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Abstract

This paper presents a comprehensive framework for
personalized generative memory models tailored for human-
Al co-creation in design tasks. By integrating memory-
augmented generative artificial intelligence (GenAl)
systems, the proposed approach adapts outputs based on
long-term user interaction histories, ensuring contextual
relevance and user-specific design alignment. A trust metric-
based federated learning (FL) frame- work is introduced to
maintain integrity and accountability across distributed data
silos while prioritizing user privacy. Additionally, a novel
methodology quantifies and optimizes the trade-off between

explainability and performance, addressing the need for
transparent and efficient Al systems in collaborative de- sign
environments. Extensive experiments on synthetic and real-
world design datasets demonstrate significant improvements
in personalization, trust, and interpretability compared to
baseline models. The proposed framework achieves a
balanced trade- off, enhancing user satisfaction and system
reliability in creative domains. This work provides a scalable,
privacy-preserving, and interpretable solution for advancing
human-Al collaboration in design tasks.

Keywords: Generative Al, Personalized Memory Models, Human-Al Co-Creation, Federated Learning, Trust Metrics,

Explainability

Introduction

The advent of generative artificial intelligence (GenAl) has revolutionized creative industries, enabling human-Al co- creation
in domains such as graphic design, architecture, and product development [, These systems automate repetitive tasks, augment
human creativity, and streamline design work- flows. However, a significant limitation of conventional GenAl models is their
lack of personalization, often producing generic outputs that fail to capture individual user preferences or contextual nuances 2.
This gap is particularly pronounced in collaborative design tasks, where user-specific requirements and iterative feedback are

critical for success.

Memory-augmented GenAl systems address this challenge by incorporating long-term user interaction histories to gen- erate
tailored outputs 1. By maintaining a dynamic memory bank of user preferences, feedback, and design iterations, these systems
adapt outputs to align with individual user needs. However, deploying such systems in distributed environments introduces
challenges related to data privacy, model integrity, and accountability .. Furthermore, the opaque nature of many GenAl models
raises concerns about explainability, which is essential for fostering user trust and adoption in creative settings I,

To address these challenges, this paper proposes a novel framework for personalized generative memory models that integrates
three key components: (1) a memory-augmented GenAl system for adaptive design generation, (2) a trust metric-based federated
learning framework to ensure integrity and accountability across distributed silos, and (3) a method- ology to quantify and
optimize the trade-off between explain- ability and performance. The trust metric-based FL approach leverages a novel scoring
mechanism to evaluate local model reliability, mitigating risks such as data poisoning or model drift 1. The explainability-
performance optimization frame- work provides a quantifiable approach to balance transparency and efficiency, ensuring user

trust without compromising de- sign quality.
The contributions of this work are as follows:

e A memory-augmented GenAl model that leverages long- term user interaction histories for personalized design outputs.
e Atrust metric-based FL framework that ensures secure, accountable, and privacy-preserving collaboration across distributed

environments.

e A quantifiable methodology to optimize the trade-off between explainability and performance, enhancing trans- parency in

human-Al co-creation.
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e Comprehensive experimental validation demonstrating
improvements in personalization, trust, and interpretabil-

ity.

The paper is organized as follows: Section Il reviews related
work, Section Il details the proposed methodology, Section
IV describes the experimental setup, Section V presents the
results, Section VI discusses implications and limitations, and
Section VII concludes with future directions.

2. Related Work

Memory-augmented neural networks (MANNSs) have
emerged as a powerful paradigm for tasks requiring
contextual memory and adaptive learning 'l. Models such as
Neural Turing Machines (NTMs) and Differentiable Neural
Com- puters (DNCs) enable the storage and retrieval of long-
term information, making them suitable for dynamic
environments 1, In design tasks, MANNS have been applied
to generate context-aware outputs, though their scalability in
collabora- tive, distributed settings remains underexplored I,
Recent advancements in transformer-based architectures
have further

enhanced the capabilities of memory-augmented systems, en-
abling efficient processing of sequential user interactions [1%,
Federated learning (FL) has gained traction as a privacy-
preserving approach for distributed machine learning 1. By
training models locally on user devices and aggregating
updates globally, FL ensures that sensitive data remains de-
centralized ™2, However, challenges such as model drift, non-
i.i.d. data distributions, and malicious updates necessitate
robust trust mechanisms 23, Recent studies have proposed
trust metrics to evaluate the reliability of local model con-
tributions, but their application in GenAl for design tasks is
limited 4, Existing FL frameworks often overlook the
unigue requirements of creative domains, such as the need for
personalization and interpretability.

Explainability is a critical factor for user trust in Al systems,
particularly in creative applications where users require
insight into model decisions %1, Techniques such as SHAP
(SHapley Additive exPlanations) and LIME (Local
Interpretable Model- agnostic Explanations) have been
widely used to interpret model predictions 26, However,
these methods often in- cur computational overhead, leading
to a trade-off between explainability and performance 11,
Prior work has yet to address this trade-off in the context of
memory-augmented GenAl for design tasks, where
interpretability is essential for user acceptance.

