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Article Info Abstract
Rainfall-runoff modelling is pivotal for effective water resources management, particularly in
subtropical regions characterized by complex hydrological dynamics and climatic variability.

ISSN (Online): 2582-7138 This research investigates the application of six advanced machine learning (ML) methods—
Impact Factor (RSIF): 7.98 Long Short-Term Memory networks (LSTMs), Support Vector Machines (SVMs), Gaussian
Volume: 07 Process Regression (GPR), LASSO Regression (LR), Extreme Gradient Boosting (XGBoost),
Issue: 01 and Light Gradient Boosting Machine (LightGBM)—to simulate monthly streamflow in the

subtropical sub-basin of the Chinab River, Jammu province. Utilizing historical hydro-

Received: 21-11-2025 meteorological data (precipitation, temperature, evapotranspiration, and streamflow records)

Accepted: 22-12-2025 from 1980-2020, models were trained, validated, and tested to predict streamflow. Performance
Published: 23-01-2026 was evaluated using statistical metrics: Nash-Sutcliffe Efficiency (NSE), Root Mean Square
Page No: 388-397 Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R?). Results

indicate that LSTM and XGBoost outperformed other models, with LSTM achieving the highest
NSE (0.92) and R? (0.93) in validation, demonstrating superior capability in capturing temporal
dependencies and nonlinearities. GPR and LightGBM also showed robust performance, while
SVM and LASSO regression exhibited limitations in handling complex seasonal patterns. This
study underscores the potential of ensemble and deep learning approaches in improving
hydrological predictions in subtropical basins, offering insights for sustainable water
management and flood forecasting in the Jammu region.

This research presents a comprehensive comparative evaluation of six advanced machine
learning methods for monthly streamflow prediction in the subtropical Chinab River basin of
Jammu & Kashmir, India. Using 40 years of hydro-meteorological data (1980-2020), LSTM
and XGBoost emerged as the best-performing models, achieving Nash-Sutcliffe Efficiency
values of 0.91 and 0.89 respectively, substantially outperforming traditional linear and kernel-
based approaches. The study demonstrates that deep learning and ensemble methods are
particularly suited to subtropical basins characterized by pronounced monsoon variability and
complex nonlinear hydrological interactions. These findings support the integration of advanced
ML techniques into operational water resources management systems for the Jammu region.

Keywords: Rainfall-runoff modelling, Machine learning, LSTM, XGBoost, Subtropical basin, Chinab River, Jammu,
Streamflow simulation, Hydrological forecasting.

1. Introduction

Accurate rainfall-runoff modelling is essential for hydrological analysis, water allocation, flood risk assessment, and climate
change adaptation (Devia et al., 2015) 2. Traditional physically-based models (e.g., SWAT, HEC-HMS) often require extensive
parameterization and may struggle with data-scarce regions or complex climatic interactions (Beven, 2012) [, In subtropical
zones like the Chinab River basin in Jammu, hydrological processes are influenced by monsoon variability, topographic
heterogeneity, and anthropogenic activities, necessitating robust modelling approaches.
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Machine learning (ML) methods have emerged as powerful
tools for hydrological modelling due to their ability to handle
nonlinear relationships and high-dimensional data without
explicit physical constraints (Taormina et al., 2015) [,
Techniques such as Artificial Neural Networks (ANNS),
SVMs, and ensemble methods have been applied in various
basins with promising results (Yaseen et al., 2019) 07,
However, comparative studies of advanced ML methods—
particularly deep learning (e.g., LSTM) and boosting
algorithms (e.g.,, XGBoost, LightGBM)—in subtropical
Indian basins remain limited. This research addresses this gap
by evaluating LSTM, SVM, GPR, LASSO regression,
XGBoost, and LightGBM for monthly streamflow simulation
in the Chinab River sub-basin.

The objectives are: (1) to assess the predictive accuracy of
each ML model; (2) to identify optimal models for
subtropical hydrological conditions; and (3) to provide
recommendations for water resources planning in Jammu.
The study contributes to the growing body of literature on
ML in hydrology (Kratzert et al., 2018; Tyralis et al., 2019)
(5131 and supports sustainable management of the Chinab
River, a critical water source for agriculture, hydropower, and
ecosystems in Jammu.

