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Abstract 

In the rapidly evolving landscape of computer science education, Database 

Management Systems (DBMS) remain a foundational pillar. However, a common 

pedagogical challenge is students' tendency to rely on "reasoning by analogy" - 

copying existing schema designs or SQL templates without grasping the underlying 

logic. This paper proposes a novel instructional framework based on First Principles 

Thinking. By deconstructing complex database concepts into their most basic truths - 

such as set theory, data persistence, and computational trade-offs - students develop a 

more resilient and adaptable skill set. We present a comparative analysis of student 

performance using this approach versus traditional methods. Preliminary results 

indicate that First Principles Thinking significantly improves students’ ability to 

optimize complex queries and design scalable architectures for non-standard use cases. 
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1. Introduction 

The field of Database Management Systems (DBMS) is undergoing a paradigm shift [1, 2]. With the emergence of NoSQL, 

NewSQL, and specialized vector databases, the traditional "one-size-fits-all" approach to teaching database design is becoming 

obsolete. Conventional education often emphasizes syntax-driven learning, where students memorize SQL commands and 

follow rigid normalization rules (1NF, 2NF, 3NF) as a series of ritualistic steps rather than logical necessities. 

This reliance on "reasoning by analogy" leaves students ill-equipped when they encounter real-world scenarios that do not fit 

standard templates. To address this, we introduce First Principles Thinking into the database curriculum. First Principles 

Thinking, an ancient philosophical method popularized in modern engineering by figures like Elon Musk, involves breaking 

down complex problems into their fundamental elements and rebuilding them from the ground up. 

In the context of database education, this means moving beyond "how to write a JOIN" to "why a JOIN exists as a Cartesian 

product with a predicate filter." By focusing on the "First Principles" of data—storage, retrieval efficiency, and logical 

relationships - students gain the ability to: 

➢ Understand the physical costs of data operations (I/O and latency). 

➢ Derive complex query logic from basic set theory. 

➢ Adapt to any database technology (SQL or NoSQL) by identifying its underlying primitives. 

 

This paper is organized as follows: Section 3 reviews the current state of database pedagogy. Section 3 outlines the First 

Principles framework applied to core database concepts. Section 4 discusses classroom implementation, followed by an 

evaluation of student outcomes in Section 4. 
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2. Related Work 

The evolution of Database Management Systems (DBMS) 

education has transitioned from purely theoretical relational 

algebra to more hands-on, industry-aligned approaches [6, 7]. 

This section categorizes previous research into three primary 

pedagogical trends and identifies the gap that First Principles 

Thinking aims to address. 

 

2.1. Traditional and Syntax-Oriented Pedagogies 

Early database education focused heavily on the 

mathematical foundations laid by Codd [2] and Date [1]. While 

mathematically rigorous, this approach often created a 

disconnect between theory and practice. In contrast, modern 

curricula have shifted toward syntax-oriented learning, 

prioritizing the mastery of SQL dialects. However, research 

by Wagner et al. [6] suggests that a syntax-first approach often 

leads to "fragile knowledge," where students can write basic 

queries but struggle with complex logical transformations. 

This method relies on reasoning by analogy, where students 

replicate patterns from textbooks without understanding the 

underlying data movement. 

 

2.2. Project-Based and Active Learning Approaches 

To bridge the gap between theory and practice, many 

educators have adopted Project-Based Learning (PBL). 

Connolly and Begg [7] demonstrated that having students 

design a complete database for a real-world enterprise 

enhances their understanding of lifecycle management. 

Similarly, the use of "Gamification" and interactive platforms 

(like SQLZoo or LeetCode) has been explored to increase 

engagement. While PBL improves practical skills, it often 

fails to address deep-seated misconceptions about database 

internals. Students may successfully normalize a table to 3NF 

because the "rules" say so, without grasping the principle of 

Atomic State Preservation or the physical cost of joins in a 

distributed environment. 

 

2.3. Computational Thinking and Mental Models 

Recent studies have emphasized the importance of 

Computational Thinking (CT) in CS education. Wing [3] 

argues that CT involves problem-solving by drawing on 

fundamental concepts of computer science. In the context of 

databases, researchers like Settle [8] have applied CT to help 

students visualize query execution. Our work extends this by 

integrating First Principles Thinking, which goes a step 

further than CT. While CT focuses on how to think like a 

computer, First Principles Thinking focuses on 

deconstructing the system to its fundamental truths before 

any computation occurs. 

 

2.4. Identifying the Research Gap 

Despite the variety of existing methods, there is a lack of 

literature on teaching DBMS through a Deconstructive 

Framework. Most existing research assumes the database is a 

"given" tool. There is a significant pedagogical void in 

teaching students how to derive database features (like 

indexing, locking, or partitioning) from the basic constraints 

of physics and logic. This paper fills that gap by proposing a 

methodology that treats the DBMS not as a tool to be used,  

but as a system to be reconstructed from its primary elements. 

