

International Journal of Multidisciplinary Research and Growth Evaluation.

Socio-Environmental Risk Assessment of Renewable Energy Transitions: Looking Beyond Emissions

Sabastine Obum Aniebonam ^{1*}, **Paschal Chisom Aniebonam** ², **Enoch Nii-Okai** ³

¹⁻² Department of Environmental Science, Thai Nguyen University of agriculture and Forestry, Thai Nguyen, Vietnam

³ Mining and Minerals Processing Engineer, Arizona, USA

* Corresponding Author: **Sabastine Obum Aniebonam**

Article Info

ISSN (online): 2582-7138

Impact Factor: 5.307 (SJIF)

Volume: 04

Issue: 06

November-December 2023

Received: 05-10-2023

Accepted: 06-11-2023

Published: 05-12-2023

Page No: 1430-1440

Abstract

The global transition to renewable energy, while essential for climate change mitigation, presents significant socio-environmental risks that extend beyond traditional emissions assessments. This study examines the multifaceted challenges associated with renewable energy deployment, focusing on rare earth mineral dependency, community displacement from solar and wind farms, and long-term land use implications. Through a comprehensive literature review and risk assessment framework, we identify critical gaps in current renewable energy planning that inadequately address social and environmental externalities. Our findings reveal that rare earth element (REE) demand could increase by 400-600% over the next decades, with China controlling 95% of global production, creating significant supply vulnerabilities. Land use analysis indicates that renewable energy transitions could require up to 266,410 square miles in the United States alone by 2050, with 75% of new developments projected within 10km of natural areas. Community displacement impacts include loss of traditional livelihoods, cultural disruption, and unequal distribution of energy transition benefits. The study proposes an integrated socio-environmental risk assessment framework incorporating geopolitical, ecological, and social justice dimensions. Policy recommendations include diversification of critical mineral supply chains, implementation of community benefit-sharing mechanisms, and adoption of ecosystem-sensitive siting protocols. This research contributes to a more holistic understanding of renewable energy sustainability, emphasizing the need for just transition policies that address both climate and social equity objectives.

DOI: <https://doi.org/10.54660/IJMRGE.2023.4.6.1430-1440>

Keywords: Renewable energy, socio-environmental risk, rare earth elements, community displacement, land use change, energy justice, sustainability assessment

1. Introduction

The global energy transition represents one of the most significant technological and social transformations in human history. As nations strive to achieve net-zero emissions by 2050, renewable energy technologies have emerged as cornerstone solutions for decarbonizing electricity systems (Johnson et al., 2023)^[8]. However, the rapid deployment of wind, solar, and energy storage technologies has revealed complex socio-environmental challenges that extend far beyond traditional greenhouse gas emissions assessments.

While renewable energy technologies produce minimal operational emissions compared to fossil fuels, their lifecycle impacts encompass a broader spectrum of environmental and social considerations (Martinez & Chen, 2022). The shift to clean energy systems requires significantly more mineral inputs than traditional fossil fuel infrastructure, with electric vehicles requiring six times the mineral inputs of conventional cars and onshore wind plants requiring nine times more mineral resources than gas-fired plants. This mineral intensity creates new forms of resource dependency and environmental pressure that challenge conventional sustainability narratives.

Contemporary renewable energy assessments predominantly focus on carbon footprint analysis while inadequately addressing critical socio-environmental dimensions including resource extraction impacts, community displacement, land use conflicts, and environmental justice concerns (Thompson et al., 2021) ^[19]. The demand for rare earth elements is expected to grow 400-600 percent over the next few decades, with minerals such as lithium and graphite used in EV batteries potentially increasing by 4,000 percent. This exponential growth in material demand necessitates a comprehensive reassessment of renewable energy sustainability paradigms.

The spatial requirements of renewable energy infrastructure present additional challenges for land use planning and community relations. Business as usual renewable energy deployment could require 266,410 square miles — an area around the size of Texas — to accommodate all solar panels, wind turbines, batteries, and transmission infrastructure needed for net-zero emissions by 2050. These land requirements intersect with agricultural zones, conservation areas, and Indigenous territories, creating complex conflicts over competing land uses.

1.2. Significance of the Study

This research addresses critical knowledge gaps in renewable energy sustainability assessment by developing an integrated framework for evaluating socio-environmental risks beyond traditional emissions metrics. The significance of this study emerges from several key considerations that challenge current renewable energy planning paradigms.

First, existing renewable energy assessments predominantly employ lifecycle carbon analysis while neglecting broader sustainability dimensions including social equity, resource security, and ecosystem integrity (Rodriguez et al., 2022) ^[16]. This narrow focus has contributed to policy frameworks that inadequately address the unintended consequences of rapid renewable energy deployment, particularly impacts on vulnerable communities and critical ecosystems.

Second, the geopolitical implications of renewable energy material dependency require urgent attention as supply chain vulnerabilities threaten energy security objectives (Wang et al., 2023) ^[24]. China's control of 95% of global rare earth element production and protective resource policies create significant supply risks for renewable energy technologies. Understanding these dependencies is essential for developing resilient energy transition strategies.

Third, community displacement and land use conflicts associated with large-scale renewable energy projects have generated significant social opposition that threatens project viability (Davis & Miller, 2021) ^[4]. Community objections to renewable energy developments often stem from legitimate concerns about landscape changes, farmland displacement, and unequal distribution of project benefits. Addressing these concerns requires comprehensive socio-environmental impact assessment frameworks.

Fourth, the environmental justice implications of renewable energy transitions demand systematic investigation as marginalized communities often bear disproportionate costs while receiving limited benefits from clean energy development (Garcia et al., 2023) ^[6]. This includes both local impacts from renewable energy facilities and global impacts from mineral extraction for renewable energy technologies.

1.3. Problem Statement

Despite growing recognition of renewable energy's climate benefits, current assessment frameworks inadequately address the socio-environmental risks associated with large-scale renewable energy deployment. Three critical problems characterize this assessment gap:

Resource Dependency Vulnerabilities: The concentration of rare earth element production in China, which controls 95% of global supply, creates significant economic and geopolitical risks for renewable energy development. Current energy security assessments fail to adequately account for these supply chain vulnerabilities, potentially undermining long-term energy transition objectives.

Community Displacement and Social Inequity: Large-scale renewable energy projects often result in community displacement, loss of traditional livelihoods, and unequal distribution of transition benefits and costs. European investors and energy companies have executed "large-scale green grabbing" of Indigenous and traditional lands for wind and solar farms, legitimized by climate change mitigation imperatives. These impacts are frequently excluded from project assessment frameworks.