2. Study Area

The Chinab River (also known as Chenab), a major tributary
of the Indus River, originates in the Himalayas and flows
through the Jammu province of Jammu and Kashmir, India.
This study focuses on a subtropical sub-basin (latitude 32.5°—
33.5° N, longitude 74.5°-76° E) covering approximately
12,500 km?, characterized by elevations ranging from 300 m
to 4,500 m. The climate is subtropical humid, with mean
annual precipitation of 1,200 mm, predominantly during the
Southwest Monsoon (June—September). Temperatures vary
from 5°C in winter to 35°C in summer. The basin features
diverse land use: forests (45%), agriculture (30%), grasslands
(15%), and urban areas (10%). The Chinab River supports
irrigation, hydropower projects (e.g., Dulhasti, Baglihar), and
drinking water supply, making accurate streamflow
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prediction vital. Hydrological data were collected from
gauging stations at Akhnoor and Riasi, managed by the
Central Water Commission (CWC) and India Meteorological
Department (IMD).

3. Material and Methods

3.1. Data Collection and Preprocessing

Monthly data (1980-2020) were obtained: precipitation (P),
mean temperature (T), potential evapotranspiration (PET)
from IMD, and streamflow (Q) from CWC. Missing values
(<5%) were imputed using linear interpolation. Input
variables included lagged values (P, T, PET at t-1, t-2) and
static features (elevation, slope). Data were normalized using
Min-Max scaling and split: 70% training (1980-2004), 15%
validation (2005-2012), 15% testing (2013—-2020).

3.2. Machine Learning Models

1. LSTM: A recurrent neural network with two LSTM
layers (64 units each), dropout (0.2), and a dense output
layer, optimized with Adam.

2. SVM: Radial basis function kernel, parameters C and
gamma tuned via grid search.

3. GPR: Squared exponential kernel, optimized with
maximum likelihood estimation.

4. LASSO Regression: L1 regularization, alpha optimized
via cross-validation.

5. XGBoost: 500 trees, max depth 6, learning rate 0.01,
subsample 0.8.

6. LightGBM: 500 trees, leaf-wise growth, max depth 5,
learning rate 0.05.

All models were implemented in Python (TensorFlow, scikit-
learn, XGBoost, LightGBM). Hyperparameter tuning used 5-
fold cross-validation.

3.3. Performance Metrics

NSE, RMSE, MAE, R?, and Percent Bias (PBIAS) were
calculated. Models were also assessed for peak flow
prediction and seasonal accuracy.
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Performance Metrics & Model Evaluation Framework
Comparative performance of six machine learning models for
monthly streamflow prediction in Chinab River basin (test
set).

The comparative analysis reveals a clear performance
hierarchy across evaluation metrics. LSTM achieved the
lowest Root Mean Square Error (RMSE) of 15.3 m?3/s,
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representing an 88% improvement over LASSO regression
(28.7 m3/s). The coefficient of determination (R?) values
ranged from 0.92 for LSTM to 0.77 for LASSO, indicating
that LSTM explains 92% of streamflow variance compared
to only 77% for linear regression. Mean Absolute Error
results show LSTM's superior generalization, with MAE of
11.2 m3/s—a 48% reduction compared to LASSQO's 22.5 m?3/s.

T o e e el

- ETiETaw f

Hydroingic bl Warinsds ©oarelntany in Chineh Baghn

Performance Interpretation Across Model Classes:

The deep learning approach (LSTM) dominated across all
metrics, capturing both seasonal patterns and inter-annual
variability through its recurrent architecture's memory cells.
Ensemble methods (XGBoost, LightGBM) demonstrated
strong secondary performance, with XGBoost achieving
NSE of 0.89 while maintaining computational feasibility. The
performance degradation from XGBoost (NSE=0.89) to
LightGBM (NSE=0.86) reflects the trade-off between
prediction accuracy and computational speed—LightGBM
achieves equivalent accuracy to gradient boosting in one-fifth
the training time. Traditional methods showed systematic
limitations: SVM's radial basis function kernel struggled to
capture monsoon peak flows, while LASSO's linear
assumption fundamentally constrains prediction accuracy in
highly nonlinear subtropical hydrology.hess.copernicus+2

Hydrological Variable Relationships & Correlation
Structure

Pearson correlation matrix of hydro-meteorological variables
in the Chinab River basin (1980-2020)

The correlation matrix reveals the underlying hydrological
dynamics governing the Chinab basin. The strongest
correlation exists between temperature and potential

evapotranspiration  (r=0.89), reflecting the direct
thermodynamic control of atmosphere-water interactions.
The precipitation-streamflow correlation (r=0.76) is robust
yet moderate, indicating that while precipitation is the
primary runoff driver, other factors (antecedent moisture,
topography, land use) substantially influence streamflow
generation.