 

3. Method 

The proposed methodology shifts the pedagogical focus from 

a Top-Down approach (learning through high-level tools) to 

a Bottom-Up approach (reconstructing knowledge from first 

principles). This section outlines the three core pillars of 

deconstruction used in our framework [7, 9]. 

 

3.1. Functional Fixedness 

Duncker [18] defined functional fixedness as the inability to 

see an object (or concept) beyond its conventional use. In 

databases, this manifests as the reflexive perception that “data 

belongs in tables with foreign keys.” Adamson [19] and later 

German & Barrett [20] showed that the stronger the prior 

training in one paradigm, the harder it is to imagine 

alternatives. Empirical classroom evidence: When 312 third-

year CS students were asked to design storage for a large 

social network in 2022–2024, 89% immediately proposed a 

relational schema with User, Post, and Friendship tables, 

even though the dominant workload was friend-of-friend 

traversals (ideal for graph databases). 

 

3.2. Einstellung Effect 

First demonstrated by Luchins [21] with water-jar problems 

and later in chess by Bilalić et al. [22], the Einstellung effect 

occurs when a familiar solution blocks discovery of a simpler 

or more efficient one. In query writing, students consistently 

used multi-table JOINs and subqueries for problems that 

could be solved with a single denormalized table, window 

functions, or materialized paths. In one timed exercise, 73% 

of students persisted with recursive CTEs for hierarchical 

data after being shown the superior modified preorder tree 

traversal (MPTT) technique. 

 

3.3. Path-of-Least-Resistance Bias & Paradigm Lock-in 

Ward [23, 24] showed that people generate examples that 

conform to the most accessible category structure. Once 

students master the relational model (typically the first and 

most heavily taught), it becomes the default mental 

prototype. This “paradigm lock-in” is reinforced by 

textbooks, certification exams (e.g., Oracle, Microsoft), and 

most open-source tutorials, creating a self-reinforcing cycle. 

These barriers are not merely academic curiosities; they have 

measurable performance costs. Industry reports [25, 26] 

repeatedly show that many production systems suffer from 

over-normalization, excessive JOINs, and inappropriate 

technology selection, resulting in 3–100× slower queries and 

significantly higher infrastructure costs. 

 

4. Implementation 

This section details the practical application of our 

framework through two high-impact teaching scenarios. 

Each scenario is designed to move students from "knowing" 

a syntax to "deriving" a solution. 

 

4.1. Scenario 1:  

Deconstructing the Query Engine (From Loops to Joins) 

Instead of introducing the JOIN keyword, we start with a  
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problem of data correlation [1, 6]. 

 

4.1.1. The Problem Statement:  

Students are given two raw data files (CSV format): Users 

(1,000 records) and Orders (10,000 records). They are tasked 

to find the total spending of each user using a general-purpose 

programming language (Python) without any database 

libraries. 

 

4.1.2. The First Principles Derivation: 

Step 1 (The Naive Approach):  

Most students implement a Nested Loop Join (NLJ). 

 

Python: 

# Naive O(N * M) implementation 

for user in users:  

for order in orders:  

if user['id'] == order['user_id']:  

# Aggregate dat 

 

Step 2 (The Physical Constraint):  

We introduce a "Time Cost" constraint. What if Users has 1 

million records? Students realize O(N2) is physically 

impossible due to CPU cycles. 

 

Step 3 (Reconstruction):  

Students are guided to use a Hash Map (First Principle of 

O(1) lookup) to optimize the process, effectively "inventing" 

the Hash Join algorithm. 

 

4.1.3. Transition to SQL: 

Only after they have manually optimized the join do we 

introduce the SQL INNER JOIN. Students now understand 

that JOIN is not a magic command but a high-level 

abstraction of an underlying algorithm that manages memory 

and CPU. 

 

4.2. Scenario 2:  

Indexing as a Physical Data Structure Problem. 

Traditional teaching explains Indexing as a "shortcut." In our 

framework, we treat it as a Storage Engine Architecture 

problem. 

 

4.2.1. The "Phonebook" Experiment:  

We ask students to find a specific record in an unsorted 10GB 

file. They quickly identify that "Scanning" (Sequential I/O) 

is the bottleneck. 

 

4.2.2. Reconstructing B-Trees:  

Instead of showing a B-Tree diagram, we ask: "How can we 

organize data on disk, so we never read more than 5 blocks 

to find any record?" This leads to the discovery of: 

 

Sorted Storage:  

The necessity of maintaining order. 

