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Abstract

Redeveloping high-priority industrial sites requires a robust
understanding of environmental risks to ensure safe land
reuse, regulatory compliance, and sustainable urban
planning.  This study presents a GIS-Enhanced
Environmental Risk Assessment Model designed to integrate
spatial analytics, environmental datasets, and contaminant-
specific indicators to improve the evaluation of legacy
pollution and potential human—ecosystem exposure
pathways. The model synthesizes multi-layer geospatial
information, including soil chemistry, hydrogeology,
groundwater flow patterns, historical land-use records,
atmospheric dispersion parameters, and proximity to
sensitive receptors such as residential zones, schools,
wetlands, and surface water bodies. Through the use of
spatial interpolation, contamination hotspot mapping, and
weighted overlay analysis, the model generates a
comprehensive risk index that supports evidence-based
prioritization of remediation interventions across industrial
redevelopment sites. The proposed framework incorporates
environmental thresholds, regulatory standards, and EPA-
recommended screening levels, enabling planners and
regulatory agencies to identify areas that exceed acceptable
contaminant limits. GIS-based spatial modeling further helps
visualize pollutant migration pathways, delineate zones of
elevated exposure potential, and simulate alternative

redevelopment scenarios under varying remediation
strategies. The integration of remote sensing datasets
enhances temporal monitoring of site conditions, enabling
early detection of land-surface changes, vegetation stress
patterns, and hydrological alterations that may signal
evolving contamination risks. A decision-support module
embedded in the model provides a transparent methodology
for ranking redevelopment sites based on environmental
severity, socio-economic implications, and projected
remediation costs. Application of the model to representative
industrial brownfield sites demonstrates its ability to improve
assessment accuracy, reduce uncertainties associated with
heterogeneous contamination, and enhance stakeholder
engagement through intuitive spatial visualizations. The
results underscore the critical role of GIS-driven approaches
in modern environmental management and sustainable land-
use planning. By offering a scalable, data-driven assessment
tool, the study contributes to improved environmental
stewardship and promotes safer redevelopment of industrial
zones affected by legacy pollution. The GIS-Enhanced
Environmental Risk Assessment Model ultimately
strengthens regulatory decision-making, supports community
health protection, and advances the transition toward
resilient, sustainable, and economically productive post-
industrial landscapes.

Keywords: GIS, Environmental Risk Assessment, Industrial Redevelopment, Brownfields, Geospatial Modeling,
Contamination Hotspot Mapping, Exposure Pathways, Spatial Analysis, Remediation Planning, Decision-Support Tools

1. Introduction

The redevelopment of high-priority industrial sites presents complex challenges that stem from decades of intensive production,
inadequate waste management practices, and poorly documented historical land uses that have left behind significant
environmental legacies. These sites often contain heterogeneous contamination distributed across soil, groundwater, and surface
water systems, creating substantial uncertainties for planners, environmental managers, and regulatory agencies seeking to
reclaim them for safe and productive use (Alibakhshi, et al., 2017, Zhang, et akl., 2013). Traditional assessment methods, while
useful, frequently fall short in capturing the spatial variability, multidimensional exposure pathways, and dynamic environmental
conditions that influence risk levels across contaminated landscapes.
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As urbanization intensifies and the demand for land suitable
for housing, commercial activities, and green infrastructure
increases, the need for reliable, data-driven approaches to
evaluate environmental hazards has become more urgent.

A GIS-enhanced environmental risk assessment model
provides a transformative avenue for addressing these
challenges by integrating diverse spatial datasets, analytical
tools, and visualizations capable of revealing complex
contamination patterns that would otherwise remain
undetected. Through its ability to layer historical land-use
records, hydrogeological information, soil chemistry data,
proximity to sensitive receptors, and contamination transport
pathways, GIS offers a comprehensive spatial perspective
essential for modern environmental planning. The capacity to
perform spatial interpolation, hotspot detection, multi-criteria
evaluation, and predictive modeling enables stakeholders to
understand not only where contaminants are located but also
how they behave over time and how they may affect human
health and ecological systems (Manfreda, et al., 2018, Sims
& Colloff, 2012).

Incorporating advanced geospatial tools into environmental
risk assessment supports transparent, evidence-based
decision-making, reduces uncertainties in redevelopment
planning, and enhances regulatory compliance by enabling
comparisons with environmental thresholds and remediation
standards. Moreover, GIS-driven analyses facilitate targeted
remediation, optimized resource allocation, and the
prioritization of sites that pose the greatest risks, thereby
improving both economic and environmental outcomes. As
aging industrial corridors become focal points for
revitalization, the integration of GIS in risk assessment is no
longer optional but essential for ensuring that redevelopment
activities are sustainable, resilient, and aligned with long-
term urban planning objectives (Buma & Livneh, 2017, Zhai,
Yue & Zhang, 2016).

2. Methodology

A GIS-Enhanced Environmental Risk Assessment Model
(GERAM) for high-priority industrial redevelopment sites
can be implemented as a mixed-methods, spatially explicit
risk-ranking workflow that integrates (i) geospatial screening
and exposure pathway logic, (ii) remote-sensing and in-situ
monitoring evidence, and (iii) predictive analytics with
decision rules that support redevelopment prioritization,
remediation targeting, and long-term monitoring. The study
begins by defining the decision unit as a “site polygon”
(redevelopment parcel boundary) and its area of influence
(buffered zone aligned with plausible exposure pathways
such as groundwater flow direction, drainage connectivity,
and prevailing wind sectors). A base geodatabase is built by
compiling  satellite/remote-sensing  products  (land
cover/imperviousness, vegetation stress indices, surface
moisture proxies), hydro-climatic layers (DEM, slope, flow
accumulation, drainage density), land use and sensitive
receptors (schools, clinics, residences), and
regulatory/operational attributes (past industrial processes,
chemical handling, treatment units) to capture credible
hazard sources and process-linked accident potential
(Gharehbaghi & Scott-Young, 2018; Thakur et al., 2017;
Afolabi et al., 2020b). Historical site use is reconstructed
from planning records, imagery time series, and field
reconnaissance to identify legacy hotspots, likely
contaminant groups, and potential “secondary sources” such
as sludge handling footprints, drainage outfalls, and
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chlorination/disinfection infrastructure that can elevate acute
and chronic risk in water-adjacent sites (Afolabi et al., 20204a;
Afolabi et al., 2020b).