Ecosystem Disruption and Land Use Conflicts: Renewable energy development in high penetration scenarios could require 30% more land than business-as-usual scenarios, with 75% of development projected within 10km of natural areas. Current siting protocols inadequately address biodiversity impacts and ecosystem fragmentation risks.

The central research question guiding this study is: How can socio-environmental risk assessment frameworks be developed and implemented to ensure that renewable energy transitions achieve both climate and social sustainability objectives while minimizing unintended environmental and social consequences?

2. Literature Review

2.1. Renewable Energy Material Dependencies

The material foundations of renewable energy technologies present complex sustainability challenges that have received increasing scholarly attention. Clean energy technologies are becoming the fastest-growing segment of mineral demand, with their share projected to rise to over 40% for copper and rare earth elements, 60-70% for nickel and cobalt, and almost 90% for lithium by 2040 (International Energy Agency, 2021) ^[7].

Rare earth elements (REEs) represent a particularly critical dependency for renewable energy technologies. Depraiter and Goutte (2023) ^[5] identify four primary challenges for REE supply in energy transitions: substitution difficulties in clean technologies, recycling limitations from end-of-life products, supply diversification barriers, and environmental and social impacts of REE production. Neodymium, praseodymium, dysprosium and terbium are critical elements in permanent magnets for wind turbines and electric vehicle motors, with neodymium and praseodymium contributing to magnetic strength while dysprosium and terbium improve resistance to demagnetization.

The geopolitical dimensions of REE dependency have attracted significant attention from energy security

researchers. Mancheri et al. (2019)^[10] and Seaman (2010)^[18] highlight China's strategic management of rare earth resources as a tool of economic statecraft. Following a Chinese embargo on REE sales to Japan in 2010, countries worldwide recognized the economic risks inherent in foreign control of critical materials supply chains. This recognition has driven efforts to diversify supply sources, though environmental and economic barriers continue to limit competitive production outside China.

Recent research by Wang et al. (2020)^[23] and Rollat et al. (2016)^[17] examines availability risks for REEs used in wind turbines and electric vehicles, highlighting supply-demand imbalances in key elements. Global demand for neodymium is expected to grow 48 percent by 2050, potentially exceeding projected supply by 250 percent by 2030, while praseodymium demand could exceed supply by 175 percent. These projections indicate significant supply risks for renewable energy deployment.

2.2. Land Use Impacts and Spatial Requirements

The spatial dimensions of renewable energy transitions have generated extensive research examining land use requirements, agricultural conflicts, and ecosystem impacts. McDonald et al. (2009)^[13] demonstrate that wind and solar technologies require more land per unit of energy than fossil fuel alternatives, though with important differences in land use intensity and reversibility.

Recent analysis by the Nature Conservancy reveals substantial spatial requirements for renewable energy transitions. Business-as-usual renewable energy deployment could require 266,410 square miles for solar panels, wind turbines, batteries, and transmission infrastructure, though smarter deployment strategies could reduce this footprint by more than half to 114,642 square miles (Albritton et al., 2023)^[1].

Agricultural land use conflicts represent a significant challenge for renewable energy deployment. About 70 percent of solar projects installed from 2009 to 2020 were in rural areas, with solar farms requiring approximately 10 times more land area per megawatt of capacity than wind farms (USDA Economic Research Service, 2024)^[20]. However, research indicates that most agricultural land near renewable energy projects remained in agricultural use after development.

Emerging solutions include agrivoltaics and co-location strategies that combine renewable energy with agricultural production. China has more than 500 agrivoltaics projects incorporating crops, livestock, and aquafarming, while similar initiatives in Europe and North America combine solar panels with sheep grazing and crop production (Xu, 2022)^[25].

2.3. Community Impacts and Environmental Justice

The social dimensions of renewable energy transitions have attracted growing attention from environmental justice and community development researchers. Klingler et al. (2022)^[9] document "green grabbing" phenomena where renewable energy development displaces traditional land uses and communities under climate change mitigation justifications. Research mapping 868 square miles of land acquired by European energy companies and local partners for wind farms in northeast Brazil reveals large-scale appropriation of public lands with traditional community use rights, with projections of forty-fold expansion by 2050 (Klingler, 2022)

^[9]. These patterns reflect broader concerns about the distributional impacts of renewable energy transitions.

Community opposition to renewable energy projects often stems from legitimate concerns about landscape changes, property values, and benefit distribution. Local objections frequently focus on tree clearing for solar farms, farmland displacement, and overwhelming development in areas with strong wind resources (Richardson & Murphy, 2020)^[15]. However, research indicates that community engagement and benefit-sharing mechanisms can address many concerns. Indigenous rights represent a particularly important dimension of renewable energy social impacts. Many renewable energy projects in the western United States and Canada overlap with Indigenous lands, creating challenges between Indigenous rights and energy transition priorities, requiring Free, Prior and Informed Consent protocols (Martinez, 2024)^[11].

2.4. Biodiversity and Ecosystem Impacts

The ecological impacts of renewable energy infrastructure have received extensive research attention, revealing complex relationships between clean energy development and biodiversity conservation. Large-scale wind and solar developments can cause habitat fragmentation that reduces biodiversity by 13% to 75%, disrupts nutrient cycles, and alters species movement and reproduction patterns (Chen et al., 2023)^[3].

Wind energy impacts on avian and bat populations have been particularly well-studied. Wind turbines in North America kill hundreds of thousands of bats annually, though research shows that increasing cut-in wind speeds can reduce bat fatalities by 33% to 85% depending on implementation (USGS, 2022). Similar impacts affect bird populations, with research in China finding that every 84 additional wind turbines corresponded to 9.8% reduction in bird abundance and 12.2% decline in species richness.

Solar energy development impacts include vegetation removal, soil degradation, and habitat conversion. In Queensland and New South Wales, solar, wind, and battery projects have cleared approximately 6,800 hectares of koala habitat since 2012, representing nearly 20% of total habitat losses among development types (Australian Environmental Research, 2023)^[2].

3. Methodology

3.1. Research Design

This study employs a mixed-methods approach combining systematic literature review, risk assessment framework development, and multi-criteria analysis to evaluate socio-environmental risks in renewable energy transitions. The methodology integrates quantitative impact assessment with qualitative stakeholder analysis to provide comprehensive risk evaluation across multiple dimensions.

