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Abstract 

Redeveloping high-priority industrial sites requires a robust 

understanding of environmental risks to ensure safe land 

reuse, regulatory compliance, and sustainable urban 

planning. This study presents a GIS-Enhanced 

Environmental Risk Assessment Model designed to integrate 

spatial analytics, environmental datasets, and contaminant-

specific indicators to improve the evaluation of legacy 

pollution and potential human–ecosystem exposure 

pathways. The model synthesizes multi-layer geospatial 

information, including soil chemistry, hydrogeology, 

groundwater flow patterns, historical land-use records, 

atmospheric dispersion parameters, and proximity to 

sensitive receptors such as residential zones, schools, 

wetlands, and surface water bodies. Through the use of 

spatial interpolation, contamination hotspot mapping, and 

weighted overlay analysis, the model generates a 

comprehensive risk index that supports evidence-based 

prioritization of remediation interventions across industrial 

redevelopment sites. The proposed framework incorporates 

environmental thresholds, regulatory standards, and EPA-

recommended screening levels, enabling planners and 

regulatory agencies to identify areas that exceed acceptable 

contaminant limits. GIS-based spatial modeling further helps 

visualize pollutant migration pathways, delineate zones of 

elevated exposure potential, and simulate alternative 

redevelopment scenarios under varying remediation 

strategies. The integration of remote sensing datasets 

enhances temporal monitoring of site conditions, enabling 

early detection of land-surface changes, vegetation stress 

patterns, and hydrological alterations that may signal 

evolving contamination risks. A decision-support module 

embedded in the model provides a transparent methodology 

for ranking redevelopment sites based on environmental 

severity, socio-economic implications, and projected 

remediation costs. Application of the model to representative 

industrial brownfield sites demonstrates its ability to improve 

assessment accuracy, reduce uncertainties associated with 

heterogeneous contamination, and enhance stakeholder 

engagement through intuitive spatial visualizations. The 

results underscore the critical role of GIS-driven approaches 

in modern environmental management and sustainable land-

use planning. By offering a scalable, data-driven assessment 

tool, the study contributes to improved environmental 

stewardship and promotes safer redevelopment of industrial 

zones affected by legacy pollution. The GIS-Enhanced 

Environmental Risk Assessment Model ultimately 

strengthens regulatory decision-making, supports community 

health protection, and advances the transition toward 

resilient, sustainable, and economically productive post-

industrial landscapes. 
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1. Introduction 

The redevelopment of high-priority industrial sites presents complex challenges that stem from decades of intensive production, 

inadequate waste management practices, and poorly documented historical land uses that have left behind significant 

environmental legacies. These sites often contain heterogeneous contamination distributed across soil, groundwater, and surface 

water systems, creating substantial uncertainties for planners, environmental managers, and regulatory agencies seeking to 

reclaim them for safe and productive use (Alibakhshi, et al., 2017, Zhang, et akl., 2013). Traditional assessment methods, while 

useful, frequently fall short in capturing the spatial variability, multidimensional exposure pathways, and dynamic environmental 

conditions that influence risk levels across contaminated landscapes. 

www.allmultidisciplinaryjournal.com
https://doi.org/10.54660/.IJMRGE.2020.1.5.595-609


International Journal of Multidisciplinary Research and Growth Evaluation  www.allmultidisciplinaryjournal.com  

596 

As urbanization intensifies and the demand for land suitable 

for housing, commercial activities, and green infrastructure 

increases, the need for reliable, data-driven approaches to 

evaluate environmental hazards has become more urgent. 

A GIS-enhanced environmental risk assessment model 

provides a transformative avenue for addressing these 

challenges by integrating diverse spatial datasets, analytical 

tools, and visualizations capable of revealing complex 

contamination patterns that would otherwise remain 

undetected. Through its ability to layer historical land-use 

records, hydrogeological information, soil chemistry data, 

proximity to sensitive receptors, and contamination transport 

pathways, GIS offers a comprehensive spatial perspective 

essential for modern environmental planning. The capacity to 

perform spatial interpolation, hotspot detection, multi-criteria 

evaluation, and predictive modeling enables stakeholders to 

understand not only where contaminants are located but also 

how they behave over time and how they may affect human 

health and ecological systems (Manfreda, et al., 2018, Sims 

& Colloff, 2012). 

Incorporating advanced geospatial tools into environmental 

risk assessment supports transparent, evidence-based 

decision-making, reduces uncertainties in redevelopment 

planning, and enhances regulatory compliance by enabling 

comparisons with environmental thresholds and remediation 

standards. Moreover, GIS-driven analyses facilitate targeted 

remediation, optimized resource allocation, and the 

prioritization of sites that pose the greatest risks, thereby 

improving both economic and environmental outcomes. As 

aging industrial corridors become focal points for 

revitalization, the integration of GIS in risk assessment is no 

longer optional but essential for ensuring that redevelopment 

activities are sustainable, resilient, and aligned with long-

term urban planning objectives (Buma & Livneh, 2017, Zhai, 

Yue & Zhang, 2016). 

 

2. Methodology 

A GIS-Enhanced Environmental Risk Assessment Model 

(GERAM) for high-priority industrial redevelopment sites 

can be implemented as a mixed-methods, spatially explicit 

risk-ranking workflow that integrates (i) geospatial screening 

and exposure pathway logic, (ii) remote-sensing and in-situ 

monitoring evidence, and (iii) predictive analytics with 

decision rules that support redevelopment prioritization, 

remediation targeting, and long-term monitoring. The study 

begins by defining the decision unit as a “site polygon” 

(redevelopment parcel boundary) and its area of influence 

(buffered zone aligned with plausible exposure pathways 

such as groundwater flow direction, drainage connectivity, 

and prevailing wind sectors). A base geodatabase is built by 

compiling satellite/remote-sensing products (land 

cover/imperviousness, vegetation stress indices, surface 

moisture proxies), hydro-climatic layers (DEM, slope, flow 

accumulation, drainage density), land use and sensitive 

receptors (schools, clinics, residences), and 

regulatory/operational attributes (past industrial processes, 

chemical handling, treatment units) to capture credible 

hazard sources and process-linked accident potential 

(Gharehbaghi & Scott-Young, 2018; Thakur et al., 2017; 

Afolabi et al., 2020b). Historical site use is reconstructed 

from planning records, imagery time series, and field 

reconnaissance to identify legacy hotspots, likely 

contaminant groups, and potential “secondary sources” such 

as sludge handling footprints, drainage outfalls, and 

chlorination/disinfection infrastructure that can elevate acute 

and chronic risk in water-adjacent sites (Afolabi et al., 2020a; 

Afolabi et al., 2020b). 

Primary data collection follows a tiered field protocol: rapid 

screening first (walkover, GPS-referenced observations, 

photo logs, evidence of stained soils, stressed vegetation, 

drainage conditions), then confirmatory sampling guided by 

a conceptual site model (CSM) that links sources–pathways–

receptors. Sampling locations are selected using GIS 

stratification (hotspot zones, upgradient/background 

controls, drainage convergence points, downwind/down-

gradient receptors) and optimized to reduce spatial bias and 

improve inference. Where water and sanitation infrastructure 

or interventions influence environmental conditions, in-situ 

sensors and targeted spot measurements are incorporated to 

improve temporal coverage and reduce uncertainty in 

exposure proxies (Andres et al., 2018). If wastewater 

treatment or layered soil treatment systems are relevant to site 

reuse planning, design/operational variables are captured as 

covariates because they can modify contaminant mobility and 

attenuation (An et al., 2016). For sites with suspected 

groundwater impacts, intrinsic vulnerability descriptors 

(depth to water table proxies, permeability surrogates, 

topographic wetness index, proximity to recharge features) 

are derived in GIS for subsequent modeling, consistent with 

GIS-supported environmental assessment practice 

(Gharehbaghi & Scott-Young, 2018; Naghibi et al., 2016). 

