International Journal of Multidisciplinary Research and Growth Evaluation

International Journal of Multidisciplinary Research and Growth Evaluation
ISSN: 2582-7138
Received: 05-01-2021; Accepted: 08-02-2021
www.allmultidisciplinaryjournal.com
Volume 2; Issue 1; January-February 2021; Page No. 453-457

Linear transformation and operators

Aasif Amir Najar ${ }^{\mathbf{1}}$, Dr. Chitra Singh ${ }^{2}$
${ }^{1}$ Research Scholar, Department of Mathematics, Rabindranath Tagore University, Bhopal, Madhya Pradesh, India
${ }^{2}$ Associate Professor, Department of Mathematics, Rabindranath Tagore University, Bhopal, Madhya Pradesh, India
Corresponding Author: Aasif Amir Najar

Abstract

In this paper we discuss here linear Transformation and operators and illustrate the definition with an example. Let V and W be a vector space over the field F let T and U be the linear transformation from V into W. The function $(T+U)$ defined by.

$$
(T+U)(V)=T V+U V
$$

Is a linear transformation from V into W let $S E F$ the function (ST) defined by

$$
(S T)(V)=S(T V)
$$

Is also linear transformation from V to W the set of all linear transformation from V into W [, together in the addition and scalar transformation defined a some is a vector space over the field.

Proof:

Let T and U are the linear transformation from V into W then

$$
\begin{aligned}
& (T+U)(S V+W)=T(S V+W)+U(S V+W) \\
& =S(T V)+T W+S(U V)+U W) \\
& =S(T V+U V)+(T W+U W) \\
& =S(T+U) V+(T+U) W
\end{aligned}
$$

Which shows that $(T+U)$ is a linear transformation. Similarly we have

$$
\begin{aligned}
& (r T)(S V+W)=r(T(S V+W)) \\
& =r(S(T V)+T(W)) \\
& =r S(T V)+r(T W) \\
& =S(r(T V))+r T(W) \\
& =S((r T) V)+(r T) W
\end{aligned}
$$

Which shows that $(r T)$ is a linear transformation.

Keywords: transformation, Linear, function, algebra

Introduction

In linear algebra we say that a transformation between two vectors is a that assigns a vector is one space to another space. In this paper we mention these theories we verify the linear properties using.

Properties of matrix and matrix scalar multiplication
Example (1)
Let $T: M_{3 \times 3} \rightarrow$ be a transformation such that $T(A)=\operatorname{rank}(A)$
Show that T is not linear.
Proof:
To show that T is not linear then we use two matrices say $A \& B$ such that

$$
T(A+B) \neq T(A)+T(B)
$$

Observe that rank of two matricies is 3 then.

$$
T(A)+T(B)=\operatorname{Rank}(A)+\operatorname{Rank}(B)=6
$$

While $T(A+B)=\operatorname{Rank}(A+B) \leq 3$ clearly $T(A+B) \neq T(A)+T(B)$
We can find out let.

$$
A=\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right| \text { and } A=\left|\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right|
$$

Then $T(A)=3$ and

$$
T(B)=3
$$

$$
\begin{aligned}
& T(A+B)=T\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right|=1 \\
& T=\left|\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right|
\end{aligned}
$$

Then

$$
1=T(A+B) \neq T(A)+T(B)=6
$$

Example 2:- if W1 and W2 is a subspace of vector space $\mathrm{V}(\mathrm{F})$ with $\mathrm{W} 1+\mathrm{W} 2$ is again a subspace of $\mathrm{V}(\mathrm{F})$ and also $\mathrm{W} 1+\mathrm{W} 2$ is.

$$
w 1+w 2=L(w 1 U w 2)
$$

Proof:- let $\gamma 1, \gamma 2 \in w 1+w 2$ such that

$$
\begin{aligned}
& \gamma 1=\alpha 1+\beta 1 ; \propto 1 \propto 2 \in w 1 \\
& \gamma 2=\gamma 2+\beta 2 ; \beta 1, \beta 2 \in w 2 \\
& \mathrm{a} \gamma 1+\gamma 2=a(\propto 1+\propto 2)+(a \beta 1+\beta 2) \in w 1+w 2
\end{aligned}
$$

Now $\alpha \in w 1, \beta \in w 2$

$$
\begin{aligned}
& \gamma \in w 1+w 2 \\
& \Rightarrow \gamma=\propto+\beta \\
& \propto \cdot \beta \in w 1 U w 2 \\
& \gamma=1 \cdot \propto+1 . \beta \in L(w 1 U w 2) \\
& \Rightarrow w 1+w 2 \leq L(w 1+w 2)----(1) \\
& \text { Now } \gamma \in L(w 1 U w 2) \\
& \Rightarrow \gamma=\sum \text { ai } \propto \mathrm{i}+\mathrm{bj} \beta \mathrm{j} \in \mathrm{w} 1+\mathrm{w} 1 \\
& \Rightarrow L(w 1 U w 2) \leq w 1+w 2----(2)
\end{aligned}
$$

From 1 and 2

$$
w 1+w 2=L(w 1+w 2)
$$

Example 3:- Consider linear transformation $T: M_{2}(R) \rightarrow M_{2}(R)$
Such that $T(A)=P A Q$; when $P=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right] \& Q=\left[\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right]$
Then find Rank and nullity of transformation.
Proof:- $T(A)=P A Q$

$$
\begin{aligned}
& T\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
a+c & b+d \\
2 a+2 c & 2 b+2 d
\end{array}\right]\left[\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 a+2 c+b+d & 2 a+2 c+b+d \\
4 a+4 c+2 b+2 d & 4 a+4 c+2 b+2 d
\end{array}\right] \\
& \Rightarrow T\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 2 a+2 c+b+d=0 \\
& N(T)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] 2 a+2 c+b+d=0\right. \\
& \operatorname{dim} N(T)=4-3=3=\text { nullity }(T) \\
& \operatorname{dim} M 2(R)=4 \\
& \operatorname{Nullity}(T)=3 \\
& \mathrm{R} \text { and }(T)=1
\end{aligned}
$$

