
International Journal of Multidisciplinary Research and Growth Evaluation  www.allmultidisciplinaryjournal.com  

341 

 
 

International Journal of Multidisciplinary Research and Growth Evaluation 

ISSN: 2582-7138 

Received: 06-06-2020; Accepted: 04-07-2020 

www.allmultidisciplinaryjournal.com 

Volume 1; Issue 3; July - August 2020; Page No. 341-344 

Personalized Generative Memory Models for Human-AI Co-Creation in Design Tasks 

Mohan Siva Krishna Konakanchi 

Institute of Soil Science and Agrochemistry of ANAS, Azerbaijan 

Corresponding Author: Mohan Siva Krishna Konakanchi 

DOI: https://doi.org/10.54660/.IJMRGE.2020.1.3.341-344 

Abstract 

This paper presents a comprehensive framework for 

personalized generative memory models tailored for human-

AI co-creation in design tasks. By integrating memory-

augmented generative artificial intelligence (GenAI) 

systems, the proposed approach adapts outputs based on 

long-term user interaction histories, ensuring contextual 

relevance and user-specific design alignment. A trust metric-

based federated learning (FL) frame- work is introduced to 

maintain integrity and accountability across distributed data 

silos while prioritizing user privacy. Additionally, a novel 

methodology quantifies and optimizes the trade-off between 

explainability and performance, addressing the need for 

transparent and efficient AI systems in collaborative de- sign 

environments. Extensive experiments on synthetic and real- 

world design datasets demonstrate significant improvements 

in personalization, trust, and interpretability compared to 

baseline models. The proposed framework achieves a 

balanced trade- off, enhancing user satisfaction and system 

reliability in creative domains. This work provides a scalable, 

privacy-preserving, and interpretable solution for advancing 

human-AI collaboration in design tasks. 

 

Keywords: Generative AI, Personalized Memory Models, Human-AI Co-Creation, Federated Learning, Trust Metrics, 

Explainability 

Introduction 

The advent of generative artificial intelligence (GenAI) has revolutionized creative industries, enabling human-AI co- creation 

in domains such as graphic design, architecture, and product development [1]. These systems automate repetitive tasks, augment 

human creativity, and streamline design work- flows. However, a significant limitation of conventional GenAI models is their 

lack of personalization, often producing generic outputs that fail to capture individual user preferences or contextual nuances [2]. 

This gap is particularly pronounced in collaborative design tasks, where user-specific requirements and iterative feedback are 

critical for success. 

Memory-augmented GenAI systems address this challenge by incorporating long-term user interaction histories to gen- erate 

tailored outputs [3]. By maintaining a dynamic memory bank of user preferences, feedback, and design iterations, these systems 

adapt outputs to align with individual user needs. However, deploying such systems in distributed environments introduces 

challenges related to data privacy, model integrity, and accountability [4]. Furthermore, the opaque nature of many GenAI models 

raises concerns about explainability, which is essential for fostering user trust and adoption in creative settings  [5]. 

To address these challenges, this paper proposes a novel framework for personalized generative memory models that integrates 

three key components: (1) a memory-augmented GenAI system for adaptive design generation, (2) a trust metric-based federated 

learning framework to ensure integrity and accountability across distributed silos, and (3) a method- ology to quantify and 

optimize the trade-off between explain- ability and performance. The trust metric-based FL approach leverages a novel scoring 

mechanism to evaluate local model reliability, mitigating risks such as data poisoning or model drift  [6]. The explainability-

performance optimization frame- work provides a quantifiable approach to balance transparency and efficiency, ensuring user 

trust without compromising de- sign quality. 

The contributions of this work are as follows: 

• A memory-augmented GenAI model that leverages long- term user interaction histories for personalized design outputs. 

• A trust metric-based FL framework that ensures secure, accountable, and privacy-preserving collaboration across distributed 

environments. 

• A quantifiable methodology to optimize the trade-off between explainability and performance, enhancing trans- parency in 

human-AI co-creation.
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• Comprehensive experimental validation demonstrating 

improvements in personalization, trust, and interpretabil- 

ity. 

 

The paper is organized as follows: Section II reviews related 

work, Section III details the proposed methodology, Section 

IV describes the experimental setup, Section V presents the 

results, Section VI discusses implications and limitations, and 

Section VII concludes with future directions. 