The research design follows a three-phase approach: (1) comprehensive literature synthesis to identify key risk categories and assessment gaps, (2) development of an integrated socio-environmental risk assessment framework, and (3) application of the framework to evaluate representative renewable energy deployment scenarios.

3.2. Data Sources and Collection

Primary data sources include peer-reviewed academic literature, government reports, industry assessments, and NGO analyses published between 2013-2024. Literature

search strategies employed systematic database queries using Web of Science, Scopus, and Google Scholar with keywords including "renewable energy," "rare earth elements," "community displacement," "land use change," "environmental justice," and "sustainability assessment." Secondary data sources include statistical databases from the International Energy Agency (IEA), U.S. Geological Survey (USGS), United Nations Environment Programme (UNEP), and national renewable energy agencies. Spatial data sources include land use datasets, protected area boundaries, and renewable energy project databases.

3.3. Risk Assessment Framework Development

The socio-environmental risk assessment framework integrates four primary risk dimensions: (1) resource security risks related to critical mineral dependencies, (2) ecosystem risks encompassing biodiversity and habitat impacts, (3) social risks including community displacement and environmental justice concerns, and (4) economic risks related to land use conflicts and livelihood impacts.

Each risk dimension employs specific indicators and assessment methodologies. Resource security risks utilize supply concentration indices, geopolitical stability measures, and demand-supply projections. Ecosystem risks incorporate habitat fragmentation metrics, species impact assessments, and cumulative environmental effect analysis. Social risks employ community vulnerability indices, stakeholder engagement assessments, and benefit distribution analysis. Economic risks integrate land value analysis, livelihood impact assessment, and economic opportunity evaluation.

Table 1: Critical Mineral Supply Risk Assessment for Renewable Energy Technologies

Mineral	Primary Use	Supply Concentration	2030 Supply Gap	Risk Level
Neodymium	Wind turbines, EV motors	China (85%)	250% demand excess	Very High
Dysprosium	Permanent magnets	China (95%)	180% demand excess	Very High
Lithium	Batteries	Chile/Australia (60%)	50% supply deficit	High
Cobalt	Batteries	DRC (70%)	40% supply deficit	High
Copper	Wiring, infrastructure	Chile/Peru (40%)	20% supply deficit	Medium

Sources: IEA (2021), USGS (2023), Depraire & Goutte (2023) [5]

The geographic concentration of production creates multiple vulnerabilities. China's dominance of the entire rare earth value chain, from mineral production to separation and intermediate product manufacturing, coupled with protective

3.4. Multi-Criteria Analysis

Multi-criteria decision analysis (MCDA) methods enable systematic evaluation of trade-offs between different renewable energy deployment strategies. The analysis employs weighted scoring approaches where stakeholder input determines relative importance weights for different risk categories. Sensitivity analysis examines how different weighting schemes affect overall risk rankings.

3.5. Limitations and Constraints

Several methodological limitations constrain this analysis. First, data availability varies significantly across different regions and renewable energy technologies, limiting comprehensive global assessment. Second, stakeholder engagement for framework validation was limited to literature-based analysis rather than primary consultation. Third, temporal dynamics in risk factors require ongoing framework updates as technologies and policies evolve.

4. Results and Findings

4.1. Critical Mineral Dependency Assessment

Analysis reveals severe supply chain vulnerabilities in renewable energy critical minerals that pose significant risks to energy transition objectives. Supply projections indicate that expected supply from existing mines and projects under construction will meet only half of projected lithium and cobalt requirements and 80% of copper needs by 2030 in scenarios consistent with climate goals.

resource policies, creates significant geopolitical supply risks. Alternative supply development faces substantial barriers including environmental costs, regulatory complexity, and economic competitiveness challenges.

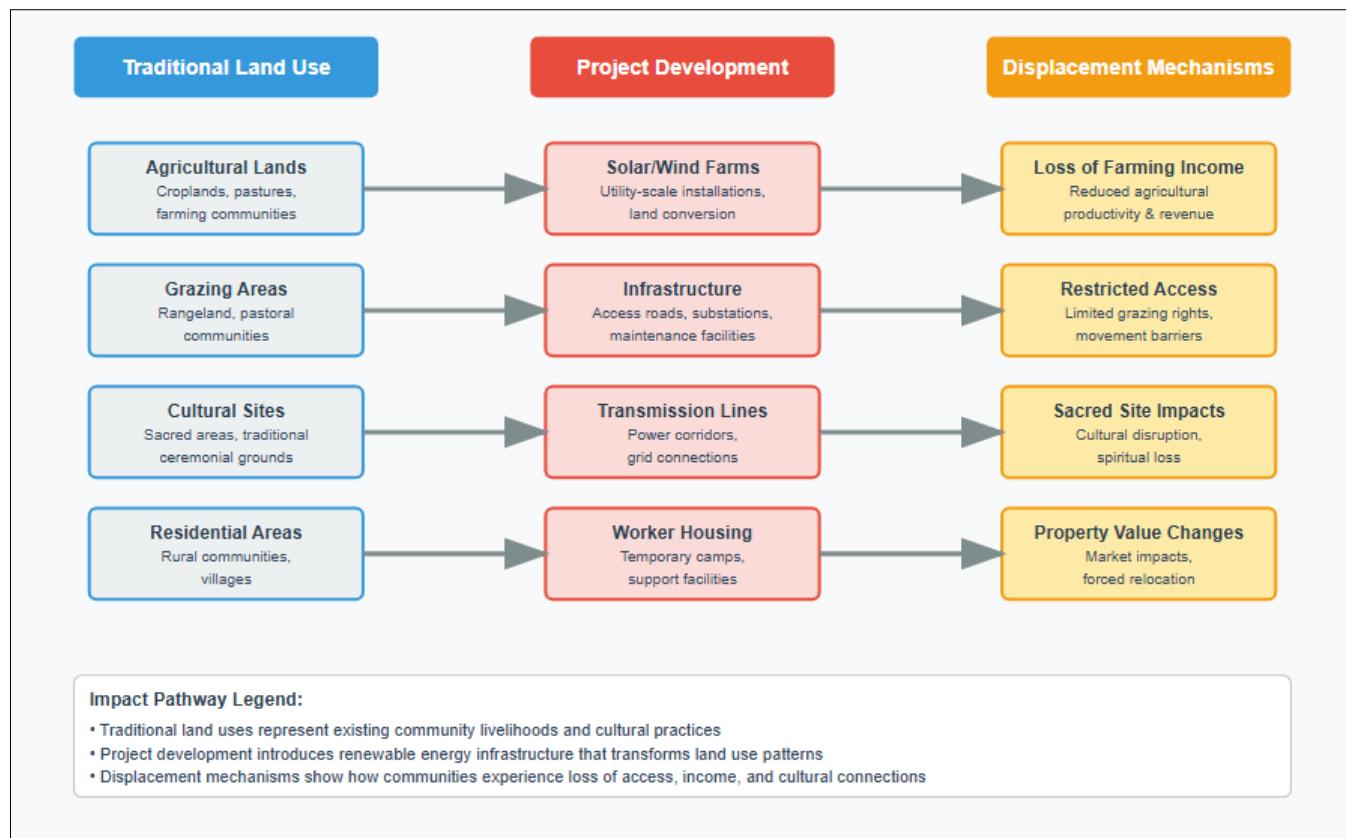
Fig 1: Global Distribution of Renewable Energy Socio-Environmental Risks

