

International Journal of Multidisciplinary Research and Growth Evaluation.

Multidimensional Framework for Strengthening Infection Prevention and Control (IPC) Compliance in Tertiary Hospitals

Toritsemogba Tosanbami Omaghomi ^{1*}, **Mary Fapohunda** ², **Victoria Sharon Akinlolu** ³

¹ Independent Researcher Lagos, Nigeria

² College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA

³ Independent Researcher, Nigeria

* Corresponding Author: **Toritsemogba Tosanbami Omaghomi**

Article Info

ISSN (online): 2582-7138

Volume: 03

Issue: 06

November- December 2022

Received: 22-09-2022

Accepted: 26-10-2022

Page No: 888-896

Abstract

Healthcare-associated infections (HAIs) remain a significant cause of morbidity, mortality, and healthcare costs in tertiary hospitals, particularly in low- and middle-income settings where infection prevention and control (IPC) practices are inconsistently applied. Despite the availability of international and national IPC guidelines, compliance among healthcare workers is often suboptimal due to structural, behavioral, and organizational challenges. This proposes a multidimensional framework designed to strengthen IPC compliance in tertiary hospitals by addressing governance, workforce behavior, infrastructure, monitoring systems, and community engagement in an integrated manner. The framework emphasizes a systems-level approach, highlighting the interactions among hospital leadership, clinical staff, patients, and ancillary services. Policy and governance components provide legal mandates, protocols, and oversight mechanisms to ensure adherence, while workforce development focuses on continuous training, competency assessment, and behavioral interventions to promote a culture of safety. Infrastructure and resource management ensure the availability of personal protective equipment, hand hygiene facilities, sterilization equipment, and isolation rooms necessary for effective IPC. Monitoring and evaluation are facilitated through digital and paper-based systems, enabling real-time compliance tracking, feedback loops, and data-driven decision-making. Patient and community engagement further reinforce IPC practices by raising awareness, reducing infection-related stigma, and encouraging active participation in preventive measures. Implementation strategies include pilot testing, capacity building, strategic partnerships, phased scaling, and continuous evaluation, ensuring that the framework is both contextually appropriate and sustainable. By integrating these components, the framework provides a structured and actionable roadmap for tertiary hospitals seeking to enhance IPC compliance and reduce the incidence of HAIs. This multidimensional approach offers a practical pathway to improve healthcare quality, patient safety, and operational efficiency, addressing both systemic and human factors that influence IPC adherence.

DOI: <https://doi.org/10.54660/IJMRGE.2022.3.6.888-896>

Keywords: Infection prevention and control, healthcare-associated infections, tertiary hospitals, compliance, systems-level framework, workforce training, monitoring and evaluation, patient engagement

1. Introduction

Healthcare-associated infections (HAIs) remain a major public health concern worldwide, significantly impacting patient safety, healthcare outcomes, and the economic efficiency of health systems (Umoren, 2021; Lawoyin *et al.*, 2021). Globally, an estimated hundreds of millions of patients acquire infections during the course of healthcare delivery each year, with a disproportionate burden in low- and middle-income countries where infrastructure, workforce, and infection prevention resources are limited (Isa *et al.*, 2021; Merotiwon *et al.*, 2021). HAIs contribute to prolonged hospital stays, increased antimicrobial use, higher treatment costs, and elevated morbidity and mortality rates. In tertiary hospital settings, which serve as

referral centers for complex medical and surgical cases, the risk of HAIs is especially pronounced due to high patient turnover, invasive procedures, critical care requirements, and the presence of immunocompromised individuals (Ezeh *et al.*, 2021; Akindemowo *et al.*, 2021). Effective infection prevention and control (IPC) is therefore essential not only to protect patients and healthcare workers but also to reduce financial and operational burdens associated with HAIs (Yetunde *et al.*, 2021; Anichukwueze *et al.*, 2021).

Despite the availability of international and national IPC guidelines, adherence remains inconsistent in many tertiary hospitals. Studies have documented frequent gaps in hand hygiene, sterilization practices, environmental cleaning, and isolation protocols. These gaps are often attributed to limited enforcement mechanisms, insufficient training, inadequate supervision, and resource constraints, resulting in variable compliance across hospital departments and professional cadres (Okafor *et al.*, 2021; Abdulsalam *et al.*, 2021). The absence of systematic monitoring and feedback exacerbates these challenges, contributing to preventable HAIs and undermining confidence in healthcare delivery (Farounbi *et al.*, 2021; Osabuohien *et al.*, 2021).

The complexity of tertiary hospital operations further compounds the difficulty of achieving high IPC compliance. Multiple points of infection risk exist across diverse hospital areas, including surgical wards, intensive care units, laboratories, and outpatient departments (Jimoh and Owolabi, 2021; Ejibenam *et al.*, 2021). The interaction of multidisciplinary teams, high patient volumes, and complex care pathways creates numerous opportunities for lapses in IPC practices. Fragmented strategies, where IPC policies, training, and monitoring operate in silos, result in inconsistent adherence and variable implementation fidelity. Moreover, behavioral factors, such as staff knowledge, attitudes, risk perception, and organizational culture, interact with structural determinants, including infrastructure, supply availability, and workflow design, influencing compliance outcomes (Farounbi and Abdulsalam, 2021; Filani *et al.*, 2021).

These challenges highlight the need for a comprehensive, multidimensional approach that addresses IPC determinants at structural, behavioral, and policy levels. A systems-level framework is necessary to integrate governance, resource allocation, workforce training, standardized protocols, monitoring systems, and stakeholder engagement in a coordinated manner (Awe, 2021; Halliday, 2021). Such a framework ensures that IPC interventions are not implemented in isolation but function synergistically to enhance adherence, minimize infection risks, and promote a culture of safety across the hospital (Ajayi and Akanji, 2021; Egemba *et al.*, 2021).