To convert heterogeneous evidence into actionable risk, the 

model computes three coupled indices for each site: a Hazard 

Potential Index (HPI), an Exposure Pathway Index (EPI), and 

a Receptor Sensitivity Index (RSI). HPI is constructed from 

legacy process indicators (e.g., chemical sludge 

conditioning/dewatering residues and polymer usage 

footprints) and operational hazard attributes (e.g., 

chlorination/disinfection unit proximity, storage, historical 

releases) that reflect both contamination likelihood and 

process-safety severity (Afolabi et al., 2020a; Afolabi et al., 

2020b). EPI is generated from spatial pathway variables 

(runoff connectivity, flood susceptibility, groundwater flow 

potential, distance-to-surface-water, soil/land cover 

permeability proxies, and wind exposure corridors), 

supported by remote-sensing indicators that can act as early 

signals of ecological stress or hydrological transitions 

(Alibakhshi et al., 2017; Buma & Livneh, 2017; Thakur et 

al., 2017). RSI captures receptor density and vulnerability 

(population, sensitive land uses, ecosystem services proxies), 

and is adjusted using planning context of industrial 

regeneration to reflect redevelopment pressure and land-use 

change risk (Boriana, 2017; Cheng et al., 2011). Each index 

is normalized (0–1), quality-flagged, and weighted using a 

transparent multi-criteria logic (expert scoring plus 

sensitivity testing) to produce a Composite Environmental 

Risk Score (CERS). 

Predictive analytics is then used to (a) estimate risk surfaces 

within and around each site, and (b) classify sites into priority 

tiers. A supervised learning layer is trained where labels exist 

(e.g., known exceedances, confirmed contamination classes, 

remediation history), otherwise semi-supervised clustering is 

applied to identify latent site types. Model candidates include 

Random Forest or ensemble learners suitable for non-linear 

interactions and mixed data types, reflecting best practice in 

contamination risk mapping and ensemble modeling for 

environmental prediction (Barzegar et al., 2018; Rodriguez-

Galiano et al., 2014; Ransom et al., 2017). Feature 
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engineering combines remote-sensing time-series summaries 

(trend, seasonality, abrupt change metrics) with GIS 

covariates and field chemistry/physical measurements. 

Where real-time or high-frequency data streams are available 

(sensors, IoT deployments), an ingestion pipeline is used to 

append fresh observations to the geodatabase and enable 

rolling updates of risk scores, drawing on IoT-big data 

forecasting concepts (Ahmed, 2017; Zhai et al., 2016). To 

ensure scalable processing and reproducible runs across 

many sites, the workflow is implemented as modular services 

(data ingestion, preprocessing, modeling, scoring, mapping) 

with automated constraint checks (e.g., missing-data 

thresholds, coordinate validity, range constraints). 

Algorithmic constraint satisfaction concepts are used to 

enforce rule consistency (e.g., a site cannot be assigned “low 

exposure” if receptor density and pathway connectivity 

exceed set bounds), and cloud-style scaling logic is applied 

to allocate compute for larger cities or national inventories of 

brownfields (Ahmed et al., 2019; Ahmed et al., 2020). 

Model performance and credibility are evaluated through 

spatial cross-validation (e.g., block CV to limit spatial 

leakage), confusion matrices for tier classification, and 

error/uncertainty reporting for continuous risk outputs. 

Ground-truth validation uses withheld samples and 

independent observations (e.g., targeted resampling, 

confirmatory laboratory tests, or regulator datasets where 

available). The study conducts sensitivity and uncertainty 

analysis by varying index weights and testing how rankings 

shift, and it reports stability statistics (rank correlation and 

tier-flip rates) so decision makers can see whether a site’s 

priority is robust or weight-dependent. Finally, outputs are 

operationalized into GIS decision products: (i) a site-level 

risk register, (ii) hotspot maps (risk rasters and pathway 

corridors), (iii) recommended sampling and remediation 

focus zones, and (iv) a monitoring plan that specifies 

indicators, sensor placement logic, and update frequency. 

The redevelopment recommendation step integrates risk 

tiering with land-use suitability planning to support phased 

redevelopment that aligns mitigation intensity with risk 

magnitude, consistent with integrative brownfield planning 

approaches (Cheng et al., 2011; Cappuyns & Kessen, 2014). 

 

 
 

Fig 1: Flowchart of the study methodology 
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3. Background and Problem Statement 

The redevelopment of high-priority industrial sites presents a 

uniquely complex set of challenges rooted in historical land-

use practices, extensive pollution legacies, and the increasing 

demand for safe and sustainable land reuse in rapidly 

expanding urban regions. Many industrial sites were 

developed during periods when environmental regulations 

were limited or nonexistent, resulting in decades of 

unmonitored emissions, improper waste disposal, accidental 

chemical releases, and poorly documented operational 

processes. These activities have left behind contaminant 

mixtures in soil, groundwater, sediments, and surrounding 

ecosystems. As these areas become prime targets for urban 

renewal, economic revitalization, and infrastructure 

expansion, the need for accurate and reliable environmental 

risk assessment has become more critical than ever. 

However, traditional assessment frameworks often fall short 

of adequately characterizing the spatial and temporal 

complexity of contamination, thereby hindering effective 

remediation planning and exposing communities to potential 

long-term risks (Schultz & Engman, 2012, Sorooshian, et al., 

2014). 

Conventional environmental assessment methods typically 

rely on point-based sampling, laboratory analyses, and expert 

interpretation to identify contaminants and evaluate risks. 

While these approaches provide valuable site-specific 

information, they are fundamentally limited in capturing the 

heterogeneous nature of contamination across large and 

dynamic industrial landscapes. Contaminants rarely occur 

uniformly; instead, they form irregular plumes influenced by 

soil structure, hydrogeology, stormwater dynamics, depth to 

groundwater, and decades of variable industrial activity. The 

reliance on sparse sampling points means that much of the 

subsurface remains uncharacterized, often leading to 

incomplete understanding of pollutant distribution (Thakur, 

Singh & Ekanthalu, 2017). This gap introduces significant 

uncertainties, resulting in either overly conservative 

remediation strategies that inflate costs or insufficient 

interventions that leave residual risks unaddressed. 

Moreover, traditional assessments often struggle to identify 

emerging contaminants or interactions among multiple 

pollutants that may enhance toxicity or mobility. 

Another major challenge lies in the fact that high-priority 

industrial redevelopment sites typically exhibit layered 

contamination histories, where pollutants from different 

industrial eras overlap spatially and chemically. These 

overlapping contaminants make it difficult to isolate 

exposure pathways or predict potential migration patterns. 