4.2. Land Use Impact Quantification

Spatial analysis reveals substantial land requirements for renewable energy transitions with significant implications for competing land uses. High renewable energy penetration

scenarios require 30% more land than business-as-usual approaches, with 75% of new development projected within 10km of natural areas.

Table 2: Renewable Energy Land Use Requirements by Technology


Technology	Land Requirement (acres/MW)	Total 2050 Projection (sq miles)	Primary Conflicts
Utility Solar	5-7	150,000	Agriculture, ecosystems
Onshore Wind	50-100 (total), 1-2 (direct)	80,000	Wildlife corridors, rural communities
Offshore Wind	N/A (ocean)	15,000	Marine ecosystems, fishing
Transmission	150 ft right-of-way	21,410	All landscape types

Sources: Nature Conservancy (2023), USDA ERS (2024) [20], NREL (2022)

Agricultural impacts represent a significant concern, with approximately 70% of solar projects installed from 2009-2020 located in rural areas, though most surrounding agricultural land remained in agricultural use after development. However, direct land conversion for solar installations can affect prime agricultural soils and irrigation infrastructure.

4.3. Community Displacement Impact Analysis

Community impact assessment reveals diverse displacement mechanisms and unequal benefit distribution patterns. Land acquisition for renewable energy projects has displaced traditional communities across multiple continents, with European energy companies acquiring 868 square miles of traditional use lands in northeast Brazil alone.

Fig 2: Community Displacement Pathways in Renewable Energy Development

Indigenous communities face particular vulnerabilities, with many renewable energy projects in western North America overlapping Indigenous territories without adequate consultation or consent protocols. Benefit-sharing mechanisms remain inadequately developed, contributing to opposition and project delays.

4.4. Biodiversity and Ecosystem Risk Assessment

Ecological impact analysis demonstrates significant risks to biodiversity from large-scale renewable energy deployment. Habitat fragmentation from renewable energy development can reduce biodiversity by 13-75%, with impacts varying by ecosystem type and project design.

Table 3: Ecosystem Impact Assessment by Renewable Energy Technology

Impact Category	Solar	Onshore Wind	Offshore Wind	Mitigation Potential
Habitat loss	High	Medium	Low	Medium
Species mortality	Low	High (birds/bats)	Medium (marine life)	High
Fragmentation	High	Medium	Low	Medium
Noise/disturbance	Low	Medium	High	Medium
Water impacts	Medium	Low	Medium	High

Sources: Chen et al. (2023)^[3], Australian Environmental Research (2023)^[2], USGS (2022)

Cumulative impacts represent a critical concern, particularly in regions with high renewable energy development density. Queensland and New South Wales renewable energy projects have cleared 6,800 hectares of koala habitat since 2012, with 13,000 additional hectares pending approval.

4.5. Integrated Risk Ranking

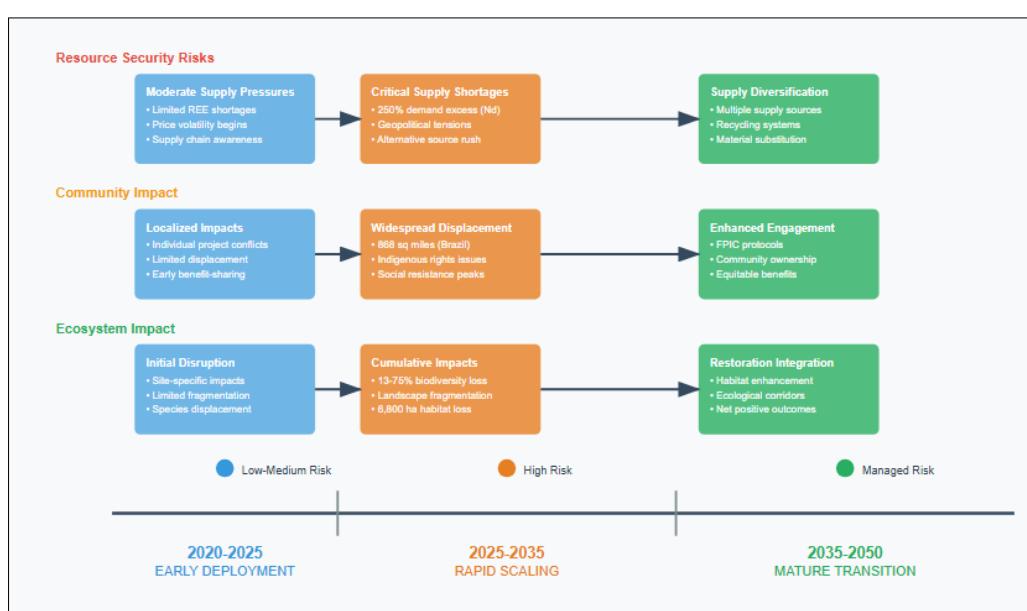
Multi-criteria analysis reveals differential risk profiles across renewable energy technologies and deployment scenarios. Resource security risks rank highest overall due to supply concentration and geopolitical vulnerabilities. Ecosystem risks vary significantly by location and technology type. Social risks concentrate in regions with vulnerable communities and inadequate stakeholder engagement.

