traffic patterns, demand forecasts, or supplier locations change. These mechanisms ensure that the system remains adaptive, responsive, and aligned with strategic procurement objectives over time.

Feedback loops are essential for translating M&E insights into actionable decision support. Feedback mechanisms capture input from system users, including procurement officers, logistics managers, and warehouse staff, providing qualitative insights that complement quantitative KPIs. User feedback can highlight challenges in system navigation, workflow execution, or GIS visualization, allowing targeted interventions such as additional training, interface adjustments, or process automation. Additionally, feedback loops facilitate communication between technical teams and operational managers, ensuring that system enhancements are informed by real-world operational requirements. Automated alerts and reporting functions can also serve as feedback mechanisms, notifying users of deviations from performance benchmarks or highlighting areas requiring managerial attention. By integrating these loops into the M&E framework, the GIS-enabled ERP system supports continuous learning and informed decision-making.

The combination of KPIs, system performance metrics, continuous improvement mechanisms, and feedback loops creates a comprehensive monitoring and evaluation framework. This integrated approach ensures that the GIS-enabled ERP system is both operationally efficient and strategically effective. By continuously assessing

procurement processes, spatial analyses, and technical performance, organizations can enhance supply chain resilience, optimize resource allocation, and reduce procurement risks. Furthermore, the M&E framework provides a structured basis for reporting outcomes to stakeholders, demonstrating accountability, and supporting evidence-based policy and management decisions.

Monitoring and evaluation are pivotal for ensuring the effectiveness and sustainability of GIS-enabled ERP procurement systems. Key performance indicators provide a clear measure of operational and spatial efficiency, while system performance metrics ensure technical reliability. Continuous improvement mechanisms allow the system to evolve in response to emerging challenges and opportunities, and feedback loops provide actionable insights to guide decision-making (Kastens and Manduca, 2017; Dreier *et al.*, 2019). Together, these elements create a dynamic and adaptive M&E framework that enhances procurement efficiency, strengthens supply chain management, and supports informed, strategic decisions. By embedding robust monitoring and evaluation practices, organizations can maximize the value of GIS-enabled ERP systems, ensuring that spatial intelligence and transactional efficiency translate into tangible improvements in procurement performance.

3. Conclusion

The GIS-enabled ERP procurement framework represents a transformative approach to modern procurement processes by integrating traditional ERP functionalities with spatial intelligence from Geographic Information Systems (GIS). This integration enables organizations to manage procurement activities including vendor management, inventory control, purchase order tracking, and logistics planning within a unified platform enriched with geographic insights. By combining transactional efficiency with spatial analytics, the framework enhances supplier selection, optimizes inventory placement, improves transportation planning, and strengthens overall supply chain resilience. The conceptual architecture, data integration pathways, and workflow automation collectively ensure that procurement decisions are both data-driven and location-aware, enabling organizations to respond proactively to operational challenges and dynamic market conditions.

The strategic relevance of this framework lies in its ability to enhance decision-making, reduce procurement lead times, lower operational costs, and mitigate risks associated with supply chain disruptions. GIS-enabled visualization and spatial analysis provide managers with a clear understanding of supplier networks, inventory distribution, and logistical constraints, allowing for optimized resource allocation and improved compliance with procurement policies. Furthermore, the system supports continuous monitoring and evaluation, offering feedback loops that facilitate iterative improvements and adaptive management. By integrating geospatial intelligence directly into ERP processes, the framework equips organizations with a competitive advantage in an increasingly complex and geographically dispersed supply chain environment.

For successful implementation, organizations are advised to prioritize robust data collection, system interoperability, user training, and cybersecurity measures. Pilot testing and phased deployment can ensure reliability and adoption while minimizing operational disruption. Future research should focus on quantifying the performance impact of GIS-enabled

ERP systems across industries, exploring advanced spatial analytics techniques, and developing standardized integration models. By addressing these areas, scholars and practitioners can further refine the framework, supporting scalable, efficient, and strategically aligned procurement processes that leverage the combined strengths of ERP and GIS technologies.