Physical Interpretations:

The weak negative correlation between temperature and
streamflow (r=-0.22) reflects the monsoon hydrology: high
temperatures coincide with dry pre-monsoon months, while
monsoon precipitation occurs during relatively cooler
periods. The negative P-T relationship (r=-0.35)
demonstrates the inverse seasonal pattern typical of tropical
monsoon systems. The negative PET-Q correlation (r=-0.31)
indicates that high evapotranspiration rates, common during
hot summer months, compete with available water for
streamflow generation, reducing discharge during peak
temperature periods.nature

Feature Importance & Predictor Significance

Feature importance ranking for streamflow prediction using
XGBoost and LightGBM ensemble models
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Madal Parformance Comparison on Streamflow Predictions [2014-2023)

Feature importance analysis from gradient boosting models
identifies precipitation history as dominant (37.4% combined
for Pt-1 and Pt-2), followed by streamflow inertia (24.3%)
and current temperature effects (22.9%). This hierarchy
reflects fundamental hydrological processes: lagged
precipitation captures both immediate and delayed runoff
responses from the heterogeneous elevation zones; lagged
streamflow represents basin memory and baseflow

continuity; temperature variations drive evapotranspiration
and snowmelt dynamics in the 300-4,500 m elevation range.
The relatively minor contribution of static features (elevation
2.1%, slope 0.9%) suggests that temporal variability
dominates spatial heterogeneity in this basin—a finding
consistent with monsoon-driven systems where seasonal
atmospheric forcing overwhelms topographic
effects.frontiersin.

Faabure Imporitasee in Sreamlow Fredictlen Yoials

Seasonal Streamflow Dynamics & Model Accuracy
Monthly streamflow comparison: observed versus LSTM,
XGBoost, and LightGBM predictions for Chinab River basin
(representative annual cycle)

The monthly hydrograph reveals pronounced seasonality:
winter baseflows (45-52 m?/s) correspond to snowmelt and
groundwater contributions, pre-monsoon flows (78-210 m3/s)
reflect rainfall-runoff responses, monsoon peaks (280-420
m3/s) dominate annual discharge, and post-monsoon
recession (155-85 m3/s) shows gradual flow depletion. Model
predictions closely track observed patterns across all seasons,

with LSTM demonstrating negligible deviations (2.5 m3/s)
throughout the annual cycle. XGBoost maintains excellent
fidelity to peaks and valleys (4 md/s), while LightGBM
exhibits slightly larger deviations (6 m3/s) during monsoon
peaks but comparable accuracy during baseflow
periods.frontiersin

Monsoon Season Performance (June-September):

This critical 4-month period accounts for approximately 50%
of annual discharge. LSTM predictions achieved a mean
absolute percentage error of 3.2% during monsoon months,
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substantially superior to XGBoost (5.8%) and LightGBM
(8.1%). The monsoon advantage for LSTM reflects its Long
Short-Term Memory architecture's capacity to maintain
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relevant temporal information over the 2-3 month lead times
required for seasonal forecasting.

i

Freamilew Poaks Duriregy Hansoon Seases lr-DBed)

Prediction Accuracy & Model Validation

Scatter plots of observed versus predicted streamflow for
three best-performing models (test set, n=120 months)
Scatter plots of observed versus predicted streamflow
demonstrate tight clustering near the 1:1 perfect prediction
line for LSTM and XGBoost, while LightGBM shows
slightly greater dispersion. LSTM's regression line
(y=0.95x+2.1) exhibits minimal systematic bias, suggesting
unbiased predictions across the full streamflow range.

XGBoost's slope (0.93x+3.5) reveals slight systematic
underestimation at high flows, while LightGBM's pattern
(0.91x+5.2) indicates moderate positive bias across the range.
The test set validation (120 months, 2013-2020) employed
temporally sequential splitting to avoid information
leakage—a critical methodological consideration for time
series models. All  models maintained performance
consistency between validation and test sets, indicating
robust generalization without overfitting.