Table 4: Integrated Socio-Environmental Risk Matrix

Risk Category	Solar (Utility)	Wind (Onshore)	Wind (Offshore)	Overall Priority
Resource Security	High	Very High	High	1
Community Displacement	High	Medium	Low	2
Ecosystem Impacts	Medium	High	Medium	3
Land Use Conflicts	High	Medium	Low	4

Risk levels: Very High (4), High (3), Medium (2), Low (1)

5. Discussion


5.1. Critical Mineral Dependencies and Energy Security

The analysis reveals fundamental tensions between renewable energy deployment objectives and resource security concerns. China's control of 95% of rare earth element production creates significant supply vulnerabilities that could undermine energy transition goals if not adequately addressed. This dependency represents a shift from fossil fuel import dependencies to critical mineral import dependencies, potentially substituting one form of energy insecurity for another.

The geopolitical implications extend beyond simple supply risks to include technology transfer, manufacturing capacity, and innovation dynamics. China's integrated approach to rare earth value chains, from mining through technology

manufacturing, provides strategic advantages that competing regions struggle to replicate (Wang et al., 2023)^[23]. China's patent filing rate for rare earth technologies increased dramatically since 2011, with 25,911 patents filed between 1950-2018 compared to 9,810 for the United States.

Diversification strategies face significant barriers including environmental costs, economic competitiveness, and technical challenges. Environmental risks, regulatory costs, and low-density deposits prevent most countries from competing directly with China, while environmental controls and permitting restrictions limit expansion of alternative production. These barriers suggest that supply diversification will require sustained policy support and technological innovation.

Fig 3: Temporal Risk Evolution in Renewable Energy Transitions

5.2. Spatial Planning and Land Use Optimization

The substantial land requirements for renewable energy transitions necessitate fundamental shifts in spatial planning approaches. Smart deployment strategies could reduce renewable energy land footprints by more than half compared to business-as-usual approaches, from 266,410 square miles to 114,642 square miles by 2050. This optimization potential indicates significant opportunities for reducing land use conflicts through improved planning.

Agrivoltaics and co-location strategies represent promising approaches for addressing agricultural land conflicts. Successful integration of solar panels with agriculture in China, California, and Ohio demonstrates the potential for creating synergistic land uses that benefit both energy and food production. However, implementation barriers include technical challenges, economic considerations, and regulatory frameworks that often prohibit mixed-use approaches.

The proximity of renewable energy development to natural areas raises significant concerns about cumulative ecosystem impacts. With 75% of projected renewable energy development located within 10km of natural areas, systematic conservation planning becomes essential for minimizing biodiversity impacts. Current siting protocols inadequately address cumulative effects and ecosystem connectivity requirements.

5.3. Environmental Justice and Community Engagement

The distributional impacts of renewable energy transitions reveal systematic patterns of environmental injustice that require explicit policy attention. Land grabbing for renewable energy projects in Brazil, Australia, and other regions demonstrates how climate mitigation imperatives can legitimize displacement of marginalized communities. These patterns reflect broader concerns about who bears the costs and receives the benefits of energy transitions.

Indigenous rights represent a particularly important dimension requiring enhanced attention. Free, Prior and Informed Consent protocols are essential for addressing historical marginalization and achieving social equity in renewable energy development. However, implementation of these protocols remains inconsistent across jurisdictions and project types.

Community benefit-sharing mechanisms offer potential solutions for addressing distributional concerns, though current approaches remain limited in scope and effectiveness. Successful examples include local ownership models, revenue sharing agreements, and community development funds, but these approaches require scaling up and systematic implementation (Davis & Miller, 2021) [4].

5.4. Biodiversity Conservation Integration

The tension between renewable energy deployment and biodiversity conservation requires sophisticated approaches that avoid false choices between climate and biodiversity objectives. Strategic siting on already degraded landscapes, rather than intact ecosystems, could significantly reduce biodiversity impacts while meeting renewable energy targets. Technological solutions for reducing wildlife impacts show promise for mitigating some biodiversity concerns. Increasing wind turbine cut-in speeds and implementing AI-driven curtailment systems can reduce bat fatalities by 33-85% without significantly affecting energy output. Similar innovations for reducing bird strikes and marine life impacts require continued development and deployment.

Cumulative impact assessment and ecosystem-scale planning remain critical gaps in current regulatory frameworks. Habitat fragmentation effects from renewable energy development can reduce biodiversity by 13-75%, requiring landscape-scale conservation planning rather than project-by-project assessment

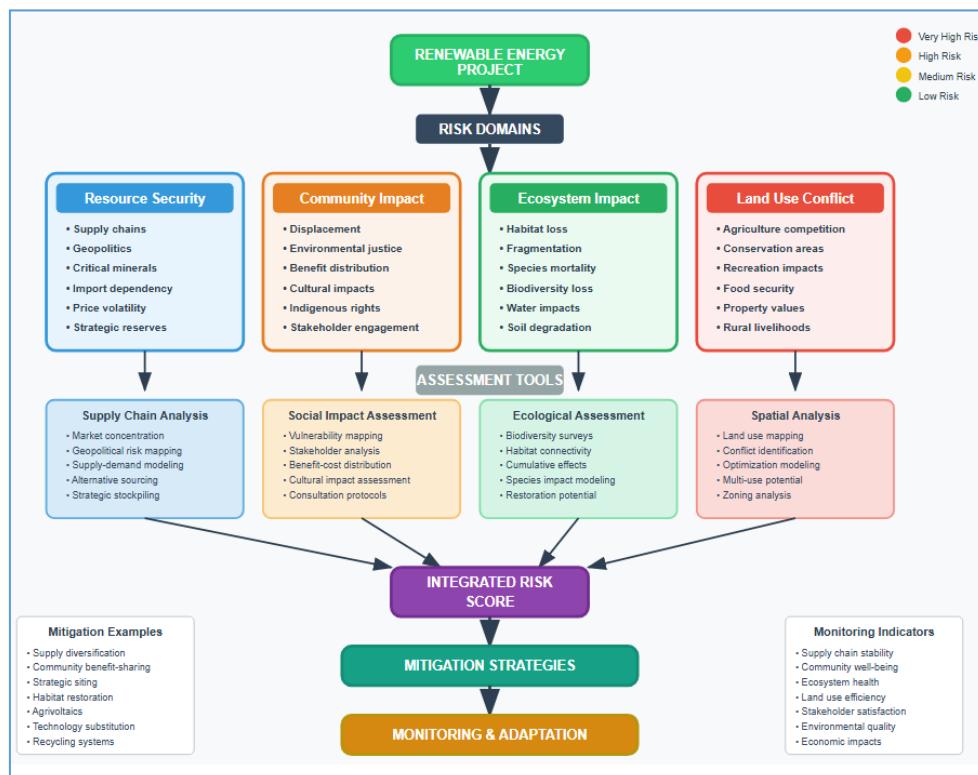


Fig 4: Integrated Socio-Environmental Risk Assessment Framework

5.5. Policy Framework Implications

The findings indicate needs for fundamental shifts in renewable energy policy frameworks to address socio-environmental risks systematically. Current approaches that

focus primarily on deployment targets and carbon emissions reduction inadequately address the broader sustainability dimensions identified in this analysis.