The primary objective of this is to develop a structured, multidimensional framework for enhancing IPC compliance in tertiary hospitals. The framework is designed to integrate critical elements, including policy and governance, infrastructure and resource management, workforce behavior and training, service delivery protocols, and monitoring and evaluation mechanisms. Secondary objectives include ensuring that IPC strategies are sustainable, scalable across departments, culturally sensitive, and adaptable to varying institutional contexts. By providing a cohesive approach, the framework aims to strengthen early identification and mitigation of infection risks, optimize patient safety, and improve overall healthcare outcomes.

The global and regional burden of HAIs, coupled with persistent gaps in IPC compliance, underscores the urgent need for structured interventions in tertiary hospital settings. A multidimensional, systems-level framework that addresses policy, infrastructure, workforce, and monitoring requirements offers a strategic pathway to improve adherence, reduce infection rates, and enhance operational efficiency (Wegner *et al.*, 2021; Hungbo *et al.*, 2021). By adopting such a framework, tertiary hospitals can implement sustainable, scalable, and culturally appropriate IPC interventions that protect patients, support healthcare workers, and contribute to broader health system resilience.

2. Methodology

This study employed a systematic review methodology following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to inform the development of a multidimensional framework for strengthening infection prevention and control (IPC) compliance in tertiary hospitals. A structured search was conducted across electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar, covering publications from 2010 to 2025. Search terms included "infection prevention and control," "healthcare-associated infections," "tertiary hospitals," "compliance," "framework," and "multidimensional approach," with Boolean operators and truncations applied to enhance precision. Reference lists of key studies were also screened to capture additional relevant literature.

Studies were included if they addressed IPC strategies, compliance interventions, policy implementation, workforce training, monitoring systems, or organizational approaches in tertiary or high-volume hospital settings. Exclusion criteria comprised studies focusing exclusively on community health settings, single disease interventions unrelated to IPC, or high-resource settings without generalizable insights for resource-constrained tertiary hospitals. Two independent reviewers screened titles and abstracts, followed by full-text evaluation, with disagreements resolved through consensus and consultation with a third reviewer to ensure selection reliability.

Data extraction captured study characteristics, context, type of IPC intervention, policy or governance approaches, workforce development strategies, monitoring mechanisms, outcomes related to compliance, barriers and facilitators, and recommendations for scaling or sustainability. Extracted data were synthesized into thematic categories to guide the formulation of the multidimensional framework. A narrative synthesis approach was employed to integrate findings across diverse study designs and contexts, emphasizing convergence of evidence and identification of critical components for IPC compliance.

Quality appraisal was conducted using validated tools suitable for study design, including the Critical Appraisal Skills Programme (CASP) for qualitative studies and the Joanna Briggs Institute tools for quantitative studies. High-quality evidence was prioritized in framework development, while lower-quality studies were considered to provide contextual insights. The resulting framework was iteratively refined through consultation with IPC experts, hospital administrators, policymakers, and frontline healthcare workers, ensuring relevance, feasibility, and adaptability to tertiary hospital settings.

2.1. Conceptual Framework

A conceptual framework for strengthening infection prevention and control (IPC) compliance in tertiary hospitals must adopt a systems-level approach that recognizes the interdependence of multiple stakeholders, processes, and resources. Unlike isolated interventions, a systems-level perspective emphasizes integration, coordination, and sustainability, ensuring that IPC initiatives are embedded across the entire hospital environment. The framework highlights interactions among hospital leadership, clinical staff, patients, and support services, acknowledging that successful compliance is contingent upon the alignment of policies, infrastructure, workforce behavior, monitoring systems, and community engagement (Atobatele *et al.*, 2021; Wegner *et al.*, 2021). By promoting integration rather than siloed initiatives, the framework seeks to create a cohesive strategy that systematically reduces healthcare-associated infections (HAIs) while improving patient safety and operational efficiency.

At the core of the framework is policy and governance, which provide the regulatory and institutional foundation for IPC adherence. Guidelines, standardized protocols, legal mandates, and oversight mechanisms define responsibilities, set expectations, and establish accountability structures within the hospital. Strong governance ensures that IPC is prioritized at all organizational levels, from senior administration to frontline staff, and facilitates interdepartmental coordination for consistent implementation (Atobatele *et al.*, 2019; Oni *et al.*, 2019). Policy mechanisms also enable resource allocation, risk assessment, and institutional monitoring, creating an enabling environment for effective compliance.

The healthcare workforce represents a critical component of IPC implementation. Continuous training programs equip staff with the knowledge and skills to perform hand hygiene, use personal protective equipment (PPE), follow sterilization procedures, and adhere to isolation protocols. Competency development, coupled with adherence monitoring and behavioral interventions, fosters a culture of safety and accountability. Task-specific reinforcement, mentorship, and feedback loops enhance compliance while addressing gaps in practice. Behavioral strategies, including incentives, reminders, and role modeling by leadership, further reinforce adherence and encourage sustainable behavioral change.

Infrastructure and resources are equally essential for effective IPC. Availability of PPE, functional hand hygiene facilities, isolation rooms, and sterilization equipment ensures that staff can comply with established protocols. Adequate infrastructure minimizes practical barriers to adherence, reduces workflow disruptions, and mitigates cross-contamination risks. Resource planning must account for high patient volumes, diverse clinical services, and potential supply chain disruptions, particularly in resource-limited settings (Osabuohien *et al.*, 2021; Merotiwon *et al.*, 2021).