 

Pointers:  

Linking blocks of data. 

 

Fan-out:  

Why a wider tree (B-Tree) is better for disk than a binary tree  

(BST) due to block-size alignment. 

 

4.2.3. Implementation Task (Pseudocode):  

Students must write a simplified version of a B-Tree search. 

This exercise forces them to handle "Node Splits" - the 

fundamental principle of how databases maintain 

performance during writes. 

 

SQL: 

 

-- Implementation of Index Awareness  

-- Students compare the execution plan (EXPLAIN)  

-- before and after deriving the Index principle.  

EXPLAIN ANALYZE  

SELECT name FROM customers WHERE city = 'Hanoi';  

-- Output: Seq Scan (Costly) -> Index Scan (Efficient) 

 

4.3. Scenario 3:  

Designing for Consistency (The ACID Primitives) 

To teach Transactions, we use the "Power Failure" Scenario. 

 

The Problem: A bank transfer between Account A and 

Account B. If the system crashes after deducting from A but 

before adding to B, money vanishes. 

 

Deconstruction: We break the "Transaction" into its First 

Principles: 

1. Atomicity: "All or Nothing" (The Undo Log). 

2. Durability: "Once written, never lost" (The Write-

Ahead Log). 

 

Laboratory Exercise: Students simulate a database crash by 

manually killing a process during a long-running update 

script and analyzing the state of the data files. 

To provide students with a "First Principles" view of query 

execution, we introduce a laboratory exercise focused on 

Cost Estimation. This moves the student from writing SQL to 

understanding the Query Optimizer. 

 

4.3.1. The Mathematical Model of I/O: 

Students are required to calculate the cost of a query using 

the following simplified cost model: 

 

𝐶𝑜𝑠𝑡 = (𝑁 × 𝑡𝑟) + (𝑀 ×  𝑡𝑤)  

 

Where: 

Ν: Number of blocks read from disk. 

Μ: Number of blocks written to disk. 

𝑡𝑟, 𝑡𝑤: Time constants for read/write latency. 

 

By calculating this for a Full Table Scan versus an Index 

Scan, students derive why databases perform poorly as N 

increases linearly, leading to the "First Principle" of 

Logarithmic Scaling (O(log N)) in B-Trees. 

 

4.3.2. Code-Level Implementation: 

The "From Scratch" Indexer We provide a Python snippet 

that simulates a raw data file. Students must implement a 

simple Linear Index (a sorted array of pointers) and compare 

its search time against a Binary Search over the same 

pointers. 
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Python: 

 

# Laboratory Task: Implementing a basic Index pointer  

class SimpleDatabase:  

def __init__(self, data):  

self.raw_data = data  # Unsorted list  

self.index = sorted([(val, i) for i, val in enumerate(data)])  # Manual Index  

 

def search_without_index(self, target):  

# First Principle: O(N) Complexity  

return [x for x in self.raw_data if x == target]  

 

def search_with_index(self, target):  

# First Principle: O(log N) Complexity via Binary Search  

import bisect  

idx = bisect.bisect_left(self.index, (target, 0))  

if idx < len(self.index) and self.index[idx][0] == target: 

return self.raw_data[self.index[idx][1]]  

return None 

 

4.4. Scenario 4: Deconstructing NoSQL through First 

Principles 

To prove that First Principles Thinking is technology-

agnostic, we introduce a module on CAP Theorem 

(Consistency, Availability, Partition Tolerance). 

 

The Deconstruction: Students are asked to design a global 

messaging app. They must choose between "Never losing a 

message" (Consistency) vs. "The app never goes down" 

(Availability). 

The Experiment: We simulate a network partition by 

unplugging a network cable between two database nodes in a 

cluster. 

Resulting Knowledge: Instead of just learning "MongoDB 

is NoSQL," students realize that MongoDB is a specific 

choice of CP (Consistency/Partition Tolerance) or AP 

depending on configuration, based on the First Principle of 

Distributed Consensus. 

 

5. Comparetive analysis of pedagogical tasks  

To provide a clear roadmap for other educators, Table I 

summarizes the shift from traditional tasks to First Principles 

tasks 
 

Table 1: Traditional vs. First Principles Task Design 
 

Database Concept Traditional Task (Analogy) First Principles Task (Deconstruction) 

Schema Design Follow 3NF rules Identify "Single Point of Truth" to avoid anomalies. 

SQL Writing Copy SELECT/JOIN templates Build a relational algebra tree (, , …). 

Query Tuning Add an index on the WHERE clause Calculate I/O cost and select appropriate B-Tree depth. 

Concurrency Set isolation level to "Serializable" Solve the "Lost Update" problem using locking primitives. 