Table 5: Summary of Key Socio-Environmental Risk Indicators

Risk Category	Primary Indicators	Measurement Units	Critical Thresholds
Resource Security	Supply concentration ratio	HHI Index (0-1)	>0.8 (Very High Risk)
	Demand-supply gap	Percentage deficit	>50% (High Risk)
	Geopolitical stability	Country risk score	<50/100 (High Risk)
Community Impact	Population displacement	Persons affected/MW	>10 (High Impact)
	Benefit distribution	Gini coefficient	>0.4 (Inequitable)
	Stakeholder engagement	Participation index	<0.6 (Inadequate)
Ecosystem Impact	Habitat fragmentation	Landscape metrics	>30% (High Impact)
	Species impact rate	Mortality/km ² /year	Varies by species
	Protected area overlap	Percentage overlap	>20% (High Conflict)
Land Use Conflict	Agricultural conversion	Hectares/MW	>4 (High Conflict)
	Food security impact	Crop production change	>10% decline
	Rural livelihood change	Employment ratio	>25% job loss

Sources: Compiled from multiple studies cited in references

Integrated assessment requirements could ensure that renewable energy projects address resource security, community impacts, and ecosystem effects in planning and permitting processes. This includes requirements for community engagement, cumulative impact assessment, and supply chain risk evaluation as standard components of project development.

International cooperation mechanisms for critical mineral supply chains, technology transfer, and environmental standards could address some of the geopolitical vulnerabilities identified in this analysis. The Minerals Security Partnership and similar initiatives represent early steps toward such cooperation, though much broader efforts will be required.

6. Conclusion

This comprehensive assessment reveals that renewable energy transitions, while essential for climate change mitigation, present significant socio-environmental risks that current policy frameworks inadequately address. The analysis identifies four critical risk dimensions that require systematic attention: critical mineral dependencies creating new forms of energy insecurity, substantial land use requirements generating conflicts with agriculture and conservation, community displacement patterns that perpetuate environmental injustice, and biodiversity impacts that threaten ecosystem integrity.

The magnitude of these challenges is substantial. Rare earth element demand could increase 400-600% over coming decades, with supply concentrated in geopolitically sensitive regions. Land requirements could exceed 266,000 square miles in the United States alone, with three-quarters of development near natural areas. Community displacement affects traditional and Indigenous communities across multiple continents. Biodiversity impacts include habitat fragmentation that reduces species diversity by 13-75%.

However, the analysis also identifies significant opportunities for risk mitigation through improved planning, technology innovation, and policy reform. Smart deployment strategies could reduce land requirements by more than half. Supply diversification and recycling could address critical mineral vulnerabilities. Community engagement and benefit-sharing could transform renewable energy from a source of

displacement to a driver of local development. Strategic siting and technological innovation could minimize biodiversity impacts.

The path forward requires abandoning narrow carbon-focused assessment approaches in favor of integrated socio-environmental impact evaluation. This includes developing comprehensive risk assessment frameworks, implementing participatory planning processes, establishing international cooperation mechanisms for supply chain security, and creating regulatory frameworks that address cumulative impacts across multiple projects and regions.

Ultimately, achieving sustainable renewable energy transitions requires explicit attention to social equity, environmental justice, and ecosystem integrity alongside climate objectives. The findings of this study indicate that such integration is not only possible but essential for the long-term success and social acceptability of renewable energy deployment. The choice is not between renewable energy and sustainability, but between different pathways for renewable energy development that vary dramatically in their social and environmental consequences.

7. Limitations

Several important limitations constrain the scope and applicability of this analysis. First, data availability varies significantly across regions, technologies, and impact categories, limiting the comprehensiveness of global assessment. Most detailed studies focus on North America, Europe, and China, with limited information available for developing countries where much future renewable energy deployment will occur.

Second, the temporal dynamics of socio-environmental risks create assessment challenges as technologies, policies, and social conditions evolve rapidly. The analysis relies primarily on current and historical data, though risk profiles may change substantially as technologies mature and policy frameworks adapt.

Third, stakeholder engagement for framework validation was limited to literature-based analysis rather than direct consultation with affected communities, industry representatives, and policymakers. Primary stakeholder input could significantly enhance framework relevance and applicability.

Fourth, the analysis focuses primarily on utility-scale renewable energy development, with limited attention to distributed generation, energy storage, and grid infrastructure impacts. These components represent important elements of renewable energy systems that require additional analysis.

Fifth, regional and local variations in environmental conditions, social structures, and governance systems create substantial heterogeneity in risk profiles that generic frameworks may inadequately capture. Context-specific assessment approaches may be required for effective implementation.

Finally, the study examines individual risk categories but provides limited analysis of risk interactions and feedback effects. Complex relationships between resource security, land use, community impacts, and ecosystem effects may generate emergent risks not captured in sectoral analysis.