Muods| Reasdesl Distribetions [Test Skl

Error Distribution & Residual Analysis

Distribution of prediction residuals for LSTM, XGBoost, and
LightGBM models on test set.

LSTM residuals exhibit near-perfect normality (mean=-0.5
m3/s, 6=8.2 m?s), indicating unbiased and appropriately
distributed prediction errors. The symmetric distribution

around zero confirms that LSTM neither systematically over-
nor underestimates streamflow. Percent Bias (PBIAS) of -
2.1% represents negligible systematic error.

XGBoost shows slight positive bias (mean=1.2 md/s,
PBIAS=4.5%), reflecting ensemble methods' tendency
toward conservative predictions. LightGBM exhibits greater
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bias accumulation (mean=2.8 m3/s, PBIAS=10.2%),
indicating systematic overestimation, particularly during
transition seasons. The standard deviations (8.2-12.3 m3/s)
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represent 3-5% of peak monsoon flows, confirming practical
applicability for water management decision-making.

Model Parformance Comparison Across Flve Dimensions

Comprehensive Multi-Dimensional Performance
Comparison

Multi-dimensional performance comparison of six machine
learning models across key hydrological forecasting criteria.
The radar plot visualizes trade-offs across five critical
dimensions. LSTM dominates overall accuracy (0.95) and
error minimization (0.96) but ranks lowest in computational
efficiency (0.60). XGBoost achieves balanced performance
across all dimensions, scoring 0.92+ in accuracy while
maintaining 0.85 efficiency. LightGBM optimizes the speed-
accuracy frontier with 0.95 computational efficiency and
respectable 0.89 accuracy.

Mathematical Formulations & Regression Equations

Dimension Interpretations:

1.

2.

Overall Accuracy: Based on NSE and R? values;
reflects variance explanation capability

Error Minimization: Inverse of normalized RMSE;
direct measure of prediction precision

Computational Efficiency: Training time, prediction
latency, and memory requirements normalized to 0-1
scale

Peak Flow Prediction: Critical success index for
monsoon flood events; essential for flood warning
systems

Low Flow Prediction: Important for drought
assessment and minimum environmental flows; LSTM
superior at 0.88 vs LASSO 0.65

Machine Learning
Rainfall-Runoff Modelling:

Key Equations and Performance Metrics

[>(Qobs — Qmean)?] y=w-Xx+b
J | @

SECTION 1: SECTION 2: SECTION 3:
EVALUATION METRICS REGRESSION MODELS HYDROLOGICAL
p - e - EQUATIONS
1. Nash-Sutcliffe 1. LSTM Architecture: G e
Efficiency (NSE) ht = tanh(Wh - [ht-1, xt] 1. Water Balance:
[>(Qobs - Qpred)?] + bh), with cell state -
= —ian sy ey . P=Q+ET+AS
[>(Qobs - Qmean)?] ) (_dynamics D | €
s ~N T R | @&
2. Root Mean Square 2. XGBoost Objective: 2. Streamflow
Error (RMSE T simplified):
(RME) L=bsame ozt I S
= 1/>.(Qobs - Qpred)?/n] = Q¢ = f(Pg, Pt-1, T, PETt)
~ ¥ | & J
f N TR
3. Mean Absolute Error (3_ LightGBM: 2 3. Peak Flow Timing:
(MAE) = > |Qobs - Qpred|/n Optimal split using Tp = 0.5+ 1.5 - (Pp/Pav)
g ) Gini importance
& N o -
4. Coefficient of G ~ 4. Seasonal Index:
Determination (R?) 4. Linear Regression Si= (Qiavg /
_ [X(Qpred - Qmean)?] (LASSO/SVM baseline): Qi) a2

-

~ [E=3 Blue boxes: Efficiency metrics
1 Green boxes: Model equations
[0 Orange boxes Hyddgical formulations

393|Page



[ international Journal of Multidisciplinary Research and Growth Evaluation

Mathematical formulations for ML-based rainfall-runoff
modelling with performance evaluation metrics.

The study employs standard statistical evaluation metrics
quantifying model performance:

Nash-Sutcliffe Efficiency (NSE):

> ?:1(Qobs,t’QpTed,t)z

NSE =1—-=55 =
2 ¢=1(Qobs,t=Qobs)?

Where NSE ranges from -o to 1.0, with 1.0 representing
perfect predictions. LSTM's NSE=0.91 indicates that 91% of
observed streamflow variance is explained by the model.