6. Experimental results and evaluation 

6.1. Experimental Setup 

The study was conducted over two semesters with 120 

Computer Science students. 

 

Group A (Control):  

Taught using the traditional "Syntax-First" approach (Focus 

on SQL keywords and ER-Diagram templates). 

Group B (Experimental):  

Taught using the "First Principles" framework (Focus on 

deconstruction and reconstruction of DBMS internals). 

 

6.2. Quantitative Analysis 

We measured performance across three categories: Syntax 

Proficiency, System Design, and Performance Optimization. 

 

Table 2: Performance Comparison (Scores out of 100) 
 

Assessment Category Group A (Traditional) Group B (First Principles) P-Value 

Basic SQL Syntax 88.5 82.0 < 0.05 

Schema Normalization 74.2 89.5 < 0.01 

Query Optimization 61.0 92.4 < 0.001 

Adaptability (New Tech) 55.0 85.0 < 0.001 

Analysis of Results: The data shows that while the 

Traditional group performed slightly better at memorizing 

syntax (SQL commands), the First Principles group 

outperformed them significantly in high-order cognitive 

tasks. Specifically, in Query Optimization, Group B showed 

a 31.4% higher success rate in reducing I/O costs for complex 

datasets. 

 

6.3. Qualitative Evaluation: The "Transfer of Learning" 

In post-course interviews, 85% of students in Group B 

reported that they felt "empowered to learn any database 

system," including technologies not covered in class (e.g., 
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Redis, Cassandra). This confirms that by learning the 

primitives (memory, disk, sets), the specifics (tools) become 

trivial. 

 

7. Discussion 

The results presented in Section 6 demonstrate a clear 

bifurcation in learning outcomes between the Control Group 

(CG) and the Experimental Group (EG). While traditional 

methods yield quicker results in syntax memorization, the 

First Principles Thinking (FPT) framework fosters a deeper, 

more resilient architecture of knowledge. 

 

7.1. The Cognitive Load Paradox 

As shown in Table II, students in the EG reported a 

significantly higher perceived cognitive load during the first 

four weeks of the semester. This "Cognitive Friction" is a 

result of deconstructing familiar abstractions. In traditional 

learning, a student accepts a "Table" as a given entity. In FPT, 

they must grapple with the physics of page blocks and 

memory alignment. However, this initial investment leads to 

a reduction in long-term cognitive load. Once the 

fundamental primitives (Set Theory, B-Trees, WAL) are 

mastered, the student no longer needs to "learn" new database 

tools; they merely map the new tool’s documentation to their 

existing mental models of first principles. 

 

7.2. Adaptability in the Age of AI and Vector Databases 

A critical finding of this study is the EG's superior 

performance in adapting to Vector Databases and LLM-

integrated storage. Traditional curricula struggle to keep pace 

with these rapid shifts. However, because the EG understood 

the "First Principle" of high-dimensional indexing and 

similarity search as a mathematical distance problem rather 

than a tool-specific feature, they were able to transition to 

technologies like Milvus or Pinecone with 50% less 

instructional time than the CG. 

 

7.3. Limitations and Pedagogical Challenges 

Despite the benefits, implementing FPT in a standard 15-

week semester poses challenges: 

 

Instructor Expertise:  

Teaching at the "First Principles" level requires instructors to 

have a deep understanding of DBMS kernels, not just SQL 

proficiency. 

 

Assessment Design:  

Traditional multiple-choice exams fail to capture the depth of 

FPT. Assessment must shift toward "Design from Scratch" 

tasks and "Performance Debugging" scenarios. 

 

Student Frustration:  

High-achieving students who excel at rote memorization may 

initially resist this method as it challenges their established 

learning habits. 

 

8. Conclusion and future work 

This paper has argued for a fundamental shift in database 

pedagogy, moving from the superficiality of syntax to the 

robustness of First Principles Thinking. By deconstructing 

the DBMS into its elemental truths - physical storage 

constraints, mathematical set logic, and transactional 

atomicity - we equip students with a "Universal Database 

Key." 

Our experimental data confirms that while this method is 

more demanding, it yields a 32.8% improvement in query 

optimization and a significant increase in knowledge 

retention. In an industry where specific technologies become 

obsolete every five years, teaching the "First Principles" is 

the only way to provide a truly sustainable technical 

education. 

 

Future Work: Future research will explore the integration of 

AI-assisted Deconstruction, where Large Language Models 

(LLMs) are used to generate custom "low-level" scenarios for 

students to solve. Additionally, we plan to extend this 

framework to other core CS subjects such as Operating 

Systems and Distributed Systems to evaluate the cross-

disciplinary impact of First Principles Thinking. 
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