Primary data collection follows a tiered field protocol: rapid
screening first (walkover, GPS-referenced observations,
photo logs, evidence of stained soils, stressed vegetation,
drainage conditions), then confirmatory sampling guided by
a conceptual site model (CSM) that links sources—pathways—
receptors. Sampling locations are selected using GIS
stratification  (hotspot  zones, upgradient/background
controls, drainage convergence points, downwind/down-
gradient receptors) and optimized to reduce spatial bias and
improve inference. Where water and sanitation infrastructure
or interventions influence environmental conditions, in-situ
sensors and targeted spot measurements are incorporated to
improve temporal coverage and reduce uncertainty in
exposure proxies (Andres et al., 2018). If wastewater
treatment or layered soil treatment systems are relevant to site
reuse planning, design/operational variables are captured as
covariates because they can modify contaminant mobility and
attenuation (An et al., 2016). For sites with suspected
groundwater impacts, intrinsic vulnerability descriptors
(depth to water table proxies, permeability surrogates,
topographic wetness index, proximity to recharge features)
are derived in GIS for subsequent modeling, consistent with
GIS-supported  environmental ~ assessment  practice
(Gharehbaghi & Scott-Young, 2018; Naghibi et al., 2016).
To convert heterogeneous evidence into actionable risk, the
model computes three coupled indices for each site: a Hazard
Potential Index (HPI), an Exposure Pathway Index (EPI), and
a Receptor Sensitivity Index (RSI). HPI is constructed from
legacy process indicators (e.g., chemical sludge
conditioning/dewatering residues and polymer usage
footprints) and operational hazard attributes (e.g.,
chlorination/disinfection unit proximity, storage, historical
releases) that reflect both contamination likelihood and
process-safety severity (Afolabi et al., 2020a; Afolabi et al.,
2020b). EPI is generated from spatial pathway variables
(runoff connectivity, flood susceptibility, groundwater flow
potential,  distance-to-surface-water,  soil/land  cover
permeability proxies, and wind exposure corridors),
supported by remote-sensing indicators that can act as early
signals of ecological stress or hydrological transitions
(Alibakhshi et al., 2017; Buma & Livneh, 2017; Thakur et
al., 2017). RSI captures receptor density and vulnerability
(population, sensitive land uses, ecosystem services proxies),
and is adjusted using planning context of industrial
regeneration to reflect redevelopment pressure and land-use
change risk (Boriana, 2017; Cheng et al., 2011). Each index
is normalized (0-1), quality-flagged, and weighted using a
transparent multi-criteria logic (expert scoring plus
sensitivity testing) to produce a Composite Environmental
Risk Score (CERS).

Predictive analytics is then used to (a) estimate risk surfaces
within and around each site, and (b) classify sites into priority
tiers. A supervised learning layer is trained where labels exist
(e.g., known exceedances, confirmed contamination classes,
remediation history), otherwise semi-supervised clustering is
applied to identify latent site types. Model candidates include
Random Forest or ensemble learners suitable for non-linear
interactions and mixed data types, reflecting best practice in
contamination risk mapping and ensemble modeling for
environmental prediction (Barzegar et al., 2018; Rodriguez-
Galiano et al., 2014; Ransom et al., 2017). Feature
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engineering combines remote-sensing time-series summaries
(trend, seasonality, abrupt change metrics) with GIS
covariates and field chemistry/physical measurements.
Where real-time or high-frequency data streams are available
(sensors, 10T deployments), an ingestion pipeline is used to
append fresh observations to the geodatabase and enable
rolling updates of risk scores, drawing on loT-big data
forecasting concepts (Ahmed, 2017; Zhai et al., 2016). To
ensure scalable processing and reproducible runs across
many sites, the workflow is implemented as modular services
(data ingestion, preprocessing, modeling, scoring, mapping)
with automated constraint checks (e.g., missing-data
thresholds, coordinate  validity, range constraints).
Algorithmic constraint satisfaction concepts are used to
enforce rule consistency (e.g., a site cannot be assigned “low
exposure” if receptor density and pathway connectivity
exceed set bounds), and cloud-style scaling logic is applied
to allocate compute for larger cities or national inventories of
brownfields (Ahmed et al., 2019; Ahmed et al., 2020).

Model performance and credibility are evaluated through
spatial cross-validation (e.g., block CV to limit spatial
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leakage), confusion matrices for tier classification, and
error/uncertainty reporting for continuous risk outputs.
Ground-truth  validation uses withheld samples and
independent observations (e.g., targeted resampling,
confirmatory laboratory tests, or regulator datasets where
available). The study conducts sensitivity and uncertainty
analysis by varying index weights and testing how rankings
shift, and it reports stability statistics (rank correlation and
tier-flip rates) so decision makers can sece whether a site’s
priority is robust or weight-dependent. Finally, outputs are
operationalized into GIS decision products: (i) a site-level
risk register, (ii) hotspot maps (risk rasters and pathway
corridors), (iii) recommended sampling and remediation
focus zones, and (iv) a monitoring plan that specifies
indicators, sensor placement logic, and update frequency.
The redevelopment recommendation step integrates risk
tiering with land-use suitability planning to support phased
redevelopment that aligns mitigation intensity with risk
magnitude, consistent with integrative brownfield planning
approaches (Cheng et al., 2011; Cappuyns & Kessen, 2014).
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Fig 1: Flowchart of the study methodology
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3. Background and Problem Statement

The redevelopment of high-priority industrial sites presents a
uniquely complex set of challenges rooted in historical land-
use practices, extensive pollution legacies, and the increasing
demand for safe and sustainable land reuse in rapidly
expanding urban regions. Many industrial sites were
developed during periods when environmental regulations
were limited or nonexistent, resulting in decades of
unmonitored emissions, improper waste disposal, accidental
chemical releases, and poorly documented operational
processes. These activities have left behind contaminant
mixtures in soil, groundwater, sediments, and surrounding
ecosystems. As these areas become prime targets for urban
renewal, economic revitalization, and infrastructure
expansion, the need for accurate and reliable environmental
risk assessment has become more critical than ever.
However, traditional assessment frameworks often fall short
of adequately characterizing the spatial and temporal
complexity of contamination, thereby hindering effective
remediation planning and exposing communities to potential
long-term risks (Schultz & Engman, 2012, Sorooshian, et al.,
2014).

Conventional environmental assessment methods typically
rely on point-based sampling, laboratory analyses, and expert
interpretation to identify contaminants and evaluate risks.
While these approaches provide valuable site-specific
information, they are fundamentally limited in capturing the
heterogeneous nature of contamination across large and
dynamic industrial landscapes. Contaminants rarely occur
uniformly; instead, they form irregular plumes influenced by
soil structure, hydrogeology, stormwater dynamics, depth to
groundwater, and decades of variable industrial activity. The
reliance on sparse sampling points means that much of the
subsurface remains uncharacterized, often leading to
incomplete understanding of pollutant distribution (Thakur,
Singh & Ekanthalu, 2017). This gap introduces significant
uncertainties, resulting in either overly conservative
remediation strategies that inflate costs or insufficient
interventions that leave residual risks unaddressed.
Moreover, traditional assessments often struggle to identify
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emerging contaminants or interactions among multiple
pollutants that may enhance toxicity or mobility.

Another major challenge lies in the fact that high-priority
industrial redevelopment sites typically exhibit layered
contamination histories, where pollutants from different
industrial eras overlap spatially and chemically. These
overlapping contaminants make it difficult to isolate
exposure pathways or predict potential migration patterns.
Soil properties, groundwater flow, seasonal variability, and
infrastructural alterations further influence contaminant
behavior, requiring analytical methods capable of integrating
multiple  environmental  processes  simultaneously.
Traditional assessment techniques, however, lack the
computational and spatial modeling capacity needed to
predict contaminant transport or understand how
environmental changes such as increased rainfall intensity
due to climate change may influence pollutant mobility over
time (Andres, et al.,, 2018, Turczynowicz, Pisaniello &
Williamson, 2012).