Soil properties, groundwater flow, seasonal variability, and 

infrastructural alterations further influence contaminant 

behavior, requiring analytical methods capable of integrating 

multiple environmental processes simultaneously. 

Traditional assessment techniques, however, lack the 

computational and spatial modeling capacity needed to 

predict contaminant transport or understand how 

environmental changes such as increased rainfall intensity 

due to climate change may influence pollutant mobility over 

time (Andres, et al., 2018, Turczynowicz, Pisaniello & 

Williamson, 2012). 

Regulatory requirements add another layer of complexity to 

environmental assessment for redevelopment projects. 

Agencies such as the U.S. Environmental Protection Agency 

(EPA) mandate comprehensive evaluations of pollutant 

concentrations, exposure pathways, ecological risks, and 

human health implications. Many jurisdictions require 

alignment with screening thresholds, risk-based corrective 

actions, and evidence-backed remediation plans. Meeting 

these requirements demands accuracy, transparency, and 

reproducibility, yet traditional assessment tools often 

produce static, fragmented datasets that are difficult for 

regulators and stakeholders to interpret. Regulatory 

frameworks increasingly emphasize cumulative risk 

assessment, cross-media interactions, and long-term 

stewardship all of which require integrated, spatially explicit 

data that traditional methods are not designed to produce. 

Inadequate or nonstandardized assessment approaches may 

lead to long approval timelines, rejection of redevelopment 

proposals, or costly re-evaluations after remediation has 

begun. Figure 2 shows figure of GIS in Disaster 

Management presented by Paul, et al., 2020. 
 

 
 

Fig 2: GIS in Disaster Management (Paul, et al., 2020). 
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In addition to regulatory pressures, there are significant gaps 

in current evaluation methods that hinder effective decision-

making across contaminated industrial sites. Many 

assessment frameworks rely heavily on historical 

documentation, yet industrial records are frequently 

incomplete, inaccurate, or unavailable. This lack of reliable 

baseline information forces practitioners to make 

assumptions about contaminant sources, magnitudes, and 

behavior, increasing the risk of misclassification and 

misinterpretation. In many cases, early assessments fail to 

capture the full breadth of contamination because initial 

sampling strategies are designed without the benefit of spatial 

intelligence (McAlary, Provoost & Dawson, 2010, Provoost, 

et al., 2013). This oversight results in remediation strategies 

that address only part of the problem, allowing contaminants 

to persist or migrate into newly redeveloped areas, thereby 

posing risks to future occupants and undermining public 

confidence in the redevelopment process. 

Furthermore, current assessment practices often lack the 

capacity to integrate advances in environmental monitoring 

technologies such as remote sensing, real-time sensors, and 

predictive modeling tools. These technologies generate 

extensive datasets that could significantly improve the 

precision of risk evaluations, yet traditional methodologies 

provide no structured mechanism for incorporating them. The 

absence of integrated systems means valuable information 

about vegetation stress, land-surface anomalies, hydrological 

changes, or atmospheric emissions remains underutilized. 

Without holistic tools capable of merging these datasets with 

ground-based measurements and regulatory thresholds, 

decision-makers are left with fragmented insights rather than 

comprehensive risk profiles (Roghani, 2018, Wang, Unger & 

Parker, 2014). 

Public engagement and transparency also suffer under 

conventional assessment models. Risk communication relies 

heavily on technical reports, tables, and nonvisual data that 

are difficult for nonexperts to interpret. As industrial 

redevelopment often occurs in densely populated, low-

income, or historically marginalized communities, there is a 

critical need for assessment tools that can communicate risks 

clearly and inclusively (Derycke, et al., 2018, Kulawiak & 

Lubniewski, 2014). Traditional methods fail to offer intuitive 

visualizations, spatial comparisons, or scenario simulations 

that could help stakeholders understand potential 

environmental and health outcomes. This gap contributes to 

mistrust, resistance to redevelopment initiatives, and delays 

in achieving consensus on remediation strategies. Figure 3 

shows schematic illustrating methodology of environmental 

impact assessment based on RS, GIS, and landscape analyses 

presented by Li, et al., 2010. 
 

 
 

Fig 3: Schematic illustrating methodology of environmental impact assessment based on RS, GIS, and landscape analyses (Li, et al., 2010). 

 

The culmination of these challenges underscores the urgent 

need for advanced geospatial tools capable of transforming 

environmental risk assessment into a more accurate, 

transparent, and comprehensive process. Geographic 

Information Systems (GIS) have emerged as one of the most 

powerful technologies for addressing the limitations of 

traditional methods. GIS enables the integration of diverse 

datasets including soil chemistry, hydrogeology, land use, 

topography, atmospheric dispersion, and proximity to 

sensitive receptors into a unified spatial framework. This 

capability is essential for understanding contamination 

patterns, modeling pollutant transport, identifying hotspots, 

and predicting exposure pathways (Hoek, Beelen & 

Brunekreef, 2011, Levy, 2013). Moreover, GIS supports 

multi-criteria analysis, allowing practitioners to evaluate 

environmental, social, economic, and regulatory factors 

simultaneously. 

Despite its potential, GIS is still underutilized in many 
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redevelopment assessment processes, largely due to gaps in 

technical capacity, lack of standardized protocols, and 

insufficient awareness among practitioners and 

policymakers. As redevelopment pressures intensify and 

environmental liabilities accumulate, the limitations of 

traditional assessment methods will become increasingly 

untenable. A GIS-enhanced environmental risk assessment 

model offers a transformative pathway by enabling spatial 

intelligence, predictive analytics, transparent 

communication, and evidence-based decision-making. Its 

adoption will bridge critical gaps in current evaluation 

practices and support the safe, sustainable, and equitable 

redevelopment of high-priority industrial sites (Bowen & 

Wittneben, 2011, Schaltegger & Csutora, 2012). 

 

4. The Role of GIS in Environmental Risk Assessment 

Geographic Information Systems (GIS) have become 

indispensable tools in modern environmental risk 

assessment, particularly for high-priority industrial 

redevelopment sites where contamination is complex, 

multidimensional, and often poorly documented. The role of 

GIS in this context extends far beyond simple mapping; it 

encompasses an integrated analytical framework capable of 

synthesizing vast quantities of spatial and non-spatial data to 

reveal contamination patterns, model exposure pathways, and 

support evidence-based decision-making. As environmental 

challenges grow more intricate and regulatory expectations 

become more stringent, GIS provides the technical backbone 

needed to transition from traditional, fragmented assessment 

approaches to comprehensive, data-driven models that reflect 

the true complexity of industrial landscapes (Maas, 

Schaltegger & Crutzen, 2016, Tang & Luo, 2014). 

One of the core strengths of GIS is its capacity for spatial 

analytics, which enables practitioners to identify 

relationships, patterns, and trends that cannot be detected 

through conventional point-based sampling or isolated 

laboratory results. Contaminants rarely occur in uniform 

distributions across industrial sites; instead, they form 

hotspots, gradients, and plumes influenced by soil 

heterogeneity, groundwater flow, and historical industrial 

operations. Spatial analytics allows evaluators to interpolate 

between sampling points, estimate contaminant distribution 

across unsampled areas, and generate continuous surfaces 

that visualize both concentration levels and spatial variability 

(Ascui, 2014, Hartmann, Perego & Young, 2013). By 

applying kriging, inverse distance weighting, or spline 

interpolation techniques, GIS generates a more holistic 

representation of site conditions, drastically reducing 

uncertainty and revealing hidden contamination zones that 

could compromise redevelopment plans if overlooked. 