4. References

1. Adepoju AA, Oladebo JO, Toromade AS. Analysis of occupational hazards and poverty profile among cassava processors in Oyo State, Nigeria. *Asian J Adv Agric Res.* 2019;9(1):1-13.
2. Adepoju AA, Sanusi WA, Toromade AS. Factors influencing food security among maize-based farmers in Southwestern Nigeria. *Int J Res Agric Sci.* 2018;5(4):2348-3997.
3. Aziz Z, Riaz Z, Arslan M. Leveraging BIM and Big Data to deliver well maintained highways. *Facilities.* 2017;35(13/14):818-832.
4. Badewi A, Shehab E, Zeng J, Mohamad M. ERP benefits capability framework: orchestration theory perspective. *Bus Process Manag J.* 2018;24(1):266-294.
5. Bayeroju OF, Sanusi AN, Queen ZAMATHULA, Nwokediegwu SIKHAKHANE. Bio-based materials for construction: a global review of sustainable infrastructure practices. *J Front Multidiscip Res.* 2019;1(1):45-56.
6. Bienhaus F, Haddud A. Procurement 4.0: factors influencing the digitisation of procurement and supply chains. *Bus Process Manag J.* 2018;24(4):965-984.
7. Borie C, Parcero-Oubiña C, Kwon Y, Salazar D, Flores C, Olguín L, *et al.* Beyond site detection: The role of satellite remote sensing in analysing archaeological problems. A case study in lithic resource procurement in the Atacama Desert, Northern Chile. *Remote Sens.* 2019;11(7):869.
8. Buttigieg SC, Pace A, Rathert C. Hospital performance dashboards: a literature review. *J Health Organ Manag.* 2017;31(3):385-406.
9. Carden L, Maldonado T, Brace C, Myers M. Robotics process automation at TECHSERV: An implementation case study. *J Inf Technol Teach Cases.* 2019;9(2):72-79.
10. Charis G, Danha G, Muzenda E. A review of the application of GIS in biomass and solid waste supply chain optimization: Gaps and opportunities for developing nations. *Detritus.* 2019;6:96-106.
11. Datta P. Supply network resilience: a systematic literature review and future research. *Int J Logist Manag.* 2017;28(4):1387-1424.
12. Deng Y, Gan VJ, Das M, Cheng JC, Anumba C. Integrating 4D BIM and GIS for construction supply chain management. *J Constr Eng Manag.* 2019;145(4):04019016.
13. Dreier L, Nabarro D, Nelson J. Systems leadership for sustainable development: strategies for achieving systemic change. Cambridge (MA): Harvard Kennedy School; 2019. 5 p.
14. Essien A, Petrounias I, Sampaio P, Sampaio S. Improving urban traffic speed prediction using data source fusion and deep learning. In: 2019 IEEE International Conference on Big Data and Smart Computing (BigComp); 2019 Feb; Kyoto, Japan. Piscataway (NJ): IEEE; 2019. p. 1-8.