 

2. Related Work 

Memory-augmented neural networks (MANNs) have 

emerged as a powerful paradigm for tasks requiring 

contextual memory and adaptive learning [7]. Models such as 

Neural Turing Machines (NTMs) and Differentiable Neural 

Com- puters (DNCs) enable the storage and retrieval of long-

term information, making them suitable for dynamic 

environments [8]. In design tasks, MANNs have been applied 

to generate context-aware outputs, though their scalability in 

collabora- tive, distributed settings remains underexplored [9]. 

Recent advancements in transformer-based architectures 

have further  

enhanced the capabilities of memory-augmented systems, en- 

abling efficient processing of sequential user interactions [10]. 

Federated learning (FL) has gained traction as a privacy- 

preserving approach for distributed machine learning [11]. By 

training models locally on user devices and aggregating 

updates globally, FL ensures that sensitive data remains de- 

centralized [12]. However, challenges such as model drift, non-

i.i.d. data distributions, and malicious updates necessitate 

robust trust mechanisms [13]. Recent studies have proposed 

trust metrics to evaluate the reliability of local model con- 

tributions, but their application in GenAI for design tasks is 

limited [14]. Existing FL frameworks often overlook the 

unique requirements of creative domains, such as the need for 

personalization and interpretability. 

Explainability is a critical factor for user trust in AI systems, 

particularly in creative applications where users require 

insight into model decisions [15]. Techniques such as SHAP 

(SHapley Additive exPlanations) and LIME (Local 

Interpretable Model- agnostic Explanations) have been 

widely used to interpret model predictions [16]. However, 

these methods often in- cur computational overhead, leading 

to a trade-off between explainability and performance [17]. 

Prior work has yet to address this trade-off in the context of 

memory-augmented GenAI for design tasks, where 

interpretability is essential for user acceptance. 

Despite advancements, existing approaches lack a uni- fied 

framework that integrates personalization, privacy, and 

explainability in human-AI co-creation. Memory-augmented 

models often operate in centralized settings, limiting their 

applicability in distributed environments. Trust mechanisms 

in FL are underexplored in creative domains, and the 

explainability-performance trade-off remains a critical 

challenge. This paper addresses these gaps by proposing a 

compre- hensive framework that combines memory-

augmented GenAI, trust-based FL, and an explainability-

performance optimization strategy. 

 

3. Methodology 

The proposed framework integrates three core components: 

A memory-augmented GenAI model for personalized design 

generation, a trust metric-based FL system for secure  

collaboration, and an explainability-performance 

optimization module. The following subsections provide 

detailed descriptions of each component. 

 

A. Memory-Augmented GenAI Model 

The memory-augmented GenAI model is built upon a 

transformer-based architecture augmented with an external 

memory module [18]. User interaction histories, including de- 

sign prompts, feedback, and iterative refinements, are 

encoded as key-value pairs in a dynamic memory bank. The 

model employs an attention mechanism to retrieve relevant 

memo- ries, enabling context-aware design generation. The 

generation process is formalized as: 

 

P (yt|xt, Mt; ω) = softmax(fω(xt, Attn(Mt))), 

 

where yt is the generated design output, xt is the input prompt, 

Mt is the memory state, ω represents model parameters, and 

Attn denotes the attention mechanism. 

Personalization is achieved by updating the memory bank 

based on user feedback. A reinforcement learning (RL) ap- 

proach adjusts memory weights to prioritize designs that 

align with user preferences. The reward function is defined 

as: 

 

R = Σ rt(yt, ut), 

t 

 

where rt is the reward based on user feedback ut, calculated 

using a cosine similarity metric between generated and ideal 

designs. The memory update process is governed by: 

 

Mt+1 = Mt + ε · →ωR, 

 

where ε is the learning rate. 

 

To manage long-term dependencies, the memory bank em- 

ploys a decay mechanism to prioritize recent interactions 

while retaining critical historical context. This ensures that 

the model adapts to evolving user preferences without losing 

foundational knowledge. 

 

B. Trust Metric-Based Federated Learning 

The FL framework operates across distributed user devices, 

each maintaining a local memory-augmented model. To 

ensure integrity and accountability, a trust metric is 

introduced to evaluate the reliability of local model updates. 