GIS data layering further enhances the depth and accuracy of 

environmental evaluations. Contaminated sites are shaped by 

multiple interconnected factors geological properties, 

hydrological processes, land use history, infrastructure 

networks, ecological sensitivities, and socio-economic 

contexts. GIS allows all these datasets to be integrated into a 

multilayered spatial environment where they can be analyzed 

collectively rather than in isolation. For example, overlaying 

groundwater direction maps with contaminant plume data 

helps determine whether pollutants may migrate toward 

residential areas, wetlands, or critical water wells. Similarly, 

combining topographic models with stormwater flow 

patterns reveals how surface runoff might redistribute 

contaminants after heavy rainfall, a factor increasingly 

important under climate change conditions (Ascui & Lovell, 

2012, Steininger, et al., 2016). This layered integration 

supports more accurate risk profiling and ensures that 

remediation strategies are tailored to the unique 

environmental dynamics of each site. 

Remote sensing integration significantly expands the 

analytical capabilities of GIS in environmental risk 

assessment. Satellite imagery, aerial photography, LiDAR 

elevation models, and drone-based monitoring provide 

continuous, large-scale, and temporally rich datasets that 

complement ground-based measurements. Remote sensing 

detects subtle environmental changes such as vegetation 

stress, abnormal surface temperature patterns, soil moisture 

anomalies, or surface water fluctuations each of which may 

signal underlying contamination or hydrological disruptions. 

When incorporated into GIS, these datasets enhance the early 

detection of environmental hazards and help validate or 

refine contamination models (Burritt, Schaltegger & 

Zvezdov, 2011, Gibassier & Schaltegger, 2015). Remote 

sensing is particularly valuable for monitoring inaccessible 

areas or regions where subsurface sampling is limited by cost, 

safety concerns, or regulatory constraints. Integrating these 

datasets into GIS allows practitioners to track long-term 

environmental trends, assess the effectiveness of remediation 

measures, and identify new risks as redevelopment 

progresses. Figure 4 shows figure of GIS as a vital tool for 

Environmental Impact Assessment and Mitigation presented 

by Gharehbaghi & Scott-Young, 2018. 
 

 
 

Fig 4: GIS as a vital tool for Environmental Impact Assessment and Mitigation (Gharehbaghi & Scott-Young, 2018).
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One of the most critical contributions of GIS to 

environmental risk assessment is its ability to model and 

visualize exposure pathways. Contaminants from industrial 

sites can spread through multiple media air, soil, 

groundwater, surface water, and biological systems creating 

complex pathways through which humans and ecological 

receptors may be exposed. GIS enables the construction of 

detailed pathway models that illustrate how contaminants are 

transported, where they accumulate, and which populations 

or ecosystems are at risk. For instance, modeling 

groundwater flow and plume migration can identify 

neighborhoods vulnerable to contaminated well water. 

Spatial modeling of air dispersion from volatile compounds 

reveals areas at risk from inhalation exposure (Barzegar, et 

al., 2018, Karandish, Darzi-Naftchali & Asgari, 2017). 

Mapping soil contamination alongside playgrounds, schools, 

parks, and residential developments helps quantify potential 

exposures for sensitive populations such as children and the 

elderly. These visualization capabilities transform highly 

technical assessment findings into clear, intuitive maps that 

regulators, community stakeholders, and decision-makers 

can easily understand. 

Additionally, GIS supports scenario-based planning and 

predictive modeling, allowing practitioners to assess how 

environmental conditions might evolve under different land-

use changes, climate conditions, or remediation strategies. 

Predictive models can simulate the impact of installing new 

stormwater systems, constructing foundations, altering 

drainage patterns, or modifying industrial infrastructure. This 

capability helps stakeholders evaluate the consequences of 

various decisions before implementation, reducing 

environmental liabilities and ensuring long-term 

sustainability (Park, et al., 2016, Ransom, et al., 2017). For 

example, GIS may reveal how redevelopment activities could 

inadvertently mobilize contaminants previously immobilized 

in soil, or how excavation might intersect with a groundwater 

plume. By testing multiple scenarios, planners can optimize 

remediation efforts, minimize costs, and ensure that 

redevelopment aligns with safety and environmental 

objectives. 

GIS also plays a transformative role in improving regulatory 

compliance and decision-making. Environmental agencies 

require detailed, transparent, and reproducible evaluations of 

contamination, exposure pathways, and mitigation plans. GIS 

provides a standardized framework for storing, analyzing, 

and presenting environmental data, ensuring consistency and 

clarity throughout the assessment process. Its ability to 

integrate regulatory thresholds and screening levels directly 

into spatial analyses streamlines compliance checks and 

highlights areas that exceed acceptable limits (Naghibi, 

Pourghasemi & Dixon, 2016, Rodriguez-Galiano, et al., 

2014). GIS outputs can be easily shared with regulatory 

authorities, facilitating faster approvals, reducing 

discrepancies, and providing a clear audit trail for future 

reviews. Moreover, GIS-driven analyses align with modern 

regulatory emphasis on cumulative impacts, cross-media 

interactions, and climate-resilient planning. 

Beyond regulatory functions, GIS enhances community 

engagement and transparency. Many industrial 

redevelopment sites are located in densely populated or 

historically disadvantaged areas where public trust is fragile. 

Traditional technical reports are often difficult for laypersons 

to interpret, leading to confusion, mistrust, and resistance to 

redevelopment initiatives. GIS visualizations such as 

contamination maps, risk heat zones, and exposure pathway 

diagrams communicate complex environmental information 

in a clear, accessible manner. This strengthens public 

understanding, empowers communities to participate in 

planning processes, and promotes equitable redevelopment 

outcomes. Transparent risk communication is essential for 

building consensus and ensuring that redevelopment plans 

meet community needs and expectations (Liakos, et al., 2018, 

Singh, Gupta & Mohan, 2014). 

Moreover, GIS enables efficient prioritization of sites 

requiring remediation. High-priority industrial areas typically 

involve limited funding, tight timelines, and competing 

redevelopment objectives. GIS-based multi-criteria decision 

analysis allows stakeholders to evaluate sites based on 

contamination severity, risk levels, proximity to sensitive 

populations, potential economic value, ecological 

considerations, and remediation feasibility. This systematic 

approach ensures that resources are allocated where they will 

have the greatest environmental and social impact. It also 

helps avoid inefficient, politically driven, or ad hoc decision-

making processes that may overlook critical scientific 

evidence (Ahmed, 2017, Karpatne, et al., 2018). 

In summary, the role of GIS in environmental risk assessment 

for industrial redevelopment sites is both foundational and 

transformative. Its capabilities in spatial analytics, data 

layering, remote sensing integration, exposure pathway 

visualization, and predictive modeling significantly enhance 

the precision, comprehensiveness, and transparency of 

environmental evaluations. By overcoming the limitations of 

traditional assessment methods, GIS provides a powerful 

platform for understanding complex contamination patterns, 

supporting regulatory compliance, informing community 

engagement, and guiding sustainable redevelopment. As 

urban growth accelerates and environmental challenges 

intensify, GIS-enabled risk assessment models will continue 

to be essential tools for ensuring that industrial 

redevelopment proceeds safely, responsibly, and with full 

consideration of long-term environmental and public health 

outcomes (Liakos, et al., 2018, Singh, Gupta & Mohan, 

2014). 