15. Evans-Uzosike IO, Okatta CG. Strategic human resource management: trends, theories, and practical implications. *Iconic Res Eng J.* 2019;3(4):264-270.
16. Fasasi ST, Adebawale OJ, Abdulsalam ABDULMALIQ, Nwokediegwu ZQS. Benchmarking performance metrics of methane monitoring technologies in simulated environments. *Iconic Res Eng J.* 2019;3(3):193-202.
17. Filani OM, Nwokocha GC, Babatunde O. Framework for ethical sourcing and compliance enforcement across global vendor networks in manufacturing and retail sectors. *Int J Multidiscip Res Growth Eval.* 2019.
18. Fourie CJ, Chimusoro O, Asekun OO. A virtual store framework model: Optimising travel route for a passenger rail operation of maintenance components using GIS. *South Afr J Ind Eng.* 2018;29(2):102-112.
19. Giannakis M, Spanaki K, Dubey R. A cloud-based supply chain management system: effects on supply chain responsiveness. *J Enterp Inf Manag.* 2019;32(4):585-607.
20. Greenhalgh T, Wherton J, Papoutsi C, Lynch J, Hughes G, Hinder S, *et al.* Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. *J Med Internet Res.* 2017;19(11):e8775.
21. Griffith DA, Boehmke B, Bradley RV, Hazen BT, Johnson AW. Embedded analytics: Improving decision support for humanitarian logistics operations. *Ann Oper Res.* 2019;283(1):247-265.
22. Hoecker J, Bernal D, Brito A, Ergonen A, Stiftinger R. These Models Need Enterprise Data Management! *J Inf Technol Educ Discuss Cases.* 2017;6:1.
23. Huggins C, Frosina N. ICT-driven projects for land governance in Kenya: disruption and e-government frameworks. *GeoJournal.* 2017;82(4):643-663.
24. Johnsen T, Howard M, Miemczyk J. Purchasing and supply chain management: A sustainability perspective. London: Routledge; 2018.
25. Kastens KA, Manduca CA. Using systems thinking in the design, implementation, and evaluation of complex educational innovations, with examples from the InTeGrate project. *J Geosci Educ.* 2017;65(3):219-230.
26. Kooblal A, Brijmohan Y. Developing a customer connectivity model for electrical utilities. In: 2017 IEEE AFRICON; 2017 Sep; Cape Town, South Africa. Piscataway (NJ): IEEE; 2017. p. 900-904.
27. Koster E, Kema J, Boreland C. Digital Foundation; providing the necessary vision and tools to enable a connected energy landscape. 2019.
28. Krajewski L, Ritzman LP, Malhotra MK. Operations management. Process. Supply Chain. Harlow: Pearson; 2019.
29. Mabo T, Swar B, Aghili S. A vulnerability study of Mhealth chronic disease management (CDM) applications (apps). In: World Conference on Information Systems and Technologies; 2018 Mar; Naples, Italy. Cham: Springer; 2018. p. 587-598.
30. McDermott T, Collopy P, Paredis C, Nadolski M. Enterprise System of Systems Model for Digital Thread Enabled Acquisition. Hoboken (NJ): Stevens Institute of Technology; 2018. Report No.: SERC2018TR082.
31. Melitski J. E-Government and Information Technology In the Public Sector Definitions, Distinctions, and Organizational Capacity. In: Public productivity handbook. Boca Raton (FL): CRC Press; 2019. p. 683-707.
32. Müller JM, Kiel D, Voigt KI. What drives the implementation of Industry 4.0? The role of opportunities and challenges in the context of sustainability. *Sustainability.* 2018;10(1):247.
33. Mulligan DK, Bamberger KA. Procurement as policy: Administrative process for machine learning. *Berkeley Tech LJ.* 2019;34:773.
34. Nowell B, Bodkin CP, Bayoumi D. Redundancy as a strategy in disaster response systems: A pathway to resilience or a recipe for disaster? *J Contingencies Crisis Manag.* 2017;25(3):123-135.
35. Nwafor MI, Stephen GOID, Uduokhai DO, Aransi AN. Socioeconomic Determinants Influencing the Affordability and Sustainability of Urban Housing in Nigeria. 2018.
36. Nwokediegwu ZS, Bankole AO, Okiye SE. Advancing interior and exterior construction design through largescale 3D printing: A comprehensive review. *IRE J.* 2019;3(1):422-449.
37. Oguntogbe EE, Farounbi BO, Okafor CM. Conceptual model for innovative debt structuring to enhance midmarket corporate growth stability. *IRE J.* 2019;2(12):451-463.
38. Oguntogbe EE, Farounbi BO, Okafor CM. Empirical review of risk-adjusted return metrics in private credit investment portfolios. *IRE J.* 2019;3(4):494-505.
39. Owulade OA, Isi LR, Okereke M, Sofoluwe O, Isaac G, Olugbemi T, *et al.* Review of Reliability Engineering Techniques to Optimize Performance and Risk Management in Energy Infrastructure. *Burns.* 2019;18.
40. Oziri ST, Seyi-Lande OB, Arowogbadamu AAG. Dynamic tariff modeling as a predictive tool for enhancing telecom network utilization and customer experience. *Iconic Res Eng J.* 2019;2(12):436-450.
41. Ranjan S, Jha VK, Pal P. Application of emerging technologies in ERP implementation in Indian manufacturing enterprises: an exploratory analysis of strategic benefits. *Int J Adv Manuf Technol.* 2017;88(1):369-380.
42. Rebentisch E, Prusak L. Integrating program management and systems engineering: Methods, tools, and organizational systems for improving performance. Hoboken (NJ): John Wiley & Sons; 2017.
43. Rikalovic A, Soares GA, Ignjatic J. Spatial analysis of logistics center location: A comprehensive approach. *Decis Making Appl Manag Eng.* 2018;1(1):38-50.
44. Sabbaghi F, Mahboubi A, Othman SH. Hybrid service for business contingency plan and recovery service as a disaster recovery framework for cloud computing. *J Soft Comput Decis Support Syst.* 2017;4(4):1-10.
45. Sáenz MJ, Revilla E, Acero B. Aligning supply chain design for boosting resilience. *Bus Horiz.* 2018;61(3):443-452.
46. Sauvola T, Kelanti M, Hyysalo J, Kuvaja P, Liukkunen K. Continuous improvement and validation with customer touchpoint model in software development. In: ICSEA 2018 The Thirteenth International Conference on Software Engineering Advances; 2018 Oct; Nice, France. IARIA; 2018.
47. Seyi-Lande OB, Oziri ST, Arowogbadamu AAG. Leveraging business intelligence as a catalyst for