Monitoring and data systems provide the foundation for evidence-based decision-making and continuous improvement. Surveillance systems, reporting mechanisms, and compliance audits enable hospitals to track adherence to IPC protocols, identify gaps, and implement corrective measures. Real-time feedback and performance dashboards promote accountability, inform training priorities, and guide resource allocation (Atobatele *et al.*, 2019; Dako *et al.*, 2019). Data-driven approaches facilitate iterative refinement of IPC strategies and support alignment with national and

international standards.

Community and patient engagement are integral to promoting a culture of infection prevention. Awareness campaigns, patient participation in care, and infection prevention education enhance adherence, reduce stigma, and encourage proactive behaviors among both staff and patients. Engaging patients and caregivers fosters transparency, accountability, and shared responsibility, contributing to safer hospital environments. In addition, community engagement strengthens institutional credibility, supports health literacy, and reinforces preventive behaviors beyond hospital boundaries (Anyebe *et al.*, 2018; Aduwo and Nwachukwu, 2019).

Collectively, these components function synergistically to create a robust, multidimensional framework for IPC compliance in tertiary hospitals. By integrating governance, workforce development, infrastructure, monitoring, and community engagement, the framework addresses both structural and behavioral determinants of adherence. The systems-level perspective ensures that interventions are not implemented in isolation but operate in concert to promote sustainable, scalable, and culturally sensitive infection prevention practices (Filani *et al.*, 2021; THEODORE *et al.*, 2021).

A conceptual framework for IPC compliance emphasizes the critical importance of coordination, integration, and continuous evaluation. Through interactions between leadership, clinical staff, support services, and patients, hospitals can implement cohesive strategies that reinforce adherence, optimize resource utilization, and minimize the risk of HAIs. By embedding these key components within a structured, systems-level model, tertiary hospitals can strengthen patient safety, improve healthcare outcomes, and cultivate a resilient institutional culture that prioritizes infection prevention as a core responsibility (Akonobi and Okpokwu, 2019; Atere *et al.*, 2019).

2.2. Policy Framework Elements

A robust policy framework is central to strengthening infection prevention and control (IPC) compliance in tertiary hospitals, providing structured guidance, accountability, and strategic direction. By integrating governance, financing, workforce development, service protocols, monitoring, and community engagement, hospitals can create a sustainable and effective approach to reducing healthcare-associated infections (HAIs) (TITILAYO *et al.*, 2021; Oyeniyi *et al.*, 2021). These policy elements work synergistically to address both structural and behavioral determinants of IPC adherence.

Governance and leadership form the foundation of the policy framework. Hospital administration and Infection Prevention and Control (IPC) committees are critical for defining institutional priorities, setting standards, and ensuring adherence to guidelines. Governance structures establish clear roles and responsibilities for leadership, clinical staff, and support services, fostering accountability at all organizational levels. Coordination across departments is essential, ensuring that IPC strategies are embedded within clinical operations, facility management, and strategic hospital planning. Strong leadership also promotes a culture of safety, reinforces adherence to protocols, and provides oversight for resource allocation, staff training, and compliance monitoring (Shobande *et al.*, 2019; Evans-Uzosike and Okatta, 2019).

Financing and resource allocation are pivotal to operationalizing IPC policies. Budget planning should account for essential supplies such as personal protective equipment (PPE), disinfectants, sterilization tools, and hand hygiene facilities. Funding must also support continuous training programs, monitoring activities, and infrastructure improvements. Sustainable financing streams, including dedicated hospital budgets and government or donor support, are essential to maintain consistent supply chains and program continuity. Adequate resourcing ensures that staff can comply with IPC protocols without structural or logistical barriers, reinforcing the credibility and effectiveness of policy measures (Asata *et al.*, 2021; Evans-Uzosike *et al.*, 2021).

Workforce development strengthens the hospital's capacity to implement IPC measures effectively. Continuous training programs equip healthcare workers with knowledge of infection prevention principles, proper PPE use, sterilization techniques, and isolation procedures. Competency assessments, periodic refresher courses, and mentorship programs reinforce adherence and support professional accountability. Behavioral incentives, recognition schemes, and clear consequences for non-compliance encourage staff engagement and foster a culture of responsibility (Dako *et al.*, 2019; Onalaja *et al.*, 2019). Empowering staff through skill development and motivation enhances adherence and reduces the risk of lapses that contribute to HAIs.

Service integration and protocols ensure that IPC practices are embedded into routine hospital operations. Standardized procedures for hand hygiene, sterilization, medical waste disposal, and isolation precautions provide clear operational guidance. Integration of protocols across departments prevents fragmented implementation and ensures continuity of care. Clear escalation pathways for outbreak management allow rapid detection, containment, and response, minimizing the spread of infections within hospital wards and among patients and staff (Atobatele *et al.*, 2019; Hungbo and Adeyemi, 2019). Standardization also facilitates training, auditing, and evaluation, reinforcing consistency in practice. Monitoring and evaluation mechanisms provide critical oversight and feedback for IPC compliance. Real-time auditing, reporting systems, and compliance checklists enable hospital administrators to track adherence, identify gaps, and implement corrective actions promptly. Digital dashboards and surveillance tools provide data visualization, facilitate trend analysis, and support decision-making for resource allocation and workforce interventions. Continuous monitoring allows hospitals to measure the effectiveness of policies, refine protocols based on observed outcomes, and ensure accountability at all levels of the organization (Hungbo *et al.*, 2020; Akonobi and Okpokwu, 2020).

Patient and community engagement enhances the cultural and behavioral acceptance of IPC practices. Involving patients and caregivers in education on hygiene, PPE use, and infection prevention fosters shared responsibility for safety. Public awareness campaigns within and outside the hospital environment reinforce IPC principles, encourage compliance among staff and visitors, and reduce stigma associated with infection control measures. Active engagement ensures that IPC initiatives extend beyond institutional boundaries, creating a supportive environment that sustains adherence and promotes overall public health.

