

International Journal of Multidisciplinary Research and Growth Evaluation ISSN: 2582-7138 Received: 05-01-2021; Accepted: 08-02-2021 www.allmultidisciplinaryjournal.com Volume 2; Issue 1; January-February 2021; Page No. 453-457

Linear transformation and operators

Aasif Amir Najar ¹, Dr. Chitra Singh ² ¹ Research Scholar, Department of Mathematics, Rabindranath Tagore University, Bhopal, Madhya Pradesh, India ² Associate Professor, Department of Mathematics, Rabindranath Tagore University, Bhopal, Madhya Pradesh, India

Corresponding Author: Aasif Amir Najar

Let T and U are the linear transformation from V into W then

Which shows that (T + U) is a linear transformation.

(T+U)(SV+W) = T(SV+W) + U(SV+W)

= S(TV) + TW + S(UV) + UW)

(rT) (SV + W) = r (T(SV + W))

Which shows that (rT) is a linear transformation.

= r(S(TV) + T(W))

= S(r(TV)) + rT(W)

= S((rT)V) + (rT)W

= rS(TV) + r(TW)

= S(TV + UV) + (TW + UW)= S(T + U)V + (T + U)W

Similarly we have

Abstract

In this paper we discuss here linear Transformation and operators and illustrate the definition with an example. Let *V* and *W* be a vector space over the field *F* let *T* and *U* be the linear transformation from *V* into *W*. The function (T + U) defined by.

(T+U)(V) = TV + UV

Is a linear transformation from V into W let SEF the function (ST) defined by

(ST)(V) = S(TV)

Is also linear transformation from V to W the set of all linear transformation from V into W[, together in the addition and scalar transformation defined a some is a vector space over the field.

Proof:

Keywords: transformation, Linear, function, algebra

Introduction

In linear algebra we say that a transformation between two vectors is a that assigns a vector is one space to another space. In this paper we mention these theories we verify the linear properties using.

Properties of matrix and matrix scalar multiplication

Example (1)

Let $T: M_{3x3} \rightarrow$ be a transformation such that $T(A) = \operatorname{rank}(A)$

Show that T is not linear.

Proof:

To show that T is not linear then we use two matrices say A & B such that

 $T(A+B) \neq T(A) + T(B)$

Observe that rank of two matricies is 3 then.

 $T(A) + T(B) = \operatorname{Rank}(A) + \operatorname{Rank}(B) = 6$

While $T(A + B) = \text{Rank} (A + B) \le 3$ clearly $T(A + B) \ne T(A) + T(B)$ We can find out let.

T(B) = 3

$$A = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \text{ and } A = \begin{vmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{vmatrix}$$

Then T(A) = 3 and

$$T(A+B) = T \begin{vmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 1$$
$$T = \begin{vmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{vmatrix}$$

Then

$$1 = T(A+B) \neq T(A) + T(B) = 6$$

Example 2:- if W1 and W2 is a subspace of vector space V(F) with W1+W2 is again a subspace of V(F) and also W1+W2 is.

w1 + w2 = L(w1Uw2)

Proof:- let $\gamma 1, \gamma 2 \in w1 + w2$ such that

 $\begin{array}{l} \gamma 1 = \propto 1 + \beta 1 \, ; \, \propto 1 \propto 2 \in w1 \\ \gamma 2 = \gamma 2 + \beta 2 \, ; \, \beta 1, \beta 2 \in w2 \\ \mathrm{a} \, \gamma 1 + \gamma 2 = a (\propto 1 + \propto 2) + (a \, \beta 1 + \beta 2) \in w1 + w2 \end{array}$