Despite advancements, existing approaches lack a uni- fied
framework that integrates personalization, privacy, and
explainability in human-Al co-creation. Memory-augmented
models often operate in centralized settings, limiting their
applicability in distributed environments. Trust mechanisms
in FL are underexplored in creative domains, and the
explainability-performance trade-off remains a critical
challenge. This paper addresses these gaps by proposing a
compre- hensive framework that combines memory-
augmented GenAl, trust-based FL, and an explainability-
performance optimization strategy.

3. Methodology

The proposed framework integrates three core components:
A memory-augmented GenAl model for personalized design
generation, a trust metric-based FL system for secure
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collaboration, and an explainability-performance
optimization module. The following subsections provide
detailed descriptions of each component.

A. Memory-Augmented GenAl Model

The memory-augmented GenAl model is built upon a
transformer-based architecture augmented with an external
memory module 8], User interaction histories, including de-
sign prompts, feedback, and iterative refinements, are
encoded as key-value pairs in a dynamic memory bank. The
model employs an attention mechanism to retrieve relevant
memo- ries, enabling context-aware design generation. The
generation process is formalized as:

P (yi|x, Mi; @) = softmax(f,(x, Attn(My))),

where v is the generated design output, x is the input prompt,
M is the memory state, w represents model parameters, and
Attn denotes the attention mechanism.

Personalization is achieved by updating the memory bank
based on user feedback. A reinforcement learning (RL) ap-
proach adjusts memory weights to prioritize designs that
align with user preferences. The reward function is defined
as:

R =X ri(ys W),
t

where r is the reward based on user feedback u;, calculated
using a cosine similarity metric between generated and ideal
designs. The memory update process is governed by:

Mu1 =M+ & - —4R,
where ¢ is the learning rate.

To manage long-term dependencies, the memory bank em-
ploys a decay mechanism to prioritize recent interactions
while retaining critical historical context. This ensures that
the model adapts to evolving user preferences without losing
foundational knowledge.

B. Trust Metric-Based Federated Learning

The FL framework operates across distributed user devices,
each maintaining a local memory-augmented model. To
ensure integrity and accountability, a trust metric is
introduced to evaluate the reliability of local model updates.
The trust score for device i is computed as:

1
T=1,
1+ exp (13 - Acci + @ - Cons; + ¢ - Repi)

where Acc; is the local model accuracy, Cons; measures
update consistency with historical updates, Repi device
reputation based on past contributions, and hyperparameters
tuned via cross-validation.

Evaluates
3, @, o are

Global model parameters are updated using a trust-weighted
averaging scheme:
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w =N w T w,
t+1 Poii
=1

where w; is the weight based on data volume, and w; is the
local model update. This approach mitigates risks such as
data poisoning and model drift while preserving user privacy
by keeping data on local devices.

Privacy is further enhanced through differential privacy
techniques, adding calibrated noise to local updates to
prevent information leakage [*°1. The privacy budget is set to
¢ = 1.0, ensuring a strong privacy guarantee without
significant performance degradation.

C. Explainability-Performance Optimization
To balance explainability and performance, a trade-off metric
is introduced:

T=¢ - Perft (11 ¢)-Exp,

where Perf is the performance score (e.g., design quality
based on user ratings), Exp is the explainability score (e.g.,
SHAP- based interpretability), and ¢ | [0, 1] is a tuning
parameter. The optimization objective is to maximize T by
adjusting model complexity and explanation granularity.
Explainability is achieved using SHAP values to attribute
design decisions to specific user interactions and memory
states. A human-readable explanation module generates sum-
maries of model behavior, such as:
- “The model prioritized rounded edges based on user
feedback from iterations 3 and 5.”
- “Color palette selection was influenced by historical
preferences for vibrant tones.”

These explanations enhance user trust and facilitate iterative
design refinement.

Performance is optimized by fine-tuning the transformer
architecture and memory retrieval process. Techniques such
as knowledge distillation and pruning reduce computational
overhead while maintaining design quality 2%,

4. Experiments

Experiments were conducted on a combination of synthetic

and real-world design datasets. The synthetic dataset com-

prises interaction logs from 2,000 simulated users perform-
ing graphic design tasks, including prompts, feedback, and
refinements. The real-world dataset includes anonymized
user interactions from a collaborative design platform,
covering 500 users over six months. Models were trained on

a cluster of NVIDIA A100 GPUs using PyTorch, with

training durations ranging from 10 to 15 hours depending on

dataset size.

The following metrics were used to evaluate the framework:

e Personalization Score (PS): Measures alignment with
user preferences using cosine similarity between gener-
ated and ideal designs.

e Trust Score (TS): Evaluates the reliability of FL
updates based on the proposed trust metric.

e Explainability Score (ES): Quantifies interpretability
using SHAP-based explanation coverage and user com-
prehension ratings.

e Performance Score (PerfS): Assesses design quality
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based on user ratings and objective metrics (e.g.,
aesthetic balance).

e Computational Efficiency (CE): Measures training and
inference times to evaluate scalability.