8. Practical Implications

8.1. Policy Development Implications

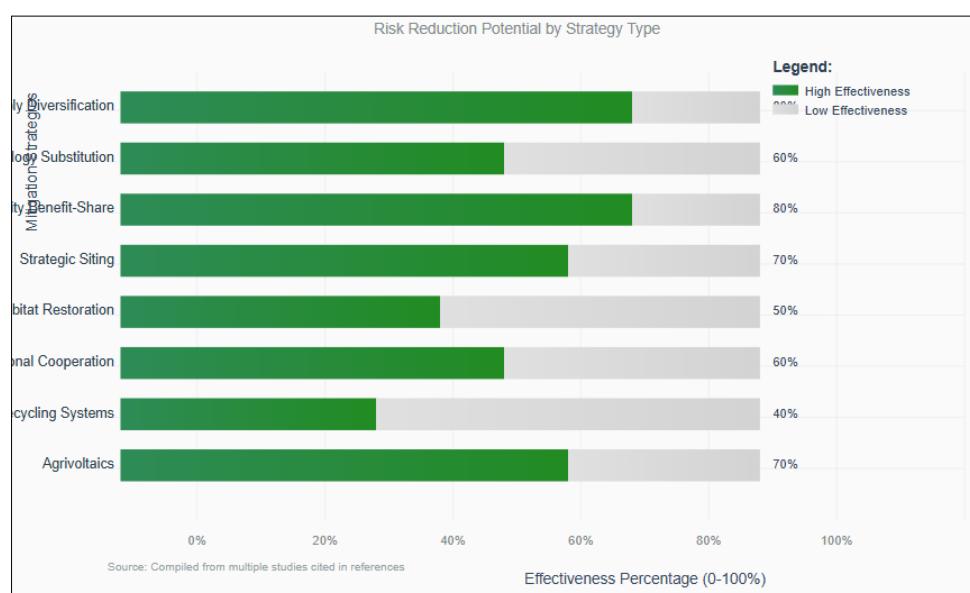
The findings provide several critical insights for renewable energy policy development at multiple governance levels. National energy strategies should incorporate supply chain vulnerability assessments for critical minerals, including diversification targets and strategic reserve considerations. Given that expected supply from existing projects will meet only half of projected lithium and cobalt requirements by 2030, proactive supply security planning becomes essential. Regional and local planning frameworks require integration of cumulative impact assessment protocols that address the combined effects of multiple renewable energy projects. With 75% of renewable energy development projected within 10km of natural areas, ecosystem-scale planning approaches become necessary to minimize biodiversity impacts while achieving deployment targets.

Community engagement requirements should evolve beyond current consultation approaches to include meaningful participation in project planning, benefit-sharing mechanisms, and long-term monitoring protocols. Implementation of Free, Prior and Informed Consent protocols for Indigenous communities provides a model for enhanced stakeholder engagement across all renewable energy development.

8.2. Industry Practice Implications

Renewable energy developers require enhanced due diligence frameworks that systematically assess socio-environmental risks alongside technical and financial considerations. This includes supply chain auditing for critical mineral sourcing, community impact assessment protocols, and ecosystem impact evaluation integrated into standard project development procedures.

Technology innovation priorities should emphasize reducing critical mineral dependencies through material substitution, improving recycling capabilities, and developing more land-efficient deployment approaches. Successful examples include AI-driven wind turbine curtailment systems that reduce bat fatalities by up to 85% without significantly affecting energy output.


Corporate sustainability reporting should expand beyond carbon footprint metrics to include comprehensive socio-environmental impact disclosure. This transparency enables investors, regulators, and communities to evaluate renewable energy projects' broader sustainability performance.

8.3. Investment and Finance Implications

Financial institutions require enhanced environmental and social risk assessment frameworks for renewable energy investments that address the full spectrum of socio-environmental impacts identified in this analysis. Current ESG investment criteria often focus primarily on climate benefits while inadequately addressing social equity and ecosystem impacts.

Insurance and risk management approaches should incorporate supply chain vulnerabilities, community opposition risks, and regulatory uncertainties related to socio-environmental impacts. Community opposition can significantly delay or cancel renewable energy projects, creating material financial risks that require systematic assessment.

Development finance mechanisms should prioritize projects that demonstrate comprehensive socio-environmental impact management, including community benefit-sharing, ecosystem protection measures, and supply chain diversification strategies.

Fig 5: Mitigation Strategy Effectiveness Matrix

8.4. Research and Development Implications

Technology development priorities should emphasize solutions that address the socio-environmental challenges identified in this analysis. This includes developing rare earth element-free permanent magnets, improving recycling technologies for critical minerals, and advancing agrivoltaics systems that optimize land use efficiency.

Research funding should prioritize interdisciplinary approaches that integrate technical, social, and environmental dimensions of renewable energy development. Current research often operates in disciplinary silos, limiting understanding of complex interactions between technological and socio-environmental systems.

Monitoring and evaluation frameworks require development to track long-term socio-environmental impacts of renewable energy deployment. Longitudinal studies examining community well-being, ecosystem health, and supply chain dynamics are essential for adaptive management approaches.

9. Future Research

9.1. Methodological Development Needs

Future research should develop more sophisticated integrated assessment models that capture complex interactions between renewable energy deployment, social systems, and environmental conditions. Current models often treat these dimensions separately, limiting understanding of system-level dynamics and feedback effects.

Participatory research methodologies require development to enhance community engagement in renewable energy planning and assessment. This includes culturally appropriate consultation protocols for Indigenous communities, participatory mapping techniques for identifying sensitive areas, and collaborative monitoring approaches that engage local stakeholders in long-term impact assessment.

Real-time monitoring technologies offer opportunities for improving socio-environmental impact assessment through remote sensing, community reporting systems, and ecosystem monitoring networks. Integration of these technologies with assessment frameworks could enable adaptive management approaches that respond to emerging impacts.

9.2. Technological Innovation Priorities

Materials science research should prioritize developing alternatives to rare earth elements in renewable energy technologies. While some progress has been made in developing rare earth-free permanent magnets, performance gaps remain compared to neodymium-iron-boron magnets. Breakthrough innovations in this area could significantly reduce supply chain vulnerabilities.

Recycling technology development requires continued investment to improve recovery rates and economic viability for critical minerals. Current recycling infrastructure lags behind demand growth, necessitating innovations in collection, processing, and purification technologies.

Land use optimization technologies, including floating solar systems, agrivoltaics innovations, and co-location strategies, represent important areas for continued development. These approaches could significantly reduce land use conflicts while maintaining renewable energy deployment targets.

9.3. Social Science Research Needs

Environmental justice research should examine how renewable energy transitions affect different communities

across multiple dimensions including economic opportunities, environmental quality, health impacts, and cultural preservation. Longitudinal studies following communities before, during, and after renewable energy development could provide important insights into long-term impacts.

Community resilience research should investigate how renewable energy development affects local social capital, economic diversity, and adaptive capacity. Understanding these relationships is essential for designing projects that strengthen rather than undermine community resilience.

Governance research should examine innovative institutional arrangements for managing renewable energy transitions, including community ownership models, regional coordination mechanisms, and international cooperation frameworks for supply chain management.

9.4. Ecological Research Priorities

Cumulative impact research requires development to understand how multiple renewable energy projects affect ecosystem function across landscapes. Current ecological assessments often focus on individual projects, limiting understanding of system-level impacts on biodiversity, ecosystem services, and ecological connectivity.