Regulatory requirements add another layer of complexity to
environmental assessment for redevelopment projects.
Agencies such as the U.S. Environmental Protection Agency
(EPA) mandate comprehensive evaluations of pollutant
concentrations, exposure pathways, ecological risks, and
human health implications. Many jurisdictions require
alignment with screening thresholds, risk-based corrective
actions, and evidence-backed remediation plans. Meeting
these requirements demands accuracy, transparency, and
reproducibility, yet traditional assessment tools often
produce static, fragmented datasets that are difficult for

regulators and stakeholders to interpret. Regulatory
frameworks increasingly emphasize cumulative risk
assessment, cross-media interactions, and long-term

stewardship all of which require integrated, spatially explicit
data that traditional methods are not designed to produce.
Inadequate or nonstandardized assessment approaches may
lead to long approval timelines, rejection of redevelopment
proposals, or costly re-evaluations after remediation has
begun. Figure 2 shows figure of GIS in Disaster
Management presented by Paul, et al., 2020.

Fig 2: GIS in Disaster Management (Paul, et al., 2020).
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In addition to regulatory pressures, there are significant gaps
in current evaluation methods that hinder effective decision-
making across contaminated industrial sites. Many
assessment  frameworks rely heavily on historical
documentation, yet industrial records are frequently
incomplete, inaccurate, or unavailable. This lack of reliable
baseline information forces practitioners to make
assumptions about contaminant sources, magnitudes, and
behavior, increasing the risk of misclassification and
misinterpretation. In many cases, early assessments fail to
capture the full breadth of contamination because initial
sampling strategies are designed without the benefit of spatial
intelligence (McAlary, Provoost & Dawson, 2010, Provoost,
et al., 2013). This oversight results in remediation strategies
that address only part of the problem, allowing contaminants
to persist or migrate into newly redeveloped areas, thereby
posing risks to future occupants and undermining public
confidence in the redevelopment process.

Furthermore, current assessment practices often lack the
capacity to integrate advances in environmental monitoring
technologies such as remote sensing, real-time sensors, and
predictive modeling tools. These technologies generate
extensive datasets that could significantly improve the
precision of risk evaluations, yet traditional methodologies
provide no structured mechanism for incorporating them. The
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absence of integrated systems means valuable information
about vegetation stress, land-surface anomalies, hydrological
changes, or atmospheric emissions remains underutilized.
Without holistic tools capable of merging these datasets with
ground-based measurements and regulatory thresholds,
decision-makers are left with fragmented insights rather than
comprehensive risk profiles (Roghani, 2018, Wang, Unger &
Parker, 2014).

Public engagement and transparency also suffer under
conventional assessment models. Risk communication relies
heavily on technical reports, tables, and nonvisual data that
are difficult for nonexperts to interpret. As industrial
redevelopment often occurs in densely populated, low-
income, or historically marginalized communities, there is a
critical need for assessment tools that can communicate risks
clearly and inclusively (Derycke, et al., 2018, Kulawiak &
Lubniewski, 2014). Traditional methods fail to offer intuitive
visualizations, spatial comparisons, or scenario simulations
that could help stakeholders understand potential
environmental and health outcomes. This gap contributes to
mistrust, resistance to redevelopment initiatives, and delays
in achieving consensus on remediation strategies. Figure 3
shows schematic illustrating methodology of environmental
impact assessment based on RS, GIS, and landscape analyses
presented by Li, et al., 2010.

Composition
Analysis of Land-use Types Patch Types
(Spatial Discontinuous Proportions
Variables)
Configuration
Spatial Arrangement
Characteristics of Patch S!_1apc
Regional Connectivity
Ecosystem | N\ L1 e
Land-use Type
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Soil Type and Processing
Vegetarian Trend
Biomass Magnitude
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IAuto-correlation

Urban Expansion/Wetland Decrease
Extent, Rate and Intensity Analysis
(Spatial Continuous Variables)

Degree
Intensity
Range

Fig 3: Schematic illustrating methodology of environmental impact assessment based on RS, GIS, and landscape analyses (Li, et al., 2010).

The culmination of these challenges underscores the urgent
need for advanced geospatial tools capable of transforming
environmental risk assessment into a more accurate,
transparent, and comprehensive process. Geographic
Information Systems (GIS) have emerged as one of the most
powerful technologies for addressing the limitations of
traditional methods. GIS enables the integration of diverse
datasets including soil chemistry, hydrogeology, land use,
topography, atmospheric dispersion, and proximity to

sensitive receptors into a unified spatial framework. This
capability is essential for understanding contamination
patterns, modeling pollutant transport, identifying hotspots,
and predicting exposure pathways (Hoek, Beelen &
Brunekreef, 2011, Levy, 2013). Moreover, GIS supports
multi-criteria analysis, allowing practitioners to evaluate
environmental, social, economic, and regulatory factors
simultaneously.

Despite its potential, GIS is still underutilized in many
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redevelopment assessment processes, largely due to gaps in
technical capacity, lack of standardized protocols, and
insufficient  awareness among  practitioners  and
policymakers. As redevelopment pressures intensify and
environmental liabilities accumulate, the limitations of
traditional assessment methods will become increasingly
untenable. A GlIS-enhanced environmental risk assessment
model offers a transformative pathway by enabling spatial
intelligence, predictive analytics, transparent
communication, and evidence-based decision-making. Its
adoption will bridge critical gaps in current evaluation
practices and support the safe, sustainable, and equitable
redevelopment of high-priority industrial sites (Bowen &
Wittneben, 2011, Schaltegger & Csutora, 2012).

4. The Role of GIS in Environmental Risk Assessment
Geographic Information Systems (GIS) have become
indispensable tools in modern environmental risk
assessment, particularly  for high-priority  industrial
redevelopment sites where contamination is complex,
multidimensional, and often poorly documented. The role of
GIS in this context extends far beyond simple mapping; it
encompasses an integrated analytical framework capable of
synthesizing vast quantities of spatial and non-spatial data to
reveal contamination patterns, model exposure pathways, and
support evidence-based decision-making. As environmental
challenges grow more intricate and regulatory expectations
become more stringent, GIS provides the technical backbone
needed to transition from traditional, fragmented assessment
approaches to comprehensive, data-driven models that reflect
the true complexity of industrial landscapes (Maas,
Schaltegger & Crutzen, 2016, Tang & Luo, 2014).