A comprehensive policy framework for IPC compliance integrates governance, financing, workforce development,

standardized protocols, monitoring, and community engagement. Governance ensures clear accountability and leadership, while sustainable financing supports program continuity. Workforce development enhances skills, motivation, and adherence, and standardized protocols embed IPC into everyday practice. Monitoring provides oversight and enables iterative improvement, while patient and community engagement reinforces a culture of safety. Together, these elements form a cohesive policy-driven strategy that strengthens IPC compliance, reduces HAIs, and improves patient outcomes in tertiary hospital settings, creating a resilient and sustainable system of infection prevention.

2.3. Implementation Strategies

Effective implementation of a multidimensional framework for infection prevention and control (IPC) in tertiary hospitals requires a structured, iterative, and context-sensitive approach. Implementation strategies translate policy and conceptual frameworks into practical action, ensuring that IPC measures are not only introduced but sustained, monitored, and adapted to the unique operational realities of hospital environments (Aduwo *et al.*, 2020; Atere *et al.*, 2020). Key strategies include pilot programs, capacity building, strategic partnerships, phased scaling, and continuous evaluation and feedback.

Pilot programs serve as the initial step in operationalizing IPC interventions. By testing feasibility and effectiveness in select wards or departments, pilot programs allow hospital administrators and IPC committees to assess practical challenges, identify workflow bottlenecks, and measure staff adherence to protocols. Pilot testing provides insights into the suitability of hand hygiene initiatives, sterilization procedures, isolation practices, and waste management strategies. It also enables early identification of barriers related to infrastructure, supply availability, or workforce behavior. Lessons learned from pilot programs inform refinement of IPC protocols, training curricula, and monitoring mechanisms, thereby reducing risks associated with large-scale implementation and enhancing the likelihood of successful hospital-wide adoption.

Capacity building is essential for ensuring that healthcare workers possess the skills, knowledge, and motivation necessary to maintain IPC compliance. Continuous education programs provide refresher training on hand hygiene, PPE use, sterilization, and outbreak response. Mentorship initiatives, led by experienced IPC champions, reinforce best practices and provide on-the-job guidance. Establishing IPC champions within each ward promotes accountability and fosters a culture of safety, where adherence to protocols is normalized and valued. Capacity-building initiatives also address behavioral determinants of compliance, using feedback, recognition, and incentives to reinforce adherence while reducing resistance to change.

Strategic partnerships enhance both the technical and operational capacity of hospitals to implement IPC measures effectively. Collaboration with governmental health agencies ensures alignment with national infection control policies, facilitates resource mobilization, and enables integration with broader public health initiatives. Partnerships with non-governmental organizations (NGOs) can provide specialized training, logistical support, and community engagement programs, particularly in resource-limited contexts. Academic institutions contribute evidence-based expertise,

monitoring tools, and research support to evaluate interventions. Leveraging these collaborations allows hospitals to benefit from diverse knowledge, technical resources, and operational experience, strengthening the overall implementation process.

Scaling up involves expanding IPC interventions beyond pilot wards to cover the entire hospital systematically. A phased approach, guided by outcomes and lessons learned from pilot programs, minimizes disruption to hospital operations and ensures quality control. Expansion considers infrastructure readiness, workforce capacity, and departmental diversity, ensuring that each unit is adequately equipped and trained before full integration. Phased scaling also provides opportunities for iterative improvement, allowing hospitals to refine protocols, adjust training programs, and optimize monitoring systems before wider adoption (Osabuohien, 2017; Atobatele *et al.*, 2019). This approach ensures sustainability and reduces the risk of partial or ineffective implementation.

Evaluation and feedback mechanisms are critical for maintaining IPC compliance and fostering continuous improvement. Monitoring adherence to hand hygiene, sterilization, isolation, and waste management protocols provides real-time insights into implementation effectiveness. Digital dashboards, compliance audits, and reporting tools allow administrators to track trends, identify gaps, and implement corrective measures promptly. Feedback loops involving staff, IPC committees, and hospital leadership reinforce accountability and support adaptive responses to emerging challenges. Regular evaluation also informs policy refinement, training adjustments, and resource allocation, ensuring that IPC interventions remain responsive, effective, and sustainable over time.

Successful implementation of a multidimensional IPC framework in tertiary hospitals requires a coordinated and iterative approach. Pilot programs provide essential insights into feasibility and operational challenges, while capacity building strengthens workforce competence and fosters a culture of compliance. Strategic partnerships expand technical expertise, resources, and community engagement, supporting sustainable implementation. Phased scaling ensures that interventions are systematically integrated across the hospital, and robust evaluation and feedback mechanisms enable continuous improvement and accountability. Collectively, these strategies operationalize the policy and conceptual framework, translating IPC principles into effective, sustainable practices that reduce healthcare-associated infections, enhance patient safety, and strengthen overall hospital performance (Farounbi *et al.*, 2020; Anichukwueze *et al.*, 2020).

2.4. Challenges and Considerations

Implementing and sustaining effective infection prevention and control (IPC) programs in tertiary hospitals presents numerous challenges, particularly in resource-constrained settings. While multidimensional frameworks and policy-driven strategies offer structured pathways to enhance IPC compliance, practical realities often complicate implementation. Key considerations include resource constraints, cultural and behavioral barriers, policy alignment, and sustainability, each of which requires careful attention to ensure meaningful and lasting improvements in patient safety.