The trust score for device i is computed as: 

 

1 

T = , 

1+ exp (↑ϑ · Acci + ϖ · Consi + ϱ · Repi) 

 

where Acci is the local model accuracy, Consi measures 

update consistency with historical updates, Repi device 

reputation based on past contributions, and hyperparameters 

tuned via cross-validation. 

 

Evaluates 

ϑ, ϖ, ϱ are 

 

Global model parameters are updated using a trust-weighted 

averaging scheme: 
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where wi is the weight based on data volume, and ωi is the 

local model update. This approach mitigates risks such as 

data poisoning and model drift while preserving user privacy 

by keeping data on local devices. 

Privacy is further enhanced through differential privacy 

techniques, adding calibrated noise to local updates to 

prevent information leakage [19]. The privacy budget is set to 

ς = 1.0, ensuring a strong privacy guarantee without 

significant performance degradation. 

 

C. Explainability-Performance Optimization 

To balance explainability and performance, a trade-off metric 

is introduced: 

 

T = φ · Perf ↑ (1 ↑ φ) · Exp, 

 

where Perf is the performance score (e.g., design quality 

based on user ratings), Exp is the explainability score (e.g., 

SHAP- based interpretability), and φ ↓ [0, 1] is a tuning 

parameter. The optimization objective is to maximize T by 

adjusting model complexity and explanation granularity. 

Explainability is achieved using SHAP values to attribute 

design decisions to specific user interactions and memory 

states. A human-readable explanation module generates sum- 

maries of model behavior, such as: 

• “The model prioritized rounded edges based on user 

feedback from iterations 3 and 5.” 

• “Color palette selection was influenced by historical 

preferences for vibrant tones.” 

 

These explanations enhance user trust and facilitate iterative 

design refinement. 

Performance is optimized by fine-tuning the transformer 

architecture and memory retrieval process. Techniques such 

as knowledge distillation and pruning reduce computational 

overhead while maintaining design quality [20]. 

 

4. Experiments 

Experiments were conducted on a combination of synthetic 

and real-world design datasets. The synthetic dataset com- 

prises interaction logs from 2,000 simulated users perform- 

ing graphic design tasks, including prompts, feedback, and 

refinements. The real-world dataset includes anonymized 

user interactions from a collaborative design platform, 

covering 500 users over six months. Models were trained on 

a cluster of NVIDIA A100 GPUs using PyTorch, with 

training durations ranging from 10 to 15 hours depending on 

dataset size. 

The following metrics were used to evaluate the framework: 

• Personalization Score (PS): Measures alignment with 

user preferences using cosine similarity between gener- 

ated and ideal designs. 

• Trust Score (TS): Evaluates the reliability of FL 

updates based on the proposed trust metric. 

• Explainability Score (ES): Quantifies interpretability 

using SHAP-based explanation coverage and user com- 

prehension ratings. 

• Performance Score (PerfS): Assesses design quality  

based on user ratings and objective metrics (e.g., 

aesthetic balance). 

• Computational Efficiency (CE): Measures training and 

inference times to evaluate scalability. 

 

The proposed framework was compared against the follow- 

ing baselines: 

• Standard Transformer: A transformer-based GenAI 

model without memory augmentation. 

• Non-Personalized GenAI: A generative model without 

user-specific adaptation. 

• Centralized FL: A federated learning approach without 

trust metrics. 

• Memory-Augmented Baseline: A memory-augmented 

model without FL or explainability optimization. 

 

Hyperparameters were tuned using grid search, with optimal 

values set to φ = 0.7, ϑ = 0.5, ϖ = 0.3, and ϱ = 0.2. 

 

Experiments were conducted in three phases: 

1. Personalization Phase: Evaluated the memory- 

augmented model’s ability to adapt to user preferences. 

2. Trust Phase: Assessed the trust metric-based FL frame- 

work’s robustness against malicious updates. 

3. Explainability Phase: Analyzed the trade-off between 

explainability and performance across different φ values. 

 

5. Results 

The proposed framework achieved a personalization score 

(PS) of 0.94 on the synthetic dataset and 0.91 on the real- 

world dataset, outperforming the standard transformer (0.79 

and 0.76) and non-personalized GenAI (0.67 and 0.64). The 

memory-augmented architecture effectively captured user 

pref- erences, with 85% of generated designs rated as “highly 

aligned” by users. 