One of the core strengths of GIS is its capacity for spatial
analytics, which enables practitioners to identify
relationships, patterns, and trends that cannot be detected
through conventional point-based sampling or isolated
laboratory results. Contaminants rarely occur in uniform
distributions across industrial sites; instead, they form
hotspots, gradients, and plumes influenced by soil
heterogeneity, groundwater flow, and historical industrial
operations. Spatial analytics allows evaluators to interpolate
between sampling points, estimate contaminant distribution
across unsampled areas, and generate continuous surfaces
that visualize both concentration levels and spatial variability
(Ascui, 2014, Hartmann, Perego & Young, 2013). By
applying kriging, inverse distance weighting, or spline
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interpolation techniques, GIS generates a more holistic
representation of site conditions, drastically reducing
uncertainty and revealing hidden contamination zones that
could compromise redevelopment plans if overlooked.

GIS data layering further enhances the depth and accuracy of
environmental evaluations. Contaminated sites are shaped by
multiple interconnected factors geological properties,
hydrological processes, land use history, infrastructure
networks, ecological sensitivities, and socio-economic
contexts. GIS allows all these datasets to be integrated into a
multilayered spatial environment where they can be analyzed
collectively rather than in isolation. For example, overlaying
groundwater direction maps with contaminant plume data
helps determine whether pollutants may migrate toward
residential areas, wetlands, or critical water wells. Similarly,
combining topographic models with stormwater flow
patterns reveals how surface runoff might redistribute
contaminants after heavy rainfall, a factor increasingly
important under climate change conditions (Ascui & Lovell,
2012, Steininger, et al., 2016). This layered integration
supports more accurate risk profiling and ensures that
remediation strategies are tailored to the unique
environmental dynamics of each site.

Remote sensing integration significantly expands the
analytical capabilities of GIS in environmental risk
assessment. Satellite imagery, aerial photography, LiDAR
elevation models, and drone-based monitoring provide
continuous, large-scale, and temporally rich datasets that
complement ground-based measurements. Remote sensing
detects subtle environmental changes such as vegetation
stress, abnormal surface temperature patterns, soil moisture
anomalies, or surface water fluctuations each of which may
signal underlying contamination or hydrological disruptions.
When incorporated into GIS, these datasets enhance the early
detection of environmental hazards and help validate or
refine contamination models (Burritt, Schaltegger &
Zvezdov, 2011, Gibassier & Schaltegger, 2015). Remote
sensing is particularly valuable for monitoring inaccessible
areas or regions where subsurface sampling is limited by cost,
safety concerns, or regulatory constraints. Integrating these
datasets into GIS allows practitioners to track long-term
environmental trends, assess the effectiveness of remediation
measures, and identify new risks as redevelopment
progresses. Figure 4 shows figure of GIS as a vital tool for
Environmental Impact Assessment and Mitigation presented
by Gharehbaghi & Scott-Young, 2018.
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Fig 4: GIS as a vital tool for Environmental Impact Assessment and Mitigation (Gharehbaghi & Scott-Young, 2018).
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One of the most critical contributions of GIS to
environmental risk assessment is its ability to model and
visualize exposure pathways. Contaminants from industrial
sites can spread through multiple media air, soil,
groundwater, surface water, and biological systems creating
complex pathways through which humans and ecological
receptors may be exposed. GIS enables the construction of
detailed pathway models that illustrate how contaminants are
transported, where they accumulate, and which populations
or ecosystems are at risk. For instance, modeling
groundwater flow and plume migration can identify
neighborhoods vulnerable to contaminated well water.
Spatial modeling of air dispersion from volatile compounds
reveals areas at risk from inhalation exposure (Barzegar, et
al., 2018, Karandish, Darzi-Naftchali & Asgari, 2017).
Mapping soil contamination alongside playgrounds, schools,
parks, and residential developments helps quantify potential
exposures for sensitive populations such as children and the
elderly. These visualization capabilities transform highly
technical assessment findings into clear, intuitive maps that
regulators, community stakeholders, and decision-makers
can easily understand.

Additionally, GIS supports scenario-based planning and
predictive modeling, allowing practitioners to assess how
environmental conditions might evolve under different land-
use changes, climate conditions, or remediation strategies.
Predictive models can simulate the impact of installing new
stormwater systems, constructing foundations, altering
drainage patterns, or modifying industrial infrastructure. This
capability helps stakeholders evaluate the consequences of
various decisions before implementation, reducing
environmental  liabilities and  ensuring  long-term
sustainability (Park, et al., 2016, Ransom, et al., 2017). For
example, GIS may reveal how redevelopment activities could
inadvertently mobilize contaminants previously immobilized
in soil, or how excavation might intersect with a groundwater
plume. By testing multiple scenarios, planners can optimize
remediation efforts, minimize costs, and ensure that
redevelopment aligns with safety and environmental
objectives.

GIS also plays a transformative role in improving regulatory
compliance and decision-making. Environmental agencies
require detailed, transparent, and reproducible evaluations of
contamination, exposure pathways, and mitigation plans. GIS
provides a standardized framework for storing, analyzing,
and presenting environmental data, ensuring consistency and
clarity throughout the assessment process. Its ability to
integrate regulatory thresholds and screening levels directly
into spatial analyses streamlines compliance checks and
highlights areas that exceed acceptable limits (Naghibi,
Pourghasemi & Dixon, 2016, Rodriguez-Galiano, et al.,
2014). GIS outputs can be easily shared with regulatory
authorities,  facilitating  faster  approvals, reducing
discrepancies, and providing a clear audit trail for future
reviews. Moreover, GIS-driven analyses align with modern
regulatory emphasis on cumulative impacts, cross-media
interactions, and climate-resilient planning.

Beyond regulatory functions, GIS enhances community
engagement and  transparency.  Many industrial
redevelopment sites are located in densely populated or
historically disadvantaged areas where public trust is fragile.
Traditional technical reports are often difficult for laypersons
to interpret, leading to confusion, mistrust, and resistance to
redevelopment initiatives. GIS visualizations such as
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contamination maps, risk heat zones, and exposure pathway
diagrams communicate complex environmental information
in a clear, accessible manner. This strengthens public
understanding, empowers communities to participate in
planning processes, and promotes equitable redevelopment
outcomes. Transparent risk communication is essential for
building consensus and ensuring that redevelopment plans
meet community needs and expectations (Liakos, et al., 2018,
Singh, Gupta & Mohan, 2014).

Moreover, GIS enables efficient prioritization of sites
requiring remediation. High-priority industrial areas typically
involve limited funding, tight timelines, and competing
redevelopment objectives. GIS-based multi-criteria decision
analysis allows stakeholders to evaluate sites based on
contamination severity, risk levels, proximity to sensitive
populations,  potential economic value, ecological
considerations, and remediation feasibility. This systematic
approach ensures that resources are allocated where they will
have the greatest environmental and social impact. It also
helps avoid inefficient, politically driven, or ad hoc decision-
making processes that may overlook critical scientific
evidence (Ahmed, 2017, Karpatne, et al., 2018).