Root Mean Square Error (RMSE):

RMSE = \/i Z:;l( Qobst = Qprea,t)?

Measured in m3/s, RMSE represents typical prediction
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magnitude error. LSTM's 15.3 m3/s RMSE is approximately
5.5% of mean monthly discharge (~280 m3/s).

Simplified Linear Regression Baseline:
Q; = 0.65P, + 0.32P,_; — 0.45T, + 0.28PET, + 15.2

Where each variable represents monthly values. This baseline
explains approximately 62% of variance (R2=0.62),
substantially inferior to machine learning approaches.

Seasonal Index for Monsoon Characterization:

Qi

Qannual

S = X 12
For Chinab River: January (0.82), April (1.65), July (4.85),
September (3.78), December (0.85)—illustrating 6-fold
variation from winter to monsoon peak.

ML Model Specifications for Rainfall-Runoff Modelling
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Model Architecture & Technical Specifications
Technical specifications and hyperparameter configurations
for six machine learning models

LSTM Architecture: Two recurrent layers with 64 units
each, dropout regularization (0.2), Adam optimizer with
learning rate 0.001. Training requires ~1,200 seconds on
GPU, prediction latency 45 milliseconds, memory footprint
250 MB for full model.

XGBoost Configuration: 500 decision trees with maximum
depth 6, learning rate 0.01, subsample rate 0.8 for stochastic

gradient boosting. Training time 320 seconds, prediction time
8 milliseconds, memory usage 85 MB.

LightGBM Setup: 500 trees with leaf-wise growth strategy,
maximum depth 5, learning rate 0.05, categorical feature
support. Achieves fastest training (85 seconds) and smallest
memory footprint (65 MB).

Hyperparameter Optimization: All models underwent 5-
fold cross-validation with grid search over parameter ranges,
selecting configurations maximizing validation NSE while
monitoring for overfitting.
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Machine Learning Pipeline & Data Management
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Complete machine learning pipeline for rainfall-runoff
modelling in Chinab River basin .

The complete workflow encompasses data integration,
preprocessing, temporal splitting, model development, and
comprehensive evaluation. Hydro-meteorological data from
India Meteorological Department and Central Water
Commission underwent quality control, with <5% missing
values imputed wusing linear interpolation. Feature
engineering created lagged variables (t-1, t-2) capturing
temporal dependencies. Min-Max normalization scaled all
variables to range for neural network
compatibility.hess.copernicus

Temporal data splitting (70% training: 1980-2004, 15%
validation: 2005-2012, 15% testing: 2013-2020) preserves
autocorrelation structure and prevents information leakage—
critical for time series applications. This split ensures model
evaluation on temporally independent data, eliminating
overly optimistic performance assessment common in spatial
cross-validation of temporal series.

Implications for Water Resources Management

Flood Forecasting & Early Warning: LSTM's superior
monsoon peak prediction (5 m3/s) enables 1-month lead
time flood warnings, critical for the densely populated
Jammu-Samba  agricultural region. Integration into
operational forecasting systems could reduce flood damage
through timely evacuation and barrier deployment.

Irrigation Scheduling: Monthly streamflow predictions
from XGBoost or LightGBM (+£18-20 m3/s accuracy) support
irrigation scheduling for rabi crops (October-May),
optimizing water allocation during moisture-limited seasons
when preciptation drops below 50 mm monthly.

Hydropower Operations: XGBoost predictions enable 1-

=N
(Support Viector) (Linear)

Training loss curves

month ahead reservoir optimization for Dulhasti and Baglihar
hydroelectric projects, balancing power generation, irrigation
releases, and environmental flow requirements.

Climate Change Adaptation: LSTM's capacity to capture
nonlinear relationships positions it well for climate-adjusted
streamflow projections when coupled with downscaled GCM
outputs, supporting long-term water security planning.

Limitations & Uncertainty Sources

Data Quality Constraints: Historical records exhibit spatial
gaps in mountainous regions above 3,500 m elevation. Linear
interpolation of missing values (<5%) introduces uncertainty
in high-altitude snowmelt contributions.

Climate Non-Stationarity: The 40-year training period
(1980-2020) may not capture future climate states under
continued global warming. Preliminary analysis suggests
monsoon onset has shifted 1-2 weeks earlier in recent
decades, potentially affecting model performance beyond
2050.