Now $\propto \in w1, \beta \in w2$

 $\begin{array}{l} \gamma \in w1 + w2 \\ \Rightarrow \gamma = \propto + \beta \\ \propto .\beta \in w1 \ U \ w2 \\ \gamma = 1. \propto + 1.\beta \in L(w1 \ U \ w2) \\ \Rightarrow w1 + w2 \leq L(w1 + w2) - - - -(1) \\ Now \ \gamma \in L(w1 \ U \ w2) \\ \Rightarrow \gamma = \Sigma \ ai \ \propto i + bj \ \beta j \in w1 + w1 \\ \Rightarrow L(w1 \ U \ w2) \leq w1 + w2 - - -(2) \end{array}$

From 1 and 2 $\,$

w1 + w2 = L(w1 + w2)

Example 3:- Consider linear transformation T: $M_2(R) \rightarrow M_2(R)$

Such that T(A) = PAQ; when $P = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \& Q = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$

Then find Rank and nullity of transformation. Proof:- T(A) = PAQ

$$T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} a+c & b+d \\ 2a+2c & 2b+2d \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2a+2c+b+d & 2a+2c+b+d \\ 4a+4c+2b+2d & 4a+4c+2b+2d \end{bmatrix}$$
$$\Rightarrow T \begin{bmatrix} a & b \\ c & d \end{bmatrix} = 0$$

$$\Rightarrow 2a + 2c + b + d = 0$$

$$N(T) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} 2a + 2c + b + d = 0$$

$$\dim N(T) = 4 - 3 = 3 = \text{nullity} (T)$$

$$\dim M2(R) = 4$$

$$\text{Nullity}(T) = 3$$

$$\text{R and (T)} = 1$$

Example 4: Consider the vector space V of semi-infinite real sequence R where $V = (v1, v2, v3, \dots, \dots, \dots) \in V$ with $Vn \in R$ for $n \in N$ let L: $V \to V$ be the left shift linear transformation defined by.

$$Lv = (v2, v3, v3, \dots \dots \dots)$$

and $R: V \rightarrow V$ be the right shift linear transformation defined by.

$$RV = (0, V1, V2V \dots \dots \dots$$

Notice that L is onto but not one to one and R is one to one but not on to therefore neither transformation is in veritable. Operator norms:- Intuitively, the operators norm is the largest factor by which a linear transformation can increase the length of vector, this provide a simple woist case charteization of any linear transformation.

Definition :- Let V & W be two nor med vector space and let $T : V \rightarrow W$ be a linear transformation the inducted operator norm of T is defined to.

$$||T|| = \frac{Sup}{v \in V - \{50\}} \left\| {{}_{V}^{TV}} \right\| = \sup_{v \in V} \sup_{\|V\|} = 1 ||TV||$$

This norm also has a new property that follows easily from this definition. The induced operator norm is called sub multiplicative because $||TV|| \leq ||TV|| ||V||$. From this, it is easy to see that it also provides a sub multiplicative norm for the algebra of linear operator in that.

 $||UTV|| \le ||U|| ||TV|| \le ||U|| ||T|| ||V||$

A common question the operator norm is, "How do i know the two ex presence give the same result". To see this in unite.

$$\begin{array}{c} Sup\\ v \in V - \{0\} \| {{TV} \atop V} \| &= {Sup}\\ v \in V - \{0\} &= \left\| T \| {{V} \atop V} \right\| = {Sup}\\ u \in V \| U \| = 1 \end{array}$$

Example:- (1) Find || 2x + 5 || if $2x + 5 \in p1(R)$ & inner product is

$$\langle f,g\rangle = \int_{0}^{1} f(x) g(x) dx$$

Sol:-

$$||2x + 5|| = \sqrt{2x + 5, 2x + 5} >$$

= $\sqrt{\int_0^1 (2x + 5)^2} dx$
 $\frac{\sqrt{7^3 - 5^3}}{6}$

Example (2) Consider $\begin{bmatrix} 1 & 1+i \\ 1-i & 3i \end{bmatrix} \in M_2(C)$