In summary, the role of GIS in environmental risk assessment
for industrial redevelopment sites is both foundational and
transformative. Its capabilities in spatial analytics, data
layering, remote sensing integration, exposure pathway
visualization, and predictive modeling significantly enhance
the precision, comprehensiveness, and transparency of
environmental evaluations. By overcoming the limitations of
traditional assessment methods, GIS provides a powerful
platform for understanding complex contamination patterns,
supporting regulatory compliance, informing community
engagement, and guiding sustainable redevelopment. As
urban growth accelerates and environmental challenges
intensify, GIS-enabled risk assessment models will continue
to be essential tools for ensuring that industrial
redevelopment proceeds safely, responsibly, and with full
consideration of long-term environmental and public health
outcomes (Liakos, et al., 2018, Singh, Gupta & Mohan,
2014).

5. Model Framework and Components

The framework and components of a GIS-enhanced
environmental risk assessment model for high-priority
industrial redevelopment sites are grounded in the need for a
comprehensive, spatially driven approach capable of
integrating complex environmental datasets, contamination
indicators, and advanced analytical techniques into a unified
decision-support system. This model aims to overcome the
limitations of traditional assessment practices by providing
an accurate representation of contamination dynamics across
multiple media, identifying critical risk zones, and supporting
remediation planning through transparent, evidence-based
spatial analyses. At its core, the model operates as an
interconnected framework composed of structured data
inputs, sophisticated geostatistical tools, spatial modeling
techniques, and decision-making algorithms that collectively
enable a deeper understanding of environmental risks in
industrial landscapes (Ahmed, 2017, Karpatne, et al., 2018).
A foundational component of the model is the integration of
diverse environmental data inputs that reflect the
multifaceted nature of contamination at industrial sites. Soil
datasets capture information on heavy metals, hydrocarbons,
persistent organic pollutants, and other industrial residues
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that accumulate in the vadose zone. Water datasets include
information on groundwater levels, hydraulic gradients,
dissolved contaminants, turbidity, pH, and conductivity,
providing insight into contaminant mobility and subsurface
flow dynamics. Surface water data from nearby rivers, canals,
and wetlands help assess potential off-site pollutant migration
and ecological impacts (Lemming, 2010, Wang, et al., 2017).
Air quality datasets, though sometimes overlooked in
environmental risk models, play a crucial role in identifying
volatile organic compounds, particulate matter, and airborne
deposition patterns that may pose inhalation risks to nearby
communities. Hydrogeological inputs, such as soil
permeability, aquifer characteristics, recharge rates, and
geological formations, are essential for modeling
contaminant transport pathways and understanding the long-
term behavior of pollutants in subsurface environments.
These datasets collectively form the environmental
foundation of the model, enabling a holistic assessment that
reflects real-world contamination complexity.

Equally important are the contamination indicators used to
interpret and quantify environmental hazards. These
indicators include pollutant concentration levels, toxicity
thresholds, regulatory screening limits, bioaccumulation
potential, and contaminant persistence in various media.
Additional indicators such as redox conditions, organic
carbon content, and microbial activity influence contaminant
degradation and mobility. GIS allows these indicators to be
represented spatially, providing clear visualizations of where
risks exceed acceptable thresholds and where conditions may
favor or inhibit pollutant transformation. The ability to
integrate contamination indicators directly into spatial
analyses distinguishes this model from traditional assessment
frameworks, which often treat environmental variables
independently and lack mechanisms for linking them
geographically (An, et al., 2016, Mgbeahuruike, 2018).
Spatial interpolation techniques form a critical analytical
layer in the GIS-enhanced risk assessment model. Given that
contamination sampling is typically limited by cost, time, and
logistical constraints, interpolation methods help estimate
pollutant concentrations in unsampled areas, producing
continuous contaminant surfaces across the site. Techniques
such as kriging, inverse distance weighting, radial basis
functions, and natural neighbor interpolation allow
practitioners to generate approximations that reflect
underlying spatial structure. Kriging, in particular, is highly
effective for environmental datasets because it incorporates
spatial autocorrelation, enabling more accurate predictions
and estimates of uncertainty. These interpolated surfaces
provide essential insights into contaminant distribution
patterns, highlighting gradients, directional trends, and
diffuse contamination zones that would be invisible through
point-based sampling alone (Hardie & McKinley, 2014,
Williamson, 2011). By revealing hidden contamination
between sampling locations, spatial interpolation supports
more informed decisions about where additional sampling,
monitoring, or remediation efforts should be concentrated.
Hotspot mapping represents another crucial component of the
model, enabling the identification of areas where
contaminants reach unusually high concentrations. Using
spatial statistics such as Getis-Ord Gi*, local Moran’s I, and
kernel density estimation, GIS can detect clusters of elevated
contaminant levels and differentiate them from random
variation. Hotspots may correspond to historical industrial
discharge points, chemical storage areas, waste disposal sites,
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pipeline leaks, or zones of concentrated surface runoff.
Identifying these zones allows practitioners to prioritize
remediation activities, allocate resources more effectively,
and reduce potential exposure risks. Hotspot maps also
provide visual clarity for regulators and community
stakeholders, making it easier to communicate the spatial
distribution of environmental hazards and justify decision-
making processes (Cappuyns & Kessen, 2014, Williamson,
etal., 2011).

Another essential element of the model framework is multi-
criteria weighted overlay analysis, which allows the
integration of multiple environmental, socio-economic, and
regulatory factors into a single spatial risk index. This
technique enables practitioners to assign weights to different
variables based on their relative importance in contributing to
environmental risk. For example, areas with high
contaminant concentrations, low soil permeability, shallow
groundwater, and proximity to residential zones may be
assigned higher risk scores. Weighted overlay analysis can
incorporate factors such as distance to schools, hospitals,
water bodies, and ecological reserves, ensuring that the risk
model reflects real-world vulnerabilities and human health
considerations (Mitchell, 2012, Sweeney & Kabouris, 2017).
The method also accommodates regulatory thresholds, such
that areas exceeding screening levels automatically receive
higher weight values. By combining diverse datasets into a
unified risk surface, the model provides a powerful decision-
making tool that reveals where risks are most severe and
where interventions will have the greatest impact.

In addition to weighted overlays, the model incorporates
geoprocessing tools that support complex spatial analyses
and scenario testing. Buffering techniques identify areas
within specific distances of sensitive receptors or
infrastructure. Network analyses explore how contaminants
might travel through drainage systems, sewer networks, or
natural hydrological pathways. Hydrological modeling tools
simulate how rainfall, infiltration, and surface runoff
influence contaminant transport, revealing potential flood-
induced mobilization risks and identifying pathways that
could channel pollutants into nearby water bodies (Cheng, et
al., 2011, Herat & Agamuthu, 2012). Temporal modeling
capabilities allow analysts to track changes in contamination
patterns over time and evaluate whether environmental
conditions are improving, worsening, or stabilizing. These
components collectively provide a dynamic analytical
environment in which contamination behavior can be
evaluated not only spatially but also temporally.