The proposed framework was compared against the follow-

ing baselines:

e Standard Transformer: A transformer-based GenAl
model without memory augmentation.

e Non-Personalized GenAl: A generative model without
user-specific adaptation.

e Centralized FL: A federated learning approach without
trust metrics.

¢ Memory-Augmented Baseline: A memory-augmented
model without FL or explainability optimization.

Hyperparameters were tuned using grid search, with optimal
values setto ¢ =0.7,9=0.5,w=0.3,and ¢ = 0.2.

Experiments were conducted in three phases:

1. Personalization Phase: Evaluated the memory-
augmented model’s ability to adapt to user preferences.

2. Trust Phase: Assessed the trust metric-based FL frame-
work’s robustness against malicious updates.

3. Explainability Phase: Analyzed the trade-off between
explainability and performance across different ¢ values.

5. Results

The proposed framework achieved a personalization score
(PS) of 0.94 on the synthetic dataset and 0.91 on the real-
world dataset, outperforming the standard transformer (0.79
and 0.76) and non-personalized GenAl (0.67 and 0.64). The
memory-augmented architecture effectively captured user
pref- erences, with 85% of generated designs rated as “highly
aligned” by users.

The trust metric-based FL framework yielded a trust score
(TS) of 0.90 on average, compared to 0.74 for centralized FL.
Simulated malicious updates (e.g., data poisoning) were
successfully mitigated, with the trust metric identifying 95%
of compromised devices. Differential privacy ensured
minimal information leakage, with a privacy loss of ¢ < 1.0.
The trade-off metric T was maximized at ¢ = 0.7, achieving
a performance score (PerfS) of 0.87 and an explain- ability
score (ES) of 0.82. Baseline models exhibited lower
explainability (0.65 for transformer, 0.58 for non-
personalized GenAl), underscoring the effectiveness of the
proposed opti- mization strategy. User comprehension
ratings for explanations averaged 4.2/5, indicating high
interpretability.

The framework maintained computational efficiency, with an
average training time of 12 hours and inference latency of
0.3 seconds per design. Compared to centralized FL (15 hours
training time), the proposed approach reduced computational
overhead by 20% through optimized memory retrieval and
model pruning.

On the real-world dataset, the framework demonstrated
robustness to noisy user feedback, achieving a PS of 0.91
compared to 0.80 for the memory-augmented baseline. The
trust metric proved effective in handling non-i.i.d. data distri-
butions, with a TS of 0.88 compared to 0.70 for centralized
FL. The explainability module generated concise and
accurate summaries, with 90% of users reporting improved
trust in the system.
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6. Discussion
The results highlight the efficacy of the proposed frame-
work in addressing personalization, trust, and explainability
in human-Al co-creation. The memory-augmented GenAl
model excels at capturing user preferences, producing
designs that align closely with individual needs. The trust
metric-based FL framework ensures secure and accountable
collaboration, mit- igating risks in distributed environments.
The explainability- performance optimization provides a
practical approach to balancing transparency and efficiency,
fostering user trust without compromising design quality.
Despite its strengths, the framework has limitations. The
reliance on synthetic data in some experiments may not fully
capture real-world complexities, such as diverse user
behaviors or domain-specific constraints. The real-world
dataset, while valuable, was limited to graphic design tasks,
potentially lim- iting generalizability. Additionally, the
computational cost of SHAP-based explanations may pose
challenges for resource- constrained devices.

The proposed framework has significant implications for

creative industries, enabling scalable, privacy-preserving,

and interpretable human-Al collaboration. By addressing
person- alization and trust, it facilitates the adoption of

GenAl in domains such as architecture, fashion, and product

design. The explainability module empowers users to

understand and refine Al-generated designs, fostering a

collaborative creative process.

Future work will focus on the following areas:

e Real-World Validation: Extending the framework to
diverse real-world datasets, including multi-modal
design tasks (e.g., text, images, 3D models).

e Adaptive Trust Metrics: Developing dynamic trust
met- rics that adapt to changing user behaviors and
environ- mental factors.

e Scalability Enhancements: Optimizing the framework
for low-resource devices to enable broader deployment.

e Multi-Domain Applications: Applying the framework
to other creative domains, such as music composition
and narrative generation.

7. Conclusion

This paper introduced a comprehensive framework for
personalized generative memory models in human-Al co-
creation for design tasks. The integration of memory-
augmented GenAl, trust metric-based federated learning, and
explainability-performance optimization addresses critical
challenges in personalization, privacy, and interpretability.
Experimental results demonstrate significant improvements
in personalization (PS = 0.94), trust (TS = 0.90), and
explainabil- ity (ES = 0.82) compared to baseline models.
The framework achieves a balanced trade-off between
transparency and effi- ciency, enhancing user satisfaction and
system reliability.

By enabling secure, personalized, and interpretable human-
Al collaboration, this work paves the way for transformative
applications in creative industries. The proposed framework
offers a scalable and trustworthy solution for design tasks,
bridging the gap between human creativity and
computational efficiency.

Future research will focus on real-world validation, multi-
domain applications, and scalability enhancements. By ad-
dressing these areas, the framework can further advance the
field of human-Al co-creation, fostering innovative and user-
centric design solutions.
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