strategic decision-making in emerging telecommunications markets. *Iconic Res Eng J.* 2018;2(3):92-105.

- 48. Taherkordi A, Zahid F, Verginadis Y, Horn G. Future cloud systems design: challenges and research directions. *IEEE Access.* 2018;6:74120-74150.
- 49. Taylor D, Lange J. Social Applications of Geographical Information Systems: technical tools for social innovation. In: *Population, Migration and Settlement in Australia and the Asia-Pacific.* London: Routledge; 2018. p. 45-62.
- 50. Tsai Y, Wang Z. A Remote Sensing and GIS-Enabled Highway Asset Management System Phase 2. Atlanta (GA): Georgia Dept. of Transportation; 2018. Report No.: FHWA-GA-17-1210.
- 51. Tukamuhabwa B, Stevenson M, Busby J. Supply chain resilience in a developing country context: a case study on the interconnectedness of threats, strategies and outcomes. *Supply Chain Manag.* 2017;22(6):486-505.
- 52. Ugliotti FR. BIM and Facility Management for smart data management and visualization. 2017.
- 53. Umoren O, Didi PU, Balogun O, Abass OS, Akinrinoye OV. Linking macroeconomic analysis to consumer behavior modeling for strategic business planning in evolving market environments. *IRE J.* 2019;3(3):203-213.
- 54. Wang J, Zhang W, Shi Y, Duan S, Liu J. Industrial big data analytics: challenges, methodologies, and applications. *arXiv.* 2018. arXiv:1807.01016.
- 55. Xavier GP, Kantarci B. A survey on the communication and network enablers for cloud-based services: state of the art, challenges, and opportunities. *Ann Telecommun.* 2018;73(3):169-192.
- 56. Yang T. ICT technologies standards and protocols for active distribution network. In: *Smart power distribution systems.* London: Academic Press; 2019. p. 205-230.
- 57. Yu Y, Wang X, Zhong RY, Huang GQ. E-commerce logistics in supply chain management: Implementations and future perspective in furniture industry. *Ind Manag Data Syst.* 2017;117(10):2263-2286.
- 58. Zabukovšek SS, Tominc P, Bobek S. Business informatics principles. In: *Spatonomy: Spatial exploration of economic data and methods of interdisciplinary analytics.* Cham: Springer; 2019. p. 93-118.
- 59. Zhao Y, Zhang H, An L, Liu Q. Improving the approaches of traffic demand forecasting in the big data era. *Cities.* 2018;82:19-26.