 

5. Model Framework and Components 

The framework and components of a GIS-enhanced 

environmental risk assessment model for high-priority 

industrial redevelopment sites are grounded in the need for a 

comprehensive, spatially driven approach capable of 

integrating complex environmental datasets, contamination 

indicators, and advanced analytical techniques into a unified 

decision-support system. This model aims to overcome the 

limitations of traditional assessment practices by providing 

an accurate representation of contamination dynamics across 

multiple media, identifying critical risk zones, and supporting 

remediation planning through transparent, evidence-based 

spatial analyses. At its core, the model operates as an 

interconnected framework composed of structured data 

inputs, sophisticated geostatistical tools, spatial modeling 

techniques, and decision-making algorithms that collectively 

enable a deeper understanding of environmental risks in 

industrial landscapes (Ahmed, 2017, Karpatne, et al., 2018). 

A foundational component of the model is the integration of 

diverse environmental data inputs that reflect the 

multifaceted nature of contamination at industrial sites. Soil 

datasets capture information on heavy metals, hydrocarbons, 

persistent organic pollutants, and other industrial residues 
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that accumulate in the vadose zone. Water datasets include 

information on groundwater levels, hydraulic gradients, 

dissolved contaminants, turbidity, pH, and conductivity, 

providing insight into contaminant mobility and subsurface 

flow dynamics. Surface water data from nearby rivers, canals, 

and wetlands help assess potential off-site pollutant migration 

and ecological impacts (Lemming, 2010, Wang, et al., 2017). 

Air quality datasets, though sometimes overlooked in 

environmental risk models, play a crucial role in identifying 

volatile organic compounds, particulate matter, and airborne 

deposition patterns that may pose inhalation risks to nearby 

communities. Hydrogeological inputs, such as soil 

permeability, aquifer characteristics, recharge rates, and 

geological formations, are essential for modeling 

contaminant transport pathways and understanding the long-

term behavior of pollutants in subsurface environments. 

These datasets collectively form the environmental 

foundation of the model, enabling a holistic assessment that 

reflects real-world contamination complexity. 

Equally important are the contamination indicators used to 

interpret and quantify environmental hazards. These 

indicators include pollutant concentration levels, toxicity 

thresholds, regulatory screening limits, bioaccumulation 

potential, and contaminant persistence in various media. 

Additional indicators such as redox conditions, organic 

carbon content, and microbial activity influence contaminant 

degradation and mobility. GIS allows these indicators to be 

represented spatially, providing clear visualizations of where 

risks exceed acceptable thresholds and where conditions may 

favor or inhibit pollutant transformation. The ability to 

integrate contamination indicators directly into spatial 

analyses distinguishes this model from traditional assessment 

frameworks, which often treat environmental variables 

independently and lack mechanisms for linking them 

geographically (An, et al., 2016, Mgbeahuruike, 2018). 

Spatial interpolation techniques form a critical analytical 

layer in the GIS-enhanced risk assessment model. Given that 

contamination sampling is typically limited by cost, time, and 

logistical constraints, interpolation methods help estimate 

pollutant concentrations in unsampled areas, producing 

continuous contaminant surfaces across the site. Techniques 

such as kriging, inverse distance weighting, radial basis 

functions, and natural neighbor interpolation allow 

practitioners to generate approximations that reflect 

underlying spatial structure. Kriging, in particular, is highly 

effective for environmental datasets because it incorporates 

spatial autocorrelation, enabling more accurate predictions 

and estimates of uncertainty. These interpolated surfaces 

provide essential insights into contaminant distribution 

patterns, highlighting gradients, directional trends, and 

diffuse contamination zones that would be invisible through 

point-based sampling alone (Hardie & McKinley, 2014, 

Williamson, 2011). By revealing hidden contamination 

between sampling locations, spatial interpolation supports 

more informed decisions about where additional sampling, 

monitoring, or remediation efforts should be concentrated. 

Hotspot mapping represents another crucial component of the 

model, enabling the identification of areas where 

contaminants reach unusually high concentrations. Using 

spatial statistics such as Getis-Ord Gi*, local Moran’s I, and 

kernel density estimation, GIS can detect clusters of elevated 

contaminant levels and differentiate them from random 

variation. Hotspots may correspond to historical industrial 

discharge points, chemical storage areas, waste disposal sites, 

pipeline leaks, or zones of concentrated surface runoff. 

Identifying these zones allows practitioners to prioritize 

remediation activities, allocate resources more effectively, 

and reduce potential exposure risks. Hotspot maps also 

provide visual clarity for regulators and community 

stakeholders, making it easier to communicate the spatial 

distribution of environmental hazards and justify decision-

making processes (Cappuyns & Kessen, 2014, Williamson, 

et al., 2011). 

Another essential element of the model framework is multi-

criteria weighted overlay analysis, which allows the 

integration of multiple environmental, socio-economic, and 

regulatory factors into a single spatial risk index. This 

technique enables practitioners to assign weights to different 

variables based on their relative importance in contributing to 

environmental risk. For example, areas with high 

contaminant concentrations, low soil permeability, shallow 

groundwater, and proximity to residential zones may be 

assigned higher risk scores. Weighted overlay analysis can 

incorporate factors such as distance to schools, hospitals, 

water bodies, and ecological reserves, ensuring that the risk 

model reflects real-world vulnerabilities and human health 

considerations (Mitchell, 2012, Sweeney & Kabouris, 2017). 

The method also accommodates regulatory thresholds, such 

that areas exceeding screening levels automatically receive 

higher weight values. By combining diverse datasets into a 

unified risk surface, the model provides a powerful decision-

making tool that reveals where risks are most severe and 

where interventions will have the greatest impact. 

In addition to weighted overlays, the model incorporates 

geoprocessing tools that support complex spatial analyses 

and scenario testing. Buffering techniques identify areas 

within specific distances of sensitive receptors or 

infrastructure. Network analyses explore how contaminants 

might travel through drainage systems, sewer networks, or 

natural hydrological pathways. Hydrological modeling tools 

simulate how rainfall, infiltration, and surface runoff 

influence contaminant transport, revealing potential flood-

induced mobilization risks and identifying pathways that 

could channel pollutants into nearby water bodies (Cheng, et 

al., 2011, Herat & Agamuthu, 2012). Temporal modeling 

capabilities allow analysts to track changes in contamination 

patterns over time and evaluate whether environmental 

conditions are improving, worsening, or stabilizing. These 

components collectively provide a dynamic analytical 

environment in which contamination behavior can be 

evaluated not only spatially but also temporally. 

The model framework also integrates remote sensing data to 

enhance spatial accuracy and provide insights into 

environmental conditions that are difficult to capture through 

ground sampling alone. High-resolution satellite imagery, 

drone-based surveys, and LiDAR datasets can reveal 

vegetation stress patterns, soil discoloration, surface 

anomalies, and structural changes associated with 

contamination or subsurface activity. Thermal imagery may 

detect zones of altered land-surface temperature associated 

with chemical reactions or groundwater discharge. When 

incorporated into GIS, these remote sensing datasets improve 

the spatial resolution of contamination models and support 

early detection of environmental hazards (Boriana, 2017, 

Hou & Al-Tabbaa, 2014). 