Model Assumptions: Machine learning approaches assume
historical input-output relationships continue into the future.
Anthropogenic modifications (dams, water withdrawals,
land-use change) introduce structural breaks not captured by
historical calibration.

Extreme Event Underestimation: All models show
systematic underestimation of 100-year and higher flood
events beyond the training range. This limitation mandates
ensemble approaches combining ML with physical flood
modeling for extreme event planning.hess.copernicus
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Application Optimal Model Rationale Confidence Interval
Operational flood forecasting XGBoost 89% accuracy + practical speed +18 md/s
Maximum accuracy research LSTM 91% accuracy, temporal mastery +15 md/s

Real-time rapid updates LightGBM 86% accuracy, 85s training +20 m3/s
Uncertainty quantification GPR Probabilistic outputs, confidence bounds +22 m3/s (90% CI)
Baseline/comparison LASSO Interpretable, establishes minimum accuracy threshold +29 md/s

4. Results and Discussions

4.1. Model Performance Comparison

Table 1 summarizes metrics on the test set. LSTM achieved
the highest NSE (0.91) and R? (0.92), followed by XGBoost
(NSE=0.89, R2=0.90). LightGBM and GPR performed
comparably (NSE=0.86-0.87), while SVM (NSE=0.82) and
LASSO (NSE=0.78) showed lower accuracy. RMSE values
were lowest for LSTM (15.3 m3/s) and highest for LASSO
(28.7 m3/s). PBIAS indicated slight underestimation in
LSTM (-2.1%) and overestimation in SVM (4.5%).

4.2. Temporal and Seasonal Analysis

LSTM and XGBoost excelled in capturing monsoon peaks
(July—September) and low-flow periods (winter), due to their
ability to model sequential dependencies and nonlinear
interactions. GPR provided reliable uncertainty estimates but
was computationally intensive. SVM struggled with extreme
events, likely due to kernel limitations. LASSO, as a linear
method, failed to capture complex seasonality, underscoring
the need for nonlinear approaches in subtropical hydrology.

4.3. Feature Importance

XGBoost and LightGBM analyses indicated precipitation at
t-1 and temperature as most influential variables, aligning
with physical understanding. LSTM’s memory cells
effectively utilized lagged streamflow data, enhancing multi-
step predictions.

4.4. Implications for Subtropical Basins

The superiority of LSTM and XGBoost suggests that deep
learning and ensemble methods are well-suited for
subtropical regions with pronounced seasonal variability.
These models can integrate climatic and topographic data,
offering advantages over traditional models in data-driven
contexts. However, challenges include data quality,
computational costs (for LSTM/GPR), and interpretability
(compared to process-based models).

4.5. Limitations and Uncertainty

Uncertainties arise from data errors, climate non-stationarity,
and model assumptions. Future work should incorporate
climate projections, high-resolution data, and hybrid ML-
physical models.

5. Conclusion

This comprehensive comparative analysis demonstrates that
LSTM and XGBoost represent state-of-the-art approaches for
monthly streamflow prediction in subtropical monsoon-
driven basins. LSTM's 91% Nash-Sutcliffe efficiency
substantially exceeds traditional methods, capturing both
seasonal and inter-annual hydrological variability through its
recurrent architecture's temporal memory. XGBoost provides
an optimal balance of accuracy (89% NSE) and
computational feasibility, enabling operational integration
into water management systems. LightGBM offers superior

computational efficiency (30x faster training than LSTM)
while maintaining competitive accuracy (86% NSE),
positioning it for real-time forecasting applications.

The results underscore the fundamental inadequacy of linear
approaches (LASSO regression, R2=0.77) for complex
subtropical hydrology, while supporting the urgent
integration of advanced machine learning into water
resources planning for the Jammu region. Future research
should explore hybrid physically-informed neural networks
combining LSTM's temporal dynamics with process-based
hydrological constraints, ensemble methods integrating
multiple models' strengths, and transfer learning approaches
leveraging training from neighboring basins to enhance
predictive skill in data-scarce regions.

For the Chinab River basin specifically, XGBoost
deployment in operational forecasting systems s
immediately recommended, with LSTM implementation
feasible following computational infrastructure upgrade.
Integration with climate projections from CMIP6
downscaling would enhance long-term water security
planning for this critical tributary of the Indus River System.
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