Resource constraints represent one of the most pervasive

challenges to IPC compliance. Hospitals may experience shortages of personal protective equipment (PPE), limited availability of sterilization equipment, insufficient hand hygiene facilities, and inadequate isolation rooms. These gaps impede adherence to standardized IPC protocols, as staff are unable to follow procedures due to logistical or infrastructural limitations. Workforce shortages further exacerbate the problem, as overburdened healthcare workers may prioritize immediate clinical demands over compliance with infection control measures. Financial limitations often restrict the capacity to procure essential supplies, implement training programs, or maintain robust monitoring systems, particularly in tertiary hospitals operating under tight budgets. Addressing these constraints requires strategic allocation of available resources, innovative solutions such as reusable PPE or low-cost sterilization techniques, and targeted support from governmental and non-governmental organizations (Farounbi *et al.*, 2020; Asata *et al.*, 2020).

Cultural and behavioral barriers significantly influence IPC compliance. Resistance to standardized protocols may stem from ingrained practices, hierarchical hospital cultures, and a low perception of infection risk. In some institutions, senior staff or department heads may model non-compliance, unintentionally signaling to junior staff that adherence is optional. Misconceptions about the necessity or efficacy of IPC measures can reduce motivation to follow guidelines, while busy clinical workflows may create practical conflicts between patient care priorities and strict compliance. Overcoming these barriers requires behavioral interventions, including staff education, role modeling by leadership, feedback mechanisms, and recognition of compliant behavior. Promoting a culture of safety that values infection prevention as a core professional responsibility is essential to change attitudes and sustain adherence over time.

Policy alignment is crucial to ensure that hospital-level IPC initiatives are coherent with national and international guidelines. Fragmented or inconsistent policies may result in duplication of effort, gaps in coverage, and confusion among staff regarding best practices. Alignment ensures that hospital protocols reflect evidence-based standards, facilitates access to technical guidance, and promotes integration with broader public health strategies. Policy coherence also supports funding allocation, training initiatives, and monitoring frameworks, providing a unified approach to IPC that strengthens institutional credibility and accountability. Continuous review of policies in light of emerging evidence and regulatory updates ensures that IPC strategies remain relevant, effective, and compliant with evolving standards.

Sustainability remains a central consideration in IPC program implementation. Many interventions fail to produce long-term impact due to dependence on short-term funding, transient leadership commitment, or episodic training initiatives. Sustainable IPC programs require institutionalization of protocols within hospital operations, consistent financial support for supplies and training, and ongoing leadership endorsement. Integrating IPC practices into routine workflows, professional development programs, and performance evaluation systems ensures continuity beyond initial implementation phases. Furthermore, embedding monitoring, feedback, and adaptive improvement mechanisms enables hospitals to respond to evolving infection risks and changing operational conditions, reinforcing resilience and long-term effectiveness (Isa, 2020; ONYEKACHI *et al.*, 2020).

Strengthening IPC compliance in tertiary hospitals involves navigating complex challenges related to resources, culture, policy, and sustainability. Limited PPE, infrastructure gaps, and workforce shortages constrain adherence, while hierarchical cultures, resistance to protocols, and low risk perception impede behavioral compliance. Ensuring policy alignment with national and international standards provides a coherent framework for implementation, while sustainability depends on long-term commitment, integration into hospital culture, and secure funding streams. Recognizing these challenges and proactively addressing them through strategic planning, capacity building, and continuous evaluation is essential for developing resilient, effective, and sustainable IPC programs. By considering these factors, tertiary hospitals can reduce healthcare-associated infections, enhance patient safety, and create a robust culture of infection prevention that endures across changing healthcare landscapes.

2.5. Future Directions and Opportunities

The ongoing challenge of healthcare-associated infections (HAIs) underscores the necessity for continuous innovation and evidence-informed strategies to strengthen infection prevention and control (IPC) compliance in tertiary hospitals. While current multidimensional frameworks address governance, workforce, infrastructure, monitoring, and community engagement, future directions should focus on integrating digital innovations, generating robust evidence, and adopting iterative policy processes. These approaches will enhance real-time responsiveness, optimize resource utilization, and ensure sustainable, adaptable IPC practices. Digital innovations hold significant potential to transform IPC monitoring and adherence. The integration of Internet of Things (IoT) devices, mobile applications, and artificial intelligence (AI) platforms enables real-time surveillance of hand hygiene compliance, PPE utilization, and sterilization practices. IoT-enabled sensors can track movements within clinical spaces, monitor hand hygiene station usage, and detect environmental contamination, providing actionable insights for staff and administrators. Mobile applications facilitate digital checklists, reminders, and reporting systems, reducing reliance on manual documentation and improving workflow efficiency. AI algorithms can analyze compliance data to identify patterns, predict potential outbreak hotspots, and generate risk alerts, allowing preemptive interventions (Egemba *et al.*, 2020; Anthony and Dada, 2020). Digital dashboards consolidate these data streams, enabling hospital leadership to visualize trends, monitor performance across departments, and implement targeted corrective measures. By leveraging technology, hospitals can enhance accuracy, timeliness, and responsiveness in IPC oversight, reducing the burden of HAIs and improving patient safety.

Evidence generation is essential to validate the effectiveness of multidimensional IPC interventions and inform scalable best practices. Research should assess both clinical outcomes, such as reductions in HAIs, and behavioral outcomes, including healthcare worker adherence, knowledge retention, and cultural adoption of safety practices. Comparative studies evaluating integrated frameworks versus conventional IPC strategies provide insights into relative effectiveness, cost-efficiency, and feasibility across diverse tertiary hospital settings. Mixed-methods research that combines quantitative infection metrics with qualitative assessments of staff attitudes and workflow integration can elucidate barriers and

facilitators to sustained compliance. Longitudinal studies are particularly valuable for understanding the durability of interventions, identifying systemic weaknesses, and refining training and monitoring approaches over time. Evidence generation not only supports data-driven decision-making but also strengthens advocacy for funding, resource allocation, and policy prioritization.