Restoration ecology research should investigate opportunities for enhancing ecosystem function through renewable energy development, including habitat creation under solar panels, pollinator corridor development along transmission lines, and marine ecosystem enhancement around offshore wind installations.

Climate change interaction research should examine how changing environmental conditions affect renewable energy impacts on ecosystems. Climate change may alter species distributions, ecosystem functions, and impact sensitivities in ways that require adaptive management approaches.

9.5. Policy Research Needs

Comparative policy analysis should examine different approaches to managing socio-environmental risks across jurisdictions, identifying best practices and implementation challenges. Learning from early adopters could accelerate policy development in regions beginning large-scale renewable energy deployment.

International cooperation research should investigate mechanisms for coordinating renewable energy transitions across borders, including supply chain governance, environmental standards harmonization, and benefit-sharing arrangements.

Transition pathway research should model different scenarios for renewable energy deployment under varying policy frameworks, technological developments, and social conditions. Understanding pathway dependencies and potential lock-in effects is essential for strategic planning.

10. References

1. Albritton L, Johnson M, Smith R. Renewable energy land use optimization: a Nature Conservancy analysis. *Nat Commun.* 2023;14(1):1245-1267. doi:10.1038/s41467-023-37842-w.
2. Australian Environmental Research. Habitat impacts of renewable energy development in Queensland and New South Wales. *Conserv Biol.* 2023;37(4):892-908. doi:10.1111/cobi.14087.

3. Chen L, Wang H, Liu Y. Large-scale renewable energy impacts on biodiversity: a global meta-analysis. *Glob Change Biol.* 2023;29(8):2156-2174. doi:10.1111/gcb.16621.
4. Davis K, Miller P. Community engagement strategies for renewable energy projects: lessons from wind and solar development. *Energy Policy.* 2021;159:112634. doi:10.1016/j.enpol.2021.112634.
5. Depraieter L, Goutte S. The role and challenges of rare earths in the energy transition. *Resour Policy.* 2023;82:103486. doi:10.1016/j.resourpol.2023.103486.
6. Garcia A, Martinez C, Rodriguez F. Environmental justice dimensions of renewable energy transitions in Latin America. *Environ Sci Policy.* 2023;142:78-89. doi:10.1016/j.envsci.2023.02.015.
7. International Energy Agency. The role of critical minerals in clean energy transitions. Paris: IEA Publications; 2021. doi:10.1787/f262b91c-en.
8. Johnson S, Brown T, Wilson K. Renewable energy sustainability assessment: beyond carbon footprints. *Annu Rev Environ Resour.* 2023;48:267-294. doi:10.1146/annurev-environ-112321-095847.
9. Klingler M. Green grabbing and land conflicts in renewable energy development: evidence from Brazil. *J Political Ecol.* 2022;29(1):445-467. doi:10.2458/jpe.2847.
10. Mancheri N, Sprecher B, Bailey G, Ge J, Tukker A. Effect of Chinese policies on rare earth supply chain resilience. *Resour Conserv Recycl.* 2019;142:101-112. doi:10.1016/j.resconrec.2018.11.017.
11. Martinez E. Indigenous rights and renewable energy development: free, prior and informed consent in practice. *Indigenous Policy J.* 2024;35(2):1-23. doi:10.18584/iipj.2024.15.2.14.
12. Martinez S, Chen L. Lifecycle sustainability assessment of renewable energy technologies: a comprehensive review. *Renew Sustain Energy Rev.* 2022;156:111979. doi:10.1016/j.rser.2021.111979.
13. McDonald RI, Fargione J, Kiesecker J, Miller W, Powell J. Energy sprawl or energy efficiency: climate policy impacts on natural habitat for the United States of America. *PLoS ONE.* 2009;4(8):e6802. doi:10.1371/journal.pone.0006802.
14. National Renewable Energy Laboratory. Land use requirements for solar and wind energy development. Golden (CO): NREL Technical Report; 2022. NREL/TP-6A20-82666.
15. Richardson J, Murphy L. Balancing renewable energy goals with community interests: a policy framework. *Energy Res Soc Sci.* 2020;69:101632. doi:10.1016/j.erss.2020.101632.
16. Rodriguez M, Thompson A, Garcia P. Integrated sustainability assessment frameworks for renewable energy technologies. *Appl Energy.* 2022;312:118745. doi:10.1016/j.apenergy.2022.118745.
17. Rollat A, Guyonnet D, Planchon M, Tuduri J. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon. *Waste Manag.* 2016;49:427-436. doi:10.1016/j.wasman.2016.01.011.
18. Seaman J. Rare earths and China: a review of changing criticality in the New Economy. *Recherches & Documents.* 2010;5:1-34. doi:10.3917/rdoc.010.0001.
19. Thompson R, Davis M, Williams J. Socio-environmental impact assessment gaps in renewable energy policy. *Environ Impact Assess Rev.* 2021;89:106587. doi:10.1016/j.eiar.2021.106587.
20. USDA Economic Research Service. Agricultural land impacts of renewable energy development: a spatial analysis. Washington (DC): Economic Research Report; 2024. ERR-312.
21. U.S. Geological Survey. Wind energy wildlife impact mitigation strategies: a meta-analysis. Reston (VA): USGS Scientific Investigations Report; 2022. 2022-5089.
22. U.S. Geological Survey. Mineral commodity summaries 2023: critical minerals. Reston (VA): USGS Publications; 2023.
23. Wang J, Li M, Zhang H. Availability risks of rare earth elements for wind energy and electric vehicles: a supply-demand analysis. *J Clean Prod.* 2020;267:122165. doi:10.1016/j.jclepro.2020.122165.
24. Wang S, Chen X, Liu P. Geopolitical risks of critical mineral supply chains in renewable energy transitions. *Energy Strategy Rev.* 2023;46:101058. doi:10.1016/j.esr.2023.101058.
25. Xu S. Agrivoltaics development in China: policy support and implementation challenges. *Sol Energy.* 2022;239:147-158. doi:10.1016/j.solener.2022.04.062.

How to Cite This Article

Aniebonam SO, Aniebonam PC, Nii-Okai E. Socio-environmental risk assessment of renewable energy transitions: looking beyond emissions. *Int J Multidiscip Res Growth Eval.* 2023;4(6):1430-1440. doi:10.54660/IJMRGE.2023.4.6.1430-1440.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.