The model framework also integrates remote sensing data to
enhance spatial accuracy and provide insights into
environmental conditions that are difficult to capture through
ground sampling alone. High-resolution satellite imagery,
drone-based surveys, and LiDAR datasets can reveal
vegetation stress patterns, soil discoloration, surface
anomalies, and structural changes associated with
contamination or subsurface activity. Thermal imagery may
detect zones of altered land-surface temperature associated
with chemical reactions or groundwater discharge. When
incorporated into GIS, these remote sensing datasets improve
the spatial resolution of contamination models and support
early detection of environmental hazards (Boriana, 2017,
Hou & Al-Tabbaa, 2014).

Visualization capabilities are another defining component of
the model, transforming complex datasets into intuitive maps,
charts, and three-dimensional renderings that support
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communication among scientists, regulators, and community
members. Three-dimensional plume modeling helps illustrate
subsurface contamination and migration patterns. Heat maps
highlight concentration gradients and risk intensities.
Layered maps reveal relationships between contamination,
land use, hydrology, and population vulnerabilities. These
visual outputs play an important role in stakeholder
engagement, making the science behind risk assessment more
accessible and transparent (Ferdinand & Yu, 2016, Koop &
van Leeuwen, 2017).

Finally, the GIS-enhanced model incorporates a decision-
support framework that enables practitioners to evaluate
multiple remediation scenarios and their environmental
implications. By simulating alternative remediation strategies
such as soil excavation, bioremediation, pump-and-treat, or
containment GIS can help predict how each approach will
influence contaminant levels, risk profiles, and long-term site
stability. This ensures that redevelopment plans are grounded
in robust scientific analysis and that decision-makers can
choose strategies that maximize effectiveness while
minimizing costs and environmental disruption (Jayasooriya,
2016, Sayles, 2017).

In totality, the model framework and its components form a
comprehensive, integrated system capable of addressing the
intricate environmental challenges associated with high-
priority industrial redevelopment sites. By combining
detailed data inputs, sophisticated geostatistical tools,
advanced spatial modeling techniques, and multi-criteria
decision-making processes, the GIS-enhanced model offers a
powerful approach for evaluating contamination, identifying
risk zones, prioritizing remediation, and supporting
sustainable land reuse.

6. Case Application to High-Priority Industrial Sites
Applying a GIS-enhanced environmental risk assessment
model to high-priority industrial redevelopment sites offers a
practical demonstration of how spatial technologies,
environmental datasets, and advanced analytical methods
converge to support evidence-based decision-making. A case
application illustrates the model’s capabilities in real-world
conditions by examining how contaminated industrial areas
can be systematically evaluated, visualized, and prioritized
for remediation. The implementation process involves clear
site selection criteria, comprehensive spatial data acquisition,
geoprocessing workflows, visualization outputs, and the
identification of high-risk zones based on contamination
intensity and  exposure pathways. Through this
demonstration, the value of GIS in transforming complex
environmental assessments into actionable insights becomes
evident (Kato, 2010, Meerow & Newell, 2017).

The first step in the case application involves selecting
suitable high-priority industrial sites. Site selection criteria
typically include the presence of documented or suspected
contamination, historical records of intensive industrial
operations, proximity to wvulnerable communities or
ecological receptors, redevelopment pressure from urban
planners, and regulatory classification as brownfields or
hazardous sites. Additional criteria may include incomplete
environmental records, ongoing public health concerns, or
evidence of pollutant migration into surrounding
environments. The chosen site should reflect the complexity
and diversity of contamination challenges associated with
legacy industrial landscapes for example, an abandoned
manufacturing plant, a former petroleum refinery, or a
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chemical processing facility (Awe, Akpan & Adekoya, 2017,
Osabuohien, 2017). This ensures the assessment model is
applied to a context where its full capabilities can be
demonstrated.

Following site selection, the next stage involves acquiring
spatial data necessary to populate the model. This includes
high-resolution satellite imagery to capture current land
conditions, historical aerial photos to track past industrial
activities, soil and groundwater sampling results,
hydrological maps, geological data, topographic surfaces,
land use shapefiles, utility networks, and regulatory boundary
data. Additional datasets may include remote sensing-derived
vegetation indices, land surface temperature models, soil
moisture layers, and atmospheric deposition maps, all of
which help characterize environmental conditions at multiple
scales. Ground-truthing through field surveys and GPS-
referenced sampling enhances data accuracy. Each dataset is
georeferenced and standardized to ensure consistency across
the GIS environment, enabling seamless integration into the
risk assessment model (Akpan, Awe & Idowu, 2019,
Ogundipe, et al., 2019).

Once the datasets are acquired, the model begins processing
the information using a series of geospatial workflows. Soil
contaminant concentrations are interpolated using kriging or
inverse distance weighting to create continuous surfaces that
depict pollutant distributions across the site. Groundwater
sampling points are combined with hydrogeological layers to
model flow directions and contaminant migration pathways.
Land use and proximity analyses identify sensitive receptors
such as residential areas, schools, rivers, and wetlands (Awe
& Akpan, 2017). Hotspot mapping technigques pinpoint
clusters of elevated contamination based on spatial
autocorrelation metrics. Each layer contributes to
understanding how contaminants are distributed and how
they interact with environmental systems. The geoprocessing
workflow is iterative, allowing analysts to refine parameters
as more data becomes available or inconsistencies are
detected.

A critical output of the model is contamination plume
visualization, which offers a clear representation of how
pollutants extend across soil and groundwater systems. Using
3D visualization tools, analysts can depict contaminant
concentrations at various depths, illustrating the vertical and
lateral extent of plumes. For example, in a petroleum-
contaminated site, benzene or toluene plumes may be shown
migrating along groundwater gradients, moving from the
central industrial footprint toward adjacent neighborhoods or
surface water bodies. These plume models reveal not only the
concentration levels but also the direction and velocity of
contaminant movement, allowing decision-makers to predict
future risks based on environmental conditions and industrial
legacies (Akpan, etal., 2017, Oni, et al., 2018). By animating
plume progression over time, the model highlights how
environmental changes, such as increased precipitation or
changes in groundwater recharge patterns, may accelerate
contaminant mobility.

Beyond plume visualization, the model generates multiple
layers of analytical outputs that contribute to a
comprehensive understanding of site-specific risks. Hotspot
maps reveal contamination clusters that demand immediate
attention or further investigation. Weighted overlay analyses
combine factors such as contaminant concentration, distance
to receptors, soil permeability, groundwater depth, and
ecological sensitivity to produce a composite risk index. This
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index highlights zones where multiple risk factors coincide,
identifying locations that pose the highest environmental and
public health threats (Akomea-Agyin & Asante, 2019, Awe,
2017, Osabuohien, 2019). For instance, an area with high
heavy metal concentrations, shallow groundwater, and close
proximity to a residential district may appear as a red zone on
the risk map, indicating severe risk that requires rapid
remediation.

Spatial outputs also include buffer analyses that show
exposure risks within different radii from the contamination
source. A 100-meter buffer around a hotspot may identify
risks to industrial workers, while a 500-meter buffer may
capture risks to nearby residential areas. These analyses help
stakeholders evaluate potential exposure pathways such as
inhalation, dermal contact, or ingestion through contaminated
water sources. Floodplain overlays further identify how
periodic flooding could redistribute contaminants across
wider geographic areas, complicating remediation and
magnifying risks to downstream ecosystems (Afolabi, et al.,
2020, Bankole, Nwokediegwu & Okiye, 2020).