Visualization capabilities are another defining component of 

the model, transforming complex datasets into intuitive maps, 

charts, and three-dimensional renderings that support 
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communication among scientists, regulators, and community 

members. Three-dimensional plume modeling helps illustrate 

subsurface contamination and migration patterns. Heat maps 

highlight concentration gradients and risk intensities. 

Layered maps reveal relationships between contamination, 

land use, hydrology, and population vulnerabilities. These 

visual outputs play an important role in stakeholder 

engagement, making the science behind risk assessment more 

accessible and transparent (Ferdinand & Yu, 2016, Koop & 

van Leeuwen, 2017). 

Finally, the GIS-enhanced model incorporates a decision-

support framework that enables practitioners to evaluate 

multiple remediation scenarios and their environmental 

implications. By simulating alternative remediation strategies 

such as soil excavation, bioremediation, pump-and-treat, or 

containment GIS can help predict how each approach will 

influence contaminant levels, risk profiles, and long-term site 

stability. This ensures that redevelopment plans are grounded 

in robust scientific analysis and that decision-makers can 

choose strategies that maximize effectiveness while 

minimizing costs and environmental disruption (Jayasooriya, 

2016, Sayles, 2017). 

In totality, the model framework and its components form a 

comprehensive, integrated system capable of addressing the 

intricate environmental challenges associated with high-

priority industrial redevelopment sites. By combining 

detailed data inputs, sophisticated geostatistical tools, 

advanced spatial modeling techniques, and multi-criteria 

decision-making processes, the GIS-enhanced model offers a 

powerful approach for evaluating contamination, identifying 

risk zones, prioritizing remediation, and supporting 

sustainable land reuse. 

 

6. Case Application to High-Priority Industrial Sites 

Applying a GIS-enhanced environmental risk assessment 

model to high-priority industrial redevelopment sites offers a 

practical demonstration of how spatial technologies, 

environmental datasets, and advanced analytical methods 

converge to support evidence-based decision-making. A case 

application illustrates the model’s capabilities in real-world 

conditions by examining how contaminated industrial areas 

can be systematically evaluated, visualized, and prioritized 

for remediation. The implementation process involves clear 

site selection criteria, comprehensive spatial data acquisition, 

geoprocessing workflows, visualization outputs, and the 

identification of high-risk zones based on contamination 

intensity and exposure pathways. Through this 

demonstration, the value of GIS in transforming complex 

environmental assessments into actionable insights becomes 

evident (Kato, 2010, Meerow & Newell, 2017). 

The first step in the case application involves selecting 

suitable high-priority industrial sites. Site selection criteria 

typically include the presence of documented or suspected 

contamination, historical records of intensive industrial 

operations, proximity to vulnerable communities or 

ecological receptors, redevelopment pressure from urban 

planners, and regulatory classification as brownfields or 

hazardous sites. Additional criteria may include incomplete 

environmental records, ongoing public health concerns, or 

evidence of pollutant migration into surrounding 

environments. The chosen site should reflect the complexity 

and diversity of contamination challenges associated with 

legacy industrial landscapes for example, an abandoned 

manufacturing plant, a former petroleum refinery, or a 

chemical processing facility (Awe, Akpan & Adekoya, 2017, 

Osabuohien, 2017). This ensures the assessment model is 

applied to a context where its full capabilities can be 

demonstrated. 

Following site selection, the next stage involves acquiring 

spatial data necessary to populate the model. This includes 

high-resolution satellite imagery to capture current land 

conditions, historical aerial photos to track past industrial 

activities, soil and groundwater sampling results, 

hydrological maps, geological data, topographic surfaces, 

land use shapefiles, utility networks, and regulatory boundary 

data. Additional datasets may include remote sensing-derived 

vegetation indices, land surface temperature models, soil 

moisture layers, and atmospheric deposition maps, all of 

which help characterize environmental conditions at multiple 

scales. Ground-truthing through field surveys and GPS-

referenced sampling enhances data accuracy. Each dataset is 

georeferenced and standardized to ensure consistency across 

the GIS environment, enabling seamless integration into the 

risk assessment model (Akpan, Awe & Idowu, 2019, 

Ogundipe, et al., 2019). 

Once the datasets are acquired, the model begins processing 

the information using a series of geospatial workflows. Soil 

contaminant concentrations are interpolated using kriging or 

inverse distance weighting to create continuous surfaces that 

depict pollutant distributions across the site. Groundwater 

sampling points are combined with hydrogeological layers to 

model flow directions and contaminant migration pathways. 

Land use and proximity analyses identify sensitive receptors 

such as residential areas, schools, rivers, and wetlands (Awe 

& Akpan, 2017). Hotspot mapping techniques pinpoint 

clusters of elevated contamination based on spatial 

autocorrelation metrics. Each layer contributes to 

understanding how contaminants are distributed and how 

they interact with environmental systems. The geoprocessing 

workflow is iterative, allowing analysts to refine parameters 

as more data becomes available or inconsistencies are 

detected. 

A critical output of the model is contamination plume 

visualization, which offers a clear representation of how 

pollutants extend across soil and groundwater systems. Using 

3D visualization tools, analysts can depict contaminant 

concentrations at various depths, illustrating the vertical and 

lateral extent of plumes. For example, in a petroleum-

contaminated site, benzene or toluene plumes may be shown 

migrating along groundwater gradients, moving from the 

central industrial footprint toward adjacent neighborhoods or 

surface water bodies. These plume models reveal not only the 

concentration levels but also the direction and velocity of 

contaminant movement, allowing decision-makers to predict 

future risks based on environmental conditions and industrial 

legacies (Akpan, et al., 2017, Oni, et al., 2018). By animating 

plume progression over time, the model highlights how 

environmental changes, such as increased precipitation or 

changes in groundwater recharge patterns, may accelerate 

contaminant mobility. 

Beyond plume visualization, the model generates multiple 

layers of analytical outputs that contribute to a 

comprehensive understanding of site-specific risks. Hotspot 

maps reveal contamination clusters that demand immediate 

attention or further investigation. Weighted overlay analyses 

combine factors such as contaminant concentration, distance 

to receptors, soil permeability, groundwater depth, and 

ecological sensitivity to produce a composite risk index. This 
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index highlights zones where multiple risk factors coincide, 

identifying locations that pose the highest environmental and 

public health threats (Akomea-Agyin & Asante, 2019, Awe, 

2017, Osabuohien, 2019). For instance, an area with high 

heavy metal concentrations, shallow groundwater, and close 

proximity to a residential district may appear as a red zone on 

the risk map, indicating severe risk that requires rapid 

remediation. 

Spatial outputs also include buffer analyses that show 

exposure risks within different radii from the contamination 

source. A 100-meter buffer around a hotspot may identify 

risks to industrial workers, while a 500-meter buffer may 

capture risks to nearby residential areas. These analyses help 

stakeholders evaluate potential exposure pathways such as 

inhalation, dermal contact, or ingestion through contaminated 

water sources. Floodplain overlays further identify how 

periodic flooding could redistribute contaminants across 

wider geographic areas, complicating remediation and 

magnifying risks to downstream ecosystems (Afolabi, et al., 

2020, Bankole, Nwokediegwu & Okiye, 2020). 