The trust metric-based FL framework yielded a trust score 

(TS) of 0.90 on average, compared to 0.74 for centralized FL. 

Simulated malicious updates (e.g., data poisoning) were 

successfully mitigated, with the trust metric identifying 95% 

of compromised devices. Differential privacy ensured 

minimal information leakage, with a privacy loss of ς < 1.0. 

The trade-off metric T was maximized at φ = 0.7, achieving 

a performance score (PerfS) of 0.87 and an explain- ability 

score (ES) of 0.82. Baseline models exhibited lower 

explainability (0.65 for transformer, 0.58 for non-

personalized GenAI), underscoring the effectiveness of the 

proposed opti- mization strategy. User comprehension 

ratings for explanations averaged 4.2/5, indicating high 

interpretability. 

The framework maintained computational efficiency, with an 

average training time of 12 hours and inference latency of 

0.3 seconds per design. Compared to centralized FL (15 hours 

training time), the proposed approach reduced computational 

overhead by 20% through optimized memory retrieval and 

model pruning. 

On the real-world dataset, the framework demonstrated 

robustness to noisy user feedback, achieving a PS of 0.91 

compared to 0.80 for the memory-augmented baseline. The 

trust metric proved effective in handling non-i.i.d. data distri- 

butions, with a TS of 0.88 compared to 0.70 for centralized 

FL. The explainability module generated concise and 

accurate summaries, with 90% of users reporting improved 

trust in the system. 
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6. Discussion 

The results highlight the efficacy of the proposed frame- 

work in addressing personalization, trust, and explainability 

in human-AI co-creation. The memory-augmented GenAI 

model excels at capturing user preferences, producing 

designs that align closely with individual needs. The trust 

metric-based FL framework ensures secure and accountable 

collaboration, mit- igating risks in distributed environments. 

The explainability- performance optimization provides a 

practical approach to balancing transparency and efficiency, 

fostering user trust without compromising design quality. 

Despite its strengths, the framework has limitations. The 

reliance on synthetic data in some experiments may not fully 

capture real-world complexities, such as diverse user 

behaviors or domain-specific constraints. The real-world 

dataset, while valuable, was limited to graphic design tasks, 

potentially lim- iting generalizability. Additionally, the 

computational cost of SHAP-based explanations may pose 

challenges for resource- constrained devices. 

The proposed framework has significant implications for 

creative industries, enabling scalable, privacy-preserving, 

and interpretable human-AI collaboration. By addressing 

person- alization and trust, it facilitates the adoption of 

GenAI in domains such as architecture, fashion, and product 

design. The explainability module empowers users to 

understand and refine AI-generated designs, fostering a 

collaborative creative process. 

Future work will focus on the following areas: 

• Real-World Validation: Extending the framework to 

diverse real-world datasets, including multi-modal 

design tasks (e.g., text, images, 3D models). 

• Adaptive Trust Metrics: Developing dynamic trust 

met- rics that adapt to changing user behaviors and 

environ- mental factors. 

• Scalability Enhancements: Optimizing the framework 

for low-resource devices to enable broader deployment. 

• Multi-Domain Applications: Applying the framework 

to other creative domains, such as music composition 

and narrative generation. 

 

7. Conclusion 

This paper introduced a comprehensive framework for 

personalized generative memory models in human-AI co- 

creation for design tasks. The integration of memory- 

augmented GenAI, trust metric-based federated learning, and 

explainability-performance optimization addresses critical 

challenges in personalization, privacy, and interpretability. 

Experimental results demonstrate significant improvements 

in personalization (PS = 0.94), trust (TS = 0.90), and 

explainabil- ity (ES = 0.82) compared to baseline models. 

The framework achieves a balanced trade-off between 

transparency and effi- ciency, enhancing user satisfaction and 

system reliability. 

By enabling secure, personalized, and interpretable human- 

AI collaboration, this work paves the way for transformative 

applications in creative industries. The proposed framework 

offers a scalable and trustworthy solution for design tasks, 

bridging the gap between human creativity and 

computational efficiency. 

Future research will focus on real-world validation, multi- 

domain applications, and scalability enhancements. By ad- 

dressing these areas, the framework can further advance the 

field of human-AI co-creation, fostering innovative and user- 

centric design solutions. 
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