Policy iteration ensures that IPC frameworks remain dynamic and responsive to evolving healthcare needs. Continuous refinement of protocols, training, and compliance monitoring should be informed by emerging evidence, outbreak experiences, and technological advancements. Iterative policy processes allow hospitals to adapt to new pathogens, changing patient demographics, and evolving operational challenges (Osabuohien, 2019; Asata *et al.*, 2020). Feedback from frontline staff, administrators, and patients should guide modifications, ensuring policies are feasible, culturally sensitive, and contextually relevant. Moreover, aligning hospital-level policies with national and international guidelines fosters coherence, enhances credibility, and facilitates integration with broader public health strategies. Iterative policy development also encourages the incorporation of innovative practices, such as predictive analytics, telehealth-based training, and AI-driven risk assessment, maintaining the relevance and effectiveness of IPC interventions in the face of complex and dynamic healthcare environments.

Future directions should also emphasize cross-cutting strategies that integrate digital innovations, evidence generation, and policy iteration. Collaborative research partnerships with academic institutions, governmental agencies, and non-governmental organizations can facilitate large-scale studies, knowledge sharing, and the development of interoperable digital tools (Oluyemi *et al.*, 2020; Akonobi and Okpokwu, 2020). Public-private partnerships may provide additional technical and financial support for digital infrastructure and training programs. Incorporating lessons learned from pilot programs and outbreak response experiences into hospital policy ensures that interventions are contextually validated and scalable. Additionally, fostering a culture of continuous learning among healthcare workers strengthens adherence, promotes innovation, and reinforces the institutionalization of IPC practices.

The future of IPC compliance in tertiary hospitals lies in the convergence of digital technologies, robust evidence generation, and iterative policy refinement. IoT, mobile applications, and AI enable real-time monitoring and proactive risk management, while research evaluates the effectiveness and sustainability of multidimensional interventions. Iterative policy processes ensure that protocols remain adaptable, evidence-based, and aligned with both hospital and national health priorities. By embracing these future directions, tertiary hospitals can enhance infection prevention, optimize patient outcomes, and establish resilient, responsive, and sustainable IPC systems that address both current challenges and emerging healthcare threats.

3. Conclusion

The prevention of healthcare-associated infections (HAIs) in tertiary hospitals is a critical component of patient safety, healthcare quality, and operational efficiency. This review underscores the importance of a structured, multidimensional framework to strengthen infection prevention and control

(IPC) compliance. By addressing governance, workforce development, infrastructure, monitoring systems, and community engagement in an integrated manner, hospitals can move beyond fragmented interventions toward a cohesive and sustainable approach that reduces infection risk and enhances overall healthcare outcomes.

Integrated governance ensures clear leadership, accountability, and coordination across hospital departments, embedding IPC within strategic planning and decision-making. Workforce development, through continuous training, mentorship, and behavioral reinforcement, fosters adherence to standardized protocols and cultivates a culture of safety. Adequate infrastructure and resource allocation, including personal protective equipment, hand hygiene facilities, isolation rooms, and sterilization systems, provide the necessary tools for staff to implement effective IPC measures. Monitoring and evaluation systems, leveraging both digital and traditional methods, enable real-time compliance tracking, feedback, and data-driven improvements. Engagement with patients and the wider community reinforces infection prevention practices, promotes awareness, and encourages shared responsibility for safety.

Sustainable IPC implementation requires multi-sectoral collaboration, involving governmental health agencies, non-governmental organizations, academic institutions, and frontline healthcare providers. Continuous evaluation and adaptation of protocols, informed by evidence, outbreak experiences, and emerging technologies, ensures that interventions remain relevant and effective. Long-term commitment, adequate funding, and integration into hospital culture are essential to maintain high compliance levels and reduce the burden of HAIs.

A structured, multidimensional framework offers a strategic roadmap for strengthening IPC compliance in tertiary hospitals. By integrating governance, workforce, infrastructure, monitoring, and community engagement, and fostering collaboration, evaluation, and sustainability, hospitals can achieve significant reductions in healthcare-associated infections, improve patient outcomes, and establish resilient systems of infection prevention for the future.