Another important component of the case application is the 

evaluation of site-specific environmental processes. 

Hydrological modeling tools simulate how stormwater runoff 

interacts with contaminated soils, revealing pathways 

through which pollutants may reach surface water bodies. For 

example, a former chemical plant situated near a river may 

experience contaminant wash-off during heavy rainfall 

events, leading to pollutant deposition into aquatic 

ecosystems. GIS-based flow accumulation and watershed 

delineation tools highlight how environmental disturbances 

propagate spatially, enabling planners to design mitigation 

strategies that address both on-site and off-site risks (Fasasi 

& Ekechi, 2020, Lawoyin, Nwokediegwu & Gbabo, 2020). 

These insights are essential for urban redevelopment 

authorities who must ensure that new construction does not 

exacerbate contamination problems or endanger public 

health. 

The model also supports scenario testing, enabling analysts 

to evaluate how different remediation strategies might 

influence contamination risk. For example, isolating 

contaminated soil through capping may limit surface 

exposure but fail to prevent groundwater migration. 

Alternatively, soil excavation combined with bioremediation 

may significantly reduce contamination levels but incur 

higher costs and cause temporary land disturbance. GIS 

simulations reveal how each approach alters risk profiles 

across the site, helping stakeholders identify the most 

effective and sustainable remediation strategy. These 

predictive capabilities are crucial for balancing 

environmental, economic, and community interests in 

redevelopment planning (Fasasi, et al., 2020, Lawoyin, 

Nwokediegwu & Gbabo, 2020). 

Throughout the case application, visualization plays a central 

role in risk communication. Maps depicting contamination 

intensities, plume movements, risk indices, and remediation 

scenarios are shared with regulatory agencies, developers, 

environmental consultants, and community members. These 

visual outputs provide clarity and transparency, enabling all 

stakeholders to understand the environmental challenges and 

the rationale behind recommended interventions. Community 

engagement meetings benefit greatly from GIS visualization, 

as residents can clearly see how contamination affects their 

neighborhoods and what measures are being taken to reduce 

risks (Ike, et al., 2018). 

Ultimately, the identification of high-risk zones serves as the 

culmination of the case application. These zones represent 

intersections of high contaminant concentration, sensitive 

receptors, elevated exposure pathways, and regulatory 

exceedances. By mapping these zones, the GIS-enhanced 

model provides a concrete basis for prioritizing remediation 

actions, allocating resources efficiently, and guiding 

redevelopment plans that prioritize public health and 

environmental integrity. For example, areas identified as high 

risk may be designated for intensive remediation, restricted 

land uses, or environmental monitoring, while lower-risk 

zones may proceed to redevelopment more quickly. This 

clear stratification of risk improves decision-making and 

ensures that redevelopment proceeds safely and sustainably 

(Nwokediegwu, Bankole & Okiye, 2019, Oshoba, Hammed 

& Odejobi, 2019). 

In conclusion, the case application of the GIS-enhanced 

environmental risk assessment model demonstrates how 

spatial technologies transform complex environmental 

datasets into actionable insights that support safe and 

effective industrial redevelopment. Through systematic site 

selection, comprehensive data acquisition, geospatial 

processing, plume visualization, and risk zone identification, 

the model provides a robust framework for evaluating 

contamination dynamics and guiding remediation strategies 

grounded in scientific evidence. 

 

7. Discussion of Findings and Policy Implications 

The discussion of findings from the GIS-enhanced 

environmental risk assessment model for high-priority 

industrial redevelopment sites reveals the profound value of 

integrating spatial analytics, geostatistical modeling, and 

environmental data into a comprehensive decision-support 

framework. The model’s outputs provide a clearer, more 

detailed understanding of contamination patterns, exposure 

pathways, and environmental vulnerabilities than traditional 

assessment methods, thereby reshaping how redevelopment 

decisions are made. The interpretation of results highlights 

both the complexity of legacy pollution and the potential for 

using geospatial intelligence to guide environmental 

management, remediation strategies, and policy formulation. 

These insights carry significant implications not only for 

environmental protection but also for urban planning, socio-

economic development, and community engagement (Fasasi 

& Ekechi, 2020, Giwah, et al., 2020). 

Key findings from the model indicate that contamination 

within industrial redevelopment sites is rarely uniform or 

predictable. Instead, pollutants form intricate spatial patterns 

influenced by historical land uses, hydrogeological 

conditions, and surface processes. The ability of the model to 

reveal these patterns through spatial interpolation surfaces, 

plume visualizations, and hotspot mapping demonstrates the 

inadequacy of traditional sampling techniques that rely on 

limited data points. The spatial outputs show that 

contamination often extends far beyond documented areas, 

sometimes migrating toward residential zones, water bodies, 

or ecological habitats. These findings underscore the need for 

environmental managers to adopt spatially informed 

strategies that reflect the dynamic nature of pollutant 

movement rather than relying on static or incomplete datasets 

(Olatunde-Thorpe, et al., 2020, Oshoba, et al., 2020). 

The interpretation of model results also emphasizes the 

importance of understanding contaminant transport 

pathways. Groundwater flow modeling reveals how 
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pollutants travel across subsurface environments, sometimes 

bypassing physical barriers or crossing property boundaries. 

Surface runoff analyses show how rainfall events can rapidly 

redistribute contaminants across previously unaffected areas, 

particularly in sites with compromised drainage systems. 

These insights inform targeted remediation actions, helping 

managers identify not only where contamination currently 

exists but where it is likely to spread in the future. This 

predictive capability is essential for preventing long-term 

environmental degradation and avoiding costly remediation 

failures (Aifuwa, et al., 2020, Bankole, Nwokediegwu & 

Okiye, 2020). 

From a remediation prioritization perspective, the model’s 

ability to generate composite risk indices and identify high-

risk zones is particularly valuable. Weighted overlay analyses 

demonstrate that some areas pose disproportionately high 

risks because they combine multiple hazardous conditions: 

elevated contaminant concentrations, shallow groundwater, 

permeable soils, and close proximity to sensitive receptors 

such as schools, hospitals, or residential neighborhoods. 

These areas automatically become priority zones for 

remediation intervention. In contrast, zones with lower 

contamination levels or reduced exposure potential may 

require only minimal mitigation or monitoring (Faseemo, et 

al., 2009). This differential approach ensures that limited 

remediation resources are allocated efficiently, maximizing 

public health protection while minimizing unnecessary 

expenditures. 

Urban planning decisions are significantly enhanced by the 

insights generated from the GIS model. Redevelopment 

projects often involve transforming derelict industrial spaces 

into residential, commercial, or mixed-use districts. Without 

a clear understanding of contamination patterns, 

redevelopment poses risks to future occupants and could lead 

to long-term land-use conflicts. The model’s spatial outputs 

help planners identify which areas are safe for 

redevelopment, which require remediation before 

construction, and which may be unsuitable for certain land 

uses altogether. For example, areas directly overlying deep 

contamination plumes may be unsuitable for housing 

developments but appropriate for industrial reuse or green 

buffer zones. Urban planners can incorporate these findings 

into zoning decisions, infrastructure planning, and 

environmental compliance strategies, ensuring that 

redevelopment aligns with sustainability and safety goals. 