Find
$$\begin{vmatrix} 1 & 1+i \\ 1+i & 3i \end{vmatrix}$$

Sol:- $\begin{vmatrix} 1 & 1+i \\ 1+i & 31 \end{vmatrix} = \sqrt{tr\left\{ \begin{pmatrix} 1 & 1+i \\ 1+i & 3 \end{pmatrix} \begin{pmatrix} 1 & 1-i \\ 1-i & 3 \end{pmatrix} \right\}}$

$$= \sqrt{1^2 + (1^2 + 1^2) + (1^2 + 1^2) + 3^2}$$
$$= \sqrt{1 + 2 + 2 + 3}$$
$$= \sqrt{14}$$

Example (3)

A linear transformation T: $V \rightarrow W$ is bounded if and only if it is continues.

Proof:- Suppose that T is bounded there M such that $||TV|| \le M ||V||$ for all $V \in V$ let $V_1 + V_2$,..... be a convergent sequence in v_1 then.

$$||Tvi - Tvj|| = ||T(Vi - Vj)|| \le M ||Vi - Vj||$$

This implies that TV_1 , TV_2is a convergent sequence in W and T is continues. Conversely assume T is continuous and notice that TO = 0 therefore, for any $\in > 0$, there is a $\partial > 0$ such that $||TV|| < \epsilon$ for all ||V|| < S since the norm of $u = \frac{Sv}{2||V||}$ is equal to S/2 we get.

$$\|TV\| = \left\|T\frac{Sv}{2\|V\|}\right\| \frac{2\|V\|}{\partial} < \frac{2 \in}{\partial} \|V\|$$

The value $M = \frac{2\epsilon}{\partial}$ senses as an upper bound on ||T||.

Then by showing that linear that formation over spaces are continues one concludes that they are also bounded this is accomplished in the following theorem.

Example (4)

Let 11 - 11 be a sub multiplicative operator and $T: V \to V$ be the linear operator with ||T|| < 1. then, $(I - T)^{-1}$ exists and

$$(I - T)^{-2} = \sum_{i=0}^{00} Ti$$

Proof, First, we observe that the sequence.

$$An = \sum_{i=0}^{1} Ti$$

Is can cling this follows from the fact that, for m < n hence.

$$\begin{aligned} \|An - Am\| &= \|\sum_{i=m}^{n-1} Ti\| \leq \sum_{i=m}^{n-1} \|T\| i \\ &= \frac{\|T\|m\| T\|n}{1 - \|T\|} \leq \frac{\|T\|m}{1 - \|T\|} \end{aligned}$$

Since this goes to zero as $\rightarrow \infty$, we see that the limiton $n \rightarrow \infty$ An exists. Next, we observe that

$$(I - T) (I + T + T^{2} + \dots + T^{4-1}) = I - T^{4}$$

sin ||T|| < 1, we have $\lim_{K \to \infty} T^{K} = 0$ because $||Tk|| \le ||T||^{k} \to 0$ Taking the limit $n \to a$ of both sides we get.

$$(I-T)\sum_{i=0}^{a}T = \lim_{n\to\infty}(I-T^n) = I$$

Like, reversing the order multiplication results in the same result. This shows that $\sum_{i=0}^{\infty} t^i$ must be the increase of I = T. If one only needs to support that I - T is non-singular, then proof by contradiction is some what simple. Suppose I - T is singular, that there exists a non-zero vector V such that (I - T)V = 0. But this implies that

 $||V|| = ||TV|| \le ||T|| ||V||$. Since $||V|| \ne 0$, this gives the contradiction $||T|| \ge 1$ and implies that I - T is non-singular.

International Journal of Multidisciplinary Research and Growth Evaluation

Conclusion

Linear transformation and operations are useful because the presence the stature of a vector spaces. So many qualitative assessments of vectors spaces that Is the domain of linear transformation may under certain conditions atomically hold the image of the linear transformation.

References

- 1. Linear Algebra; Shamus out lines series.
- 2. Linear transformation and operators ; lttps//Pfister.ee.edu