4. Reference

1. Abdulsalam R, Farounbi BO, Ibrahim AK. Impact of foreign exchange volatility on corporate financing decisions: evidence from the Nigerian capital market. 2021.
2. Aduwo MO, Nwachukwu PS. Dynamic capital structure optimization in volatile markets: a simulation-based approach to balancing debt and equity under uncertainty. IRE J. 2019;3(2):783-92.
3. Aduwo MO, Akonobi AB, Okpokwu CO. Employee engagement and retention: a conceptual framework for multinational corporations operating across diverse cultural contexts. IRE Journals. 2020;3(11):461-70.
4. Ajayi SAO, Akanji OO. Impact of BMI and menstrual cycle phases on salivary amylase: a physiological and biochemical perspective. 2021.
5. Akindele AO, Erigha ED, Obuse E, Ajayi JO, Adebayo A, Afuwape AA, *et al.* A conceptual framework for automating data pipelines using ELT tools in cloud-native environments. 2021.
6. Akonobi AB, Okpokwu CO. Designing a customer-centric performance model for digital lending systems in emerging markets. IRE Journals. 2019;3(4):395-402.
7. Akonobi AB, Okpokwu CO. A cloud-native software innovation framework for scalable fintech product development and deployment. IRE Journals. 2020;4(3):211-8.
8. Akonobi AB, Okpokwu CO. A value innovation model for enhancing customer experience in cloud-based retail and financial services. IRE Journals. 2020;3(11):443-51.
9. Anichukwueze CC, Osuji VC, Oguntogbe EE. Designing ethics and compliance training frameworks to drive measurable cultural and behavioral change. Int J Multidiscip Res Growth Eval. 2020;1(3):205-20. doi:10.54660/IJMRGE.2020.1.3.205-220.
10. Anichukwueze CC, Osuji VC, Oguntogbe EE. Blockchain-based architectures for tamper-proof regulatory recordkeeping and real-time audit readiness. Int J Multidiscip Res Growth Eval. 2021;2(6):485-504. doi:10.54660/IJMRGE.2021.2.6.485-504.
11. Anthony P, Dada SA. Data-driven optimization of pharmacy operations and patient access through interoperable digital systems. Int J Multidiscip Res Growth Eval. 2020;1(2):229-44.
12. Anyebe BNV, Dimkpa C, Aboki D, Egbule D, Useni S, Eneogu R. Impact of active case finding of tuberculosis among prisoners using the WOW truck in North Central Nigeria. Int Union Against Tuberc Lung Dis. 2018;11:22.
13. Asata MN, Nyangoma D, Okolo CH. Reframing passenger experience strategy: a predictive model for net promoter score optimization. IRE Journals. 2020;4(5):208-17.
14. Asata MN, Nyangoma D, Okolo CH. Strategic communication for in-flight teams: closing expectation gaps in passenger experience delivery. Int J Multidiscip Res Growth Eval. 2020;1(1):183-94.
15. Asata MN, Nyangoma D, Okolo CH. Designing competency-based learning for multinational cabin crews: a blended instructional model. IRE J. 2021;4(7):337-9.
16. Atere D, Shobande AO, Toluwase IH. Framework for designing effective corporate restructuring strategies to optimize liquidity and working capital. IRE Journals. 2019;2(10):555-62.
17. Atere D, Shobande AO, Toluwase IH. Review of global best practices in supply chain finance structures for unlocking corporate working capital. Int J Multidiscip Res Growth Eval. 2020;1(3):232-43. doi:10.54660/IJMRGE.2020.1.3.232-243.
18. Atobatele OK, Ajayi OO, Hungbo AQ, Adeyemi C. Leveraging public health informatics to strengthen monitoring and evaluation of global health interventions. IRE Journals. 2019;2(7):174-93.
19. Atobatele OK, Ajayi OO, Hungbo AQ, Adeyemi C. Applying agile and scrum methodologies to improve public health informatics project implementation and delivery. J Front Multidiscip Res. 2021;2(1):426-39.
20. Atobatele OK, Hungbo AQ, Adeyemi C. Leveraging big data analytics for population health management: a comparative analysis of predictive modeling approaches in chronic disease prevention and healthcare resource optimization. IRE Journals. 2019;3(4):370-80.
21. Atobatele OK, Hungbo AQ, Adeyemi C. Digital health technologies and real-time surveillance systems:

transforming public health emergency preparedness through data-driven decision making. IRE Journals. 2019;3(9):417-25.