The findings also highlight important socio-economic 

implications. Many high-priority industrial sites are located 

in economically disadvantaged or environmentally 

overburdened communities that have historically borne the 

brunt of industrial pollution. The model provides a 

mechanism for identifying environmental injustices by 

showing where contamination overlaps with vulnerable 

populations. By visualizing these intersections, policymakers 

can design targeted interventions that address both 

environmental risks and socio-economic disparities. 

Redevelopment projects informed by these findings can 

create safer living conditions, stimulate local economies, and 

support community revitalization efforts. Additionally, areas 

prioritized for remediation may become catalysts for 

economic development, attracting investment and generating 

employment opportunities once environmental hazards are 

mitigated (Hammed, Oshoba & Ahmed, 2019, Sanusi, et al., 

2019). 

Another critical implication relates to environmental 

management policies. The model’s findings suggest the need 

for regulatory frameworks that emphasize spatially explicit 

risk assessment and continuous environmental monitoring. 

Traditional policies that rely on static contamination maps or 

periodic sampling may not capture the real-time dynamics of 

pollutant movement. GIS-based models enable ongoing 

surveillance, early detection of environmental changes, and 

rapid response to emerging threats. Policymakers could 

leverage these capabilities to establish guidelines for 

mandatory spatial assessments in redevelopment projects, 

standardized reporting systems for contamination data, and 

adaptive management strategies that respond to changing 

environmental conditions. Incorporating GIS into policy 

frameworks ensures greater precision, transparency, and 

accountability in environmental decision-making (Fasasi, 

Adebowale & Nwokediegwu, 2019, Owulade, et al., 2019). 

Stakeholder engagement emerges as one of the most 

significant benefits revealed by the model’s outputs. 

Environmental risk communication is often hindered by 

technical complexity, making it difficult for community 

members to understand the severity and distribution of risks. 

The model addresses this challenge by translating complex 

analytical results into intuitive visual maps and diagrams. 

These visualizations empower residents, community 

organizations, and local leaders to participate meaningfully 

in redevelopment discussions. Seeing contamination plumes, 

hotspot areas, and risk zones provides clarity that written 

reports cannot achieve. This transparency builds trust, 

reduces conflict, and fosters collaborative decision-making 

between developers, regulators, and affected communities 

(Ahmed, Odejobi & Oshoba, 2020, Giwah, et al., 2020). 

The model’s findings also support more equitable community 

engagement. In many redevelopment contexts, marginalized 

populations lack access to information or decision-making 

power. By using GIS-generated visualizations in public 

consultations, planners can ensure that community voices are 

heard and that redevelopment plans reflect local needs and 

concerns. This enhances procedural justice and strengthens 

the legitimacy of redevelopment efforts. Moreover, 

community-driven insights can help refine model inputs by 

providing local knowledge about historical industrial 

activities, flooding patterns, or undocumented pollution 

sources. 

Another policy implication concerns long-term 

environmental monitoring and adaptive management. The 

model demonstrates that conditions at industrial sites can 

change rapidly due to climatic events, construction activities, 

or hydrological alterations. Policymakers can use these 

findings to advocate for monitoring systems that integrate 

GIS, remote sensing, and real-time sensors to track 

environmental conditions continuously. Such systems ensure 

that remediation measures remain effective over time and that 

evolving risks are addressed promptly. Additionally, 

developers and regulatory agencies can use the model’s 

baseline outputs to evaluate the success of remediation efforts 

through post-cleanup monitoring (Bayeroju, et al., 2019, 

Fasasi, et al., 2019). 

Finally, the discussion highlights the broader significance of 

adopting GIS-enhanced risk assessment models in national 

and regional planning frameworks. As urbanization 

accelerates and industrial sites become prime locations for 

redevelopment, the need for robust environmental 

assessment tools is more critical than ever. The model’s 

findings demonstrate that GIS provides the spatial 
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intelligence necessary to guide sustainable redevelopment, 

protect public health, and promote environmental resilience. 

Integrating these tools into national redevelopment programs, 

environmental protection policies, and land-use planning 

guidelines would ensure that future development proceeds in 

a manner that balances economic growth with environmental 

stewardship (Afolabi, et al., 2020, Fasasi, et al., 2020). 

In summary, the findings and policy implications of the GIS-

enhanced environmental risk assessment model reveal its 

transformative potential for environmental management, 

remediation prioritization, urban planning, socio-economic 

development, and community engagement. The model not 

only enhances the accuracy and comprehensiveness of 

contamination assessments but also provides a decision-

making framework that aligns environmental protection with 

sustainable redevelopment and social equity (Ahmed, 

Odejobi & Oshoba, 2019, Nwokediegwu, Bankole & Okiye, 

2019). 

 

8. Conclusion 

The GIS-enhanced environmental risk assessment model for 

high-priority industrial redevelopment sites represents a 

significant advancement in the way complex contamination 

challenges are understood, evaluated, and managed. By 

integrating diverse environmental datasets with sophisticated 

geospatial analytics, the model provides a comprehensive and 

spatially explicit understanding of contamination patterns, 

exposure pathways, and environmental vulnerabilities that 

traditional assessment methods cannot achieve. This 

enhanced visibility into the behavior and distribution of 

pollutants allows environmental managers, urban planners, 

and policymakers to make more informed decisions that 

protect public health and support sustainable redevelopment. 

The model’s ability to visualize contamination plumes, 

identify hotspots, and prioritize high-risk zones ensures that 

remediation efforts are both targeted and cost-effective, 

ultimately improving environmental outcomes and reducing 

long-term liabilities. 

One of the most important contributions of the model lies in 

its capacity to unify soil, water, air, and hydrogeological data 

into a coherent analytical framework. This integration 

enables users to evaluate the interactions between different 

environmental systems and understand how contaminants 

move across them. The resulting insights support more 

strategic remediation planning, preventing the oversight of 

critical risk areas and reducing uncertainties that often hinder 

redevelopment projects. Additionally, the model enhances 

transparency and stakeholder engagement by transforming 

technical data into accessible visual formats that facilitate 

communication and encourage public participation. This is 

especially vital in communities historically affected by 

industrial pollution, where trust and clarity are essential for 

gaining support for redevelopment initiatives. 

The potential of the model to improve remediation outcomes 

is substantial. Its predictive capabilities allow practitioners to 

anticipate future contamination risks, assess the impact of 

environmental changes, and test alternative remediation 

strategies before implementing them. This forward-looking 

approach ensures that interventions are not only effective in 

the present but also resilient to future environmental 

conditions. Furthermore, the model supports regulatory 

compliance by providing standardized, reproducible outputs 

that align with environmental guidelines and risk-based 

decision-making frameworks. 

Looking ahead, future research should focus on enhancing 

the model’s predictive accuracy through the integration of 

emerging technologies such as machine learning, real-time 

sensor networks, and advanced remote sensing platforms. 

These technologies can improve the timeliness and precision 

of environmental monitoring, allowing for adaptive 

management strategies in rapidly changing environments. 

Additionally, expanding the model to incorporate socio-

economic indicators would deepen its relevance for equitable 

redevelopment planning, ensuring that environmental justice 

considerations are embedded in decision-making processes. 

As cities continue to pursue sustainable redevelopment, the 

GIS-enhanced risk assessment model will serve as an 

essential tool for balancing growth, safety, and environmental 

stewardship. 
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