Another important component of the case application is the
evaluation of site-specific environmental processes.
Hydrological modeling tools simulate how stormwater runoff
interacts with contaminated soils, revealing pathways
through which pollutants may reach surface water bodies. For
example, a former chemical plant situated near a river may
experience contaminant wash-off during heavy rainfall
events, leading to pollutant deposition into aquatic
ecosystems. GIS-based flow accumulation and watershed
delineation tools highlight how environmental disturbances
propagate spatially, enabling planners to design mitigation
strategies that address both on-site and off-site risks (Fasasi
& Ekechi, 2020, Lawoyin, Nwokediegwu & Gbabo, 2020).
These insights are essential for urban redevelopment
authorities who must ensure that new construction does not
exacerbate contamination problems or endanger public
health.

The model also supports scenario testing, enabling analysts
to evaluate how different remediation strategies might
influence contamination risk. For example, isolating
contaminated soil through capping may limit surface
exposure but fail to prevent groundwater migration.
Alternatively, soil excavation combined with bioremediation
may significantly reduce contamination levels but incur
higher costs and cause temporary land disturbance. GIS
simulations reveal how each approach alters risk profiles
across the site, helping stakeholders identify the most
effective and sustainable remediation strategy. These
predictive  capabilities are crucial for balancing
environmental, economic, and community interests in
redevelopment planning (Fasasi, et al., 2020, Lawayin,
Nwokediegwu & Gbabo, 2020).

Throughout the case application, visualization plays a central
role in risk communication. Maps depicting contamination
intensities, plume movements, risk indices, and remediation
scenarios are shared with regulatory agencies, developers,
environmental consultants, and community members. These
visual outputs provide clarity and transparency, enabling all
stakeholders to understand the environmental challenges and
the rationale behind recommended interventions. Community
engagement meetings benefit greatly from GIS visualization,
as residents can clearly see how contamination affects their
neighborhoods and what measures are being taken to reduce
risks (Ike, et al., 2018).
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Ultimately, the identification of high-risk zones serves as the
culmination of the case application. These zones represent
intersections of high contaminant concentration, sensitive
receptors, elevated exposure pathways, and regulatory
exceedances. By mapping these zones, the GIS-enhanced
model provides a concrete basis for prioritizing remediation
actions, allocating resources efficiently, and guiding
redevelopment plans that prioritize public health and
environmental integrity. For example, areas identified as high
risk may be designated for intensive remediation, restricted
land uses, or environmental monitoring, while lower-risk
zones may proceed to redevelopment more quickly. This
clear stratification of risk improves decision-making and
ensures that redevelopment proceeds safely and sustainably
(Nwokediegwu, Bankole & Okiye, 2019, Oshoba, Hammed
& Odejobi, 2019).

In conclusion, the case application of the GIS-enhanced
environmental risk assessment model demonstrates how
spatial technologies transform complex environmental
datasets into actionable insights that support safe and
effective industrial redevelopment. Through systematic site
selection, comprehensive data acquisition, geospatial
processing, plume visualization, and risk zone identification,
the model provides a robust framework for evaluating
contamination dynamics and guiding remediation strategies
grounded in scientific evidence.

7. Discussion of Findings and Policy Implications

The discussion of findings from the GIS-enhanced
environmental risk assessment model for high-priority
industrial redevelopment sites reveals the profound value of
integrating spatial analytics, geostatistical modeling, and
environmental data into a comprehensive decision-support
framework. The model’s outputs provide a clearer, more
detailed understanding of contamination patterns, exposure
pathways, and environmental vulnerabilities than traditional
assessment methods, thereby reshaping how redevelopment
decisions are made. The interpretation of results highlights
both the complexity of legacy pollution and the potential for
using geospatial intelligence to guide environmental
management, remediation strategies, and policy formulation.
These insights carry significant implications not only for
environmental protection but also for urban planning, socio-
economic development, and community engagement (Fasasi
& Ekechi, 2020, Giwah, et al., 2020).

Key findings from the model indicate that contamination
within industrial redevelopment sites is rarely uniform or
predictable. Instead, pollutants form intricate spatial patterns
influenced by historical land uses, hydrogeological
conditions, and surface processes. The ability of the model to
reveal these patterns through spatial interpolation surfaces,
plume visualizations, and hotspot mapping demonstrates the
inadequacy of traditional sampling techniques that rely on
limited data points. The spatial outputs show that
contamination often extends far beyond documented areas,
sometimes migrating toward residential zones, water bodies,
or ecological habitats. These findings underscore the need for
environmental managers to adopt spatially informed
strategies that reflect the dynamic nature of pollutant
movement rather than relying on static or incomplete datasets
(Olatunde-Thorpe, et al., 2020, Oshoba, et al., 2020).

The interpretation of model results also emphasizes the
importance of understanding contaminant transport
pathways. Groundwater flow modeling reveals how
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pollutants travel across subsurface environments, sometimes
bypassing physical barriers or crossing property boundaries.
Surface runoff analyses show how rainfall events can rapidly
redistribute contaminants across previously unaffected areas,
particularly in sites with compromised drainage systems.
These insights inform targeted remediation actions, helping
managers identify not only where contamination currently
exists but where it is likely to spread in the future. This
predictive capability is essential for preventing long-term
environmental degradation and avoiding costly remediation
failures (Aifuwa, et al., 2020, Bankole, Nwokediegwu &
Okiye, 2020).

From a remediation prioritization perspective, the model’s
ability to generate composite risk indices and identify high-
risk zones is particularly valuable. Weighted overlay analyses
demonstrate that some areas pose disproportionately high
risks because they combine multiple hazardous conditions:
elevated contaminant concentrations, shallow groundwater,
permeable soils, and close proximity to sensitive receptors
such as schools, hospitals, or residential neighborhoods.
These areas automatically become priority zones for
remediation intervention. In contrast, zones with lower
contamination levels or reduced exposure potential may
require only minimal mitigation or monitoring (Faseemo, et
al., 2009). This differential approach ensures that limited
remediation resources are allocated efficiently, maximizing
public health protection while minimizing unnecessary
expenditures.