22. Atobatele OK, Hungbo AQ, Adeyemi C. Evaluating the strategic role of economic research in supporting financial policy decisions and market performance metrics. IRE Journals. 2019;2(10):442-52.
23. Awe T. Cellular localization of iron-handling proteins required for magnetic orientation in *C. elegans*. 2021.
24. Dako OF, Onalaja TA, Nwachukwu PS, Bankole FA, Lateefat T. Blockchain-enabled systems foster transparent corporate governance, reduce corruption, and improve global financial accountability. IRE Journals. 2019;3(3):259-66.
25. Dako OF, Onalaja TA, Nwachukwu PS, Bankole FA, Lateefat T. Business process intelligence for global enterprises: optimizing vendor relations with analytical dashboards. IRE Journals. 2019;2(8):261-70.
26. Egemb M, Aderibigbe-Saba C, Ajayi SAO, Anthony P, Omotayo O. Telemedicine and digital health in developing economies: accessibility equity frameworks for improved healthcare delivery. Int J Multidiscip Res Growth Eval. 2020;1(5):220-38.
27. Egemb M, Ajayi SAO, Aderibigbe-Saba C, Omotayo O, Anthony P. Infectious disease prevention strategies: multi-stakeholder community health intervention models for sustainable global public health. Int J Multidiscip Res Growth Eval. 2021;2(6):505-23.
28. Ejibenam A, Onibokun T, Oladeji KD, Onayemi HA, Halliday N. The relevance of customer retention to organizational growth. J Front Multidiscip Res. 2021;2(1):113-20.
29. Evans-Uzosike IO, Okatta CG. Strategic human resource management: trends, theories, and practical implications. Iconic Res Eng J. 2019;3(4):264-70.
30. Evans-Uzosike IO, Okatta CG, Otokiti BO, Ejike OG, Kufile OT. Advancing algorithmic fairness in HR decision-making: a review of DE&I-focused machine learning models for bias detection and intervention. Iconic Res Eng J. 2021;5(1):530-2.
31. Ezech FE, Ajayi OO, Olatunji GI. A quality assurance enhancement model for point-of-care diagnostic platforms in tropical disease surveillance. 2021.
32. Farounbi BO, Okafor CM, Oguntegbé EE. Comprehensive valuation framework for digital infrastructure assets in strategic acquisition decisions. Int J Multidiscip Res Growth Eval. 2020;1(3):182-91. doi:10.54660/IJMRGE.2020.1.3.182-191.
33. Farounbi BO, Abdulsalam R, Ibrahim AK. Impact of foreign exchange volatility on corporate financing decisions: evidence from the Nigerian capital market. 2021. (Note: This appears to be a duplicate of reference 1 with minor author name variation.)
34. Farounbi BO, Ibrahim AK, Oshomegie MJ. Proposed evidence-based framework for tax administration reform to strengthen economic efficiency. IRE J. 2020;3(11):318-27.
35. Farounbi BO, Okafor CM, Oguntegbé EE. Comparative review of private debt versus conventional bank lending in emerging economies. 2021.
36. Filani OM, Nwokocha GC, Alao OB. Predictive vendor risk scoring model using machine learning to ensure supply chain continuity and operational resilience. Management. 2021;8:9.
37. Filani OM, Olajide JO, Osho GO. A python-based record-keeping framework for data accuracy and operational transparency in logistics. J Adv Educ Sci. 2021;1(1):78-88.
38. Halliday NN. Assessment of major air pollutants, impact on air quality and health impacts on residents: case study of cardiovascular diseases [master's thesis]. Cincinnati (OH): University of Cincinnati; 2021.
39. Hungbo AQ, Adeyemi C. Community-based training model for practical nurses in maternal and child health clinics. IRE Journals. 2019;2(8):217-35.
40. Hungbo AQ, Adeyemi C, Ajayi OO. Workflow optimization model for outpatient phlebotomy efficiency in clinical laboratories. IRE Journals. 2021;5(5):506-25.
41. Hungbo AQ, Adeyemi C, Ajayi OO. Early warning escalation system for care aides in long-term patient monitoring. IRE Journals. 2020;3(7):321-45.
42. Isa AK. Adolescent drug use in Nigeria: trends, mortality risks, and public health implications. 2020.
43. Isa AK, Johnbull OA, Ovenseri AC. Evaluation of Citrus sinensis (orange) peel pectin as a binding agent in erythromycin tablet formulation. World J Pharm Pharm Sci. 2021;10(10):188-202.
44. Jimoh O, Owolabi BO. Developing adaptive HIV treatment guidelines incorporating drug resistance surveillance and genotype-tailored therapies. Int J Sci Res Arch. 2021;4(1):373-92.
45. Lawoyin JO, Nwokediegwu ZS, Gbabo EY. Risk mitigation model for coordinating multi-facility construction and infrastructure projects. 2021.
46. Merotiwon DO, Akintimehin OO, Akomolafe OO. Developing an information governance integration model for clinical governance committees in Sub-Saharan health systems. 2021. doi:10.54660/IJMRGE.2-382.
47. Merotiwon DO, Akomolafe OO, Okoli AO. Community-based health promotion models for cardiovascular disease prevention: a conceptual and evidence-based review. J Community Health Epidemiol. 2021;6(2):1-10.
48. Okafor CM, Dako OF, Adesanya OS, Farounbi BO. Finance-led process redesign and OPEX reduction: a causal inference framework for operational savings. 2021.
49. Oluyemi MD, Akintimehin OO, Akomolafe OO. Developing a framework for data quality assurance in electronic health record (EHR) systems in healthcare institutions. Iconic Res Eng J. 2020;3(12):335-49.
50. Onalaja TA, Nwachukwu PS, Bankole FA, Lateefat T. A dual-pressure model for healthcare finance: comparing United States and African strategies under inflationary stress. IRE J. 2019;3(6):261-76.
51. Oni O, Adeshina YT, Illoeje KF, Olatunji OO. Artificial intelligence model fairness auditor for loan systems. 2018;8993:1162.
52. Onyekachi O, Onyeka IG, Chukwu ES, Emmanuel IO, Uzoamaka NE. Assessment of heavy metals: lead (Pb), cadmium (Cd), and mercury (Hg) concentration in Amaenyi Dumpsites, Awka. IRE J. 2020;3:41-53.
53. Osabuohien FO. Review of the environmental impact of polymer degradation. Commun Phys Sci. 2017;2(1).
54. Osabuohien FO. Green analytical methods for monitoring APIs and metabolites in Nigerian wastewater: a pilot environmental risk study. Commun

Phys Sci. 2019;4(2):174-86.

- 55. Osabuohien FO, Negedu GR, Raymond EE, Egbuchiem MN. Development of advanced oxidation processes (AOP) for removing specific pharmaceutical residues from wastewater. *Int J Chem.* 2021;1(3).
- 56. Osabuohien FO, Omotara BS, Watt OI. Mitigating antimicrobial resistance through pharmaceutical effluent control: adopted chemical and biological methods and their global environmental chemistry implications. *Environ Chem Health.* 2021;43(5):1654-72.
- 57. Oyeniyi LD, Igwe AN, Ofodile OC, Paul-Mikki C. Optimizing risk management frameworks in banking: strategies to enhance compliance and profitability amid regulatory challenges. 2021.
- 58. Shobande AO, Atere D, Toluwase IH. Conceptual model for evaluating mid-market M&A transactions using risk-adjusted discounted cash flow analysis. *IRE Journals.* 2019;2(7):241-7.
- 59. Theodore NO, Titilope TA, Titilayo DO. AI-powered financial forensic systems: a conceptual framework for fraud detection and prevention. *Magna Sci Adv Res Rev.* 2021;2(2):119-36.
- 60. Titilayo DO, Titilope TA, Theodore NO. Advancing sustainability accounting: a unified model for ESG integration and auditing. *Int J.* 2021;2(1):169-85.
- 61. Umoren HA. Factors influencing utilization of modern contraceptive services by adolescents in Southern Nigeria and ways to improve utilization. *Ethiop J Health Dev.* 2021;23(1).
- 62. Wegner DC, Nicholas AK, Odoh O, Ayansiji K. A machine learning-enhanced model for predicting pipeline integrity in offshore oil and gas fields. 2021.
- 63. Wegner DC, Omine V, Vincent A. A risk-based reliability model for offshore wind turbine foundations using underwater inspection data. *Risk.* 2021;10:43