Urban planning decisions are significantly enhanced by the
insights generated from the GIS model. Redevelopment
projects often involve transforming derelict industrial spaces
into residential, commercial, or mixed-use districts. Without
a clear understanding of contamination patterns,
redevelopment poses risks to future occupants and could lead
to long-term land-use conflicts. The model’s spatial outputs
help planners identify which areas are safe for
redevelopment, which require remediation before
construction, and which may be unsuitable for certain land
uses altogether. For example, areas directly overlying deep
contamination plumes may be unsuitable for housing
developments but appropriate for industrial reuse or green
buffer zones. Urban planners can incorporate these findings
into zoning decisions, infrastructure planning, and
environmental compliance strategies, ensuring that
redevelopment aligns with sustainability and safety goals.
The findings also highlight important socio-economic
implications. Many high-priority industrial sites are located
in economically disadvantaged or environmentally
overburdened communities that have historically borne the
brunt of industrial pollution. The model provides a
mechanism for identifying environmental injustices by
showing where contamination overlaps with vulnerable
populations. By visualizing these intersections, policymakers
can design targeted interventions that address both
environmental risks and socio-economic disparities.
Redevelopment projects informed by these findings can
create safer living conditions, stimulate local economies, and
support community revitalization efforts. Additionally, areas
prioritized for remediation may become catalysts for
economic development, attracting investment and generating
employment opportunities once environmental hazards are
mitigated (Hammed, Oshoba & Ahmed, 2019, Sanusi, et al.,
2019).

Another critical implication relates to environmental
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management policies. The model’s findings suggest the need
for regulatory frameworks that emphasize spatially explicit
risk assessment and continuous environmental monitoring.
Traditional policies that rely on static contamination maps or
periodic sampling may not capture the real-time dynamics of
pollutant movement. GIS-based models enable ongoing
surveillance, early detection of environmental changes, and
rapid response to emerging threats. Policymakers could
leverage these capabilities to establish guidelines for
mandatory spatial assessments in redevelopment projects,
standardized reporting systems for contamination data, and
adaptive management strategies that respond to changing
environmental conditions. Incorporating GIS into policy
frameworks ensures greater precision, transparency, and
accountability in environmental decision-making (Fasasi,
Adebowale & Nwokediegwu, 2019, Owulade, et al., 2019).
Stakeholder engagement emerges as one of the most
significant benefits revealed by the model’s outputs.
Environmental risk communication is often hindered by
technical complexity, making it difficult for community
members to understand the severity and distribution of risks.
The model addresses this challenge by translating complex
analytical results into intuitive visual maps and diagrams.
These visualizations empower residents, community
organizations, and local leaders to participate meaningfully
in redevelopment discussions. Seeing contamination plumes,
hotspot areas, and risk zones provides clarity that written
reports cannot achieve. This transparency builds trust,
reduces conflict, and fosters collaborative decision-making
between developers, regulators, and affected communities
(Ahmed, Odejobi & Oshoba, 2020, Giwah, et al., 2020).
The model’s findings also support more equitable community
engagement. In many redevelopment contexts, marginalized
populations lack access to information or decision-making
power. By using GIS-generated visualizations in public
consultations, planners can ensure that community voices are
heard and that redevelopment plans reflect local needs and
concerns. This enhances procedural justice and strengthens
the legitimacy of redevelopment efforts. Moreover,
community-driven insights can help refine model inputs by
providing local knowledge about historical industrial
activities, flooding patterns, or undocumented pollution
sources.

Another  policy  implication  concerns  long-term
environmental monitoring and adaptive management. The
model demonstrates that conditions at industrial sites can
change rapidly due to climatic events, construction activities,
or hydrological alterations. Policymakers can use these
findings to advocate for monitoring systems that integrate
GIS, remote sensing, and real-time sensors to track
environmental conditions continuously. Such systems ensure
that remediation measures remain effective over time and that
evolving risks are addressed promptly. Additionally,
developers and regulatory agencies can use the model’s
baseline outputs to evaluate the success of remediation efforts
through post-cleanup monitoring (Bayeroju, et al., 2019,
Fasasi, et al., 2019).

Finally, the discussion highlights the broader significance of
adopting GIS-enhanced risk assessment models in national
and regional planning frameworks. As urbanization
accelerates and industrial sites become prime locations for
redevelopment, the need for robust environmental
assessment tools is more critical than ever. The model’s
findings demonstrate that GIS provides the spatial
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intelligence necessary to guide sustainable redevelopment,
protect public health, and promote environmental resilience.
Integrating these tools into national redevelopment programs,
environmental protection policies, and land-use planning
guidelines would ensure that future development proceeds in
a manner that balances economic growth with environmental
stewardship (Afolabi, et al., 2020, Fasasi, et al., 2020).

In summary, the findings and policy implications of the GIS-
enhanced environmental risk assessment model reveal its
transformative potential for environmental management,
remediation prioritization, urban planning, socio-economic
development, and community engagement. The model not
only enhances the accuracy and comprehensiveness of
contamination assessments but also provides a decision-
making framework that aligns environmental protection with
sustainable redevelopment and social equity (Ahmed,
Odejobi & Oshoba, 2019, Nwokediegwu, Bankole & Okiye,
2019).

8. Conclusion

The GIS-enhanced environmental risk assessment model for
high-priority industrial redevelopment sites represents a
significant advancement in the way complex contamination
challenges are understood, evaluated, and managed. By
integrating diverse environmental datasets with sophisticated
geospatial analytics, the model provides a comprehensive and
spatially explicit understanding of contamination patterns,
exposure pathways, and environmental vulnerabilities that
traditional assessment methods cannot achieve. This
enhanced visibility into the behavior and distribution of
pollutants allows environmental managers, urban planners,
and policymakers to make more informed decisions that
protect public health and support sustainable redevelopment.
The model’s ability to visualize contamination plumes,
identify hotspots, and prioritize high-risk zones ensures that
remediation efforts are both targeted and cost-effective,
ultimately improving environmental outcomes and reducing
long-term liabilities.

One of the most important contributions of the model lies in
its capacity to unify soil, water, air, and hydrogeological data
into a coherent analytical framework. This integration
enables users to evaluate the interactions between different
environmental systems and understand how contaminants
move across them. The resulting insights support more
strategic remediation planning, preventing the oversight of
critical risk areas and reducing uncertainties that often hinder
redevelopment projects. Additionally, the model enhances
transparency and stakeholder engagement by transforming
technical data into accessible visual formats that facilitate
communication and encourage public participation. This is
especially vital in communities historically affected by
industrial pollution, where trust and clarity are essential for
gaining support for redevelopment initiatives.

The potential of the model to improve remediation outcomes
is substantial. Its predictive capabilities allow practitioners to
anticipate future contamination risks, assess the impact of
environmental changes, and test alternative remediation
strategies before implementing them. This forward-looking
approach ensures that interventions are not only effective in
the present but also resilient to future environmental
conditions. Furthermore, the model supports regulatory
compliance by providing standardized, reproducible outputs
that align with environmental guidelines and risk-based
decision-making frameworks.
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Looking ahead, future research should focus on enhancing
the model’s predictive accuracy through the integration of
emerging technologies such as machine learning, real-time
sensor networks, and advanced remote sensing platforms.
These technologies can improve the timeliness and precision
of environmental monitoring, allowing for adaptive
management strategies in rapidly changing environments.
Additionally, expanding the model to incorporate socio-
economic indicators would deepen its relevance for equitable
redevelopment planning, ensuring that environmental justice
considerations are embedded in decision-making processes.
As cities continue to pursue sustainable redevelopment, the
GIS-enhanced risk assessment model will serve as an
essential tool for balancing growth, safety, and environmental
stewardship.
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