Example 4: Consider the vector space V of semi-infinite real sequence R where $V=(v 1, v 2, v 3, \ldots \ldots \ldots \ldots \ldots) \in V$ with $V n \in$ R for $n \in N$ let L: $V \rightarrow V$ be the left shift linear transformation defined by.

$$
L v=(v 2, v 3, v 3, \ldots \ldots \ldots \ldots)
$$

and $\mathrm{R}: V \rightarrow V$ be the right shift linear transformation defined by.

$$
R V=(0, V 1, V 2 V \ldots \ldots \ldots \ldots .
$$

Notice that L is onto but not one to one and R is one to one but not on to therefore neither transformation is in veritable.
Operator norms:- Intuitively, the operators norm is the largest factor by which a linear transformation can increase the length of vector, this provide a simple woist case charteization of any linear transformation.
Definition :- Let V \& W be two nor med vector space and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation the inducted operator norm of T is defined to.

$$
\|T\|=\frac{\operatorname{Sup}}{v \in V-\{50\}}\left\|\begin{array}{c}
T V \\
V
\end{array}\right\|=\sup _{v \in V\|V\|}=1\|T V\|
$$

This norm also has a new property that follows easily from this definition. The induced operator norm is called sub multiplicative because $\|T V\| \leq\|T V\|\|V\|$. From this, it is easy to see that it also provides a sub multiplicative norm for the algebra of linear operator in that.

$$
\|U T V\| \leq\|U\|\|T V\| \leq\|U\|\|T\|\|V\|
$$

A common question the operator norm is, "How do i know the two ex presence give the same result". To see this in unite.

$$
\begin{gathered}
\operatorname{Sup} \\
v \in V-\{0\}
\end{gathered}\left\|_{V}^{T V}\right\|=\begin{gathered}
\operatorname{Sup} \\
v \in V-\{0\}
\end{gathered}=\|T\| V \|=\begin{gathered}
\text { Sup }\|T u\| \\
u \in V\|U\|=1
\end{gathered}
$$

Example:- (1) Find \| $2 x+5 \|$ if $2 x+5 \in p 1(R) \&$ inner product is

$$
<f, g>=\int_{0}^{1} f(x) g(x) d x
$$

Sol:-

$$
\begin{aligned}
& \|2 x+5\|=\sqrt{<2 x+5,2 x+5>} \\
& =\sqrt{\int_{0}^{1}(2 x+5)^{2}} d x \\
& \frac{\sqrt{7^{3}-5^{3}}}{6}
\end{aligned}
$$

Example (2) Consider $\left[\begin{array}{cc}1 & 1+i \\ 1-i & 3 i\end{array}\right] \in M_{2}(C)$

$$
\text { Find }\left\|\begin{array}{cc}
1 & 1+i \\
1+i & 3 i
\end{array}\right\|
$$

$$
\text { Sol:- }\left\|_{1+i}^{1} \begin{array}{cc}
1+i \\
31
\end{array}\right\|=\sqrt{\operatorname{tr}\left\{\left(\begin{array}{cc}
1 & 1+i \\
1+i & 3
\end{array}\right)\left(\begin{array}{cc}
1 & 1-i \\
1-i & 3
\end{array}\right)\right\}}
$$

$$
\begin{aligned}
& =\sqrt{1^{2}+\left(1^{2}+1^{2}\right)+\left(1^{2}+1^{2}\right)+3^{2}} \\
& =\sqrt{1+2+2+3} \\
& =\sqrt{14}
\end{aligned}
$$

Example (3)
A linear transformation $\mathrm{T}: \mathrm{V} \rightarrow W$ is bounded if and only if it is continues.
Proof:- Suppose that T is bounded there M such that $\|T V\| \leq M\|V\|$ for all $V \in V$ let $\mathrm{V}_{1}+\mathrm{V}_{2}, \ldots$. be a convergent sequence in v_{1} then.

$$
\|T v i-T v j\|=\|T(V i-V j)\| \leq M\|V i-V j\|
$$

This implies that $\mathrm{TV}_{1}, \mathrm{TV}_{2}$ \qquad .is a convergent sequence in W and T is continues. Conversely assume T is continuous and notice that TO $=0$ therefore, for any $\in>0$, there is a $\partial>0$ such that $\|T V\|<\in$ for all $\|V\|<S$ since the norm of $u=\frac{S v}{2\|V\|}$ is equal to $S / 2$ we get.

$$
\|T V\|=\left\|T \frac{S v}{2\|V\|}\right\| \frac{2\|V\|}{\partial}<\frac{2 \epsilon}{\partial}\|V\|
$$

The value $M=\frac{2 \epsilon}{\partial}$ senses as an upper bound on $\|T\|$.
Then by showing that linear that formation over spaces are continues one concludes that they are also bounded this is accomplished in the following theorem.

Example (4)
Let $11-11$ be a sub multiplicative operator and $T: V \rightarrow V$ be the linear operator with $\|T\|<1$. then, $(I-T)^{-1}$ exists and

$$
(\mathrm{I}-\mathrm{T})^{-2}=\sum_{\mathrm{i}=0}^{00} \mathrm{Ti}
$$

Proof, First, we observe that the sequence.

$$
A n=\sum_{i=0}^{1} T i
$$

Is can cling this follows from the fact that, for $m<n$ hence.

$$
\begin{aligned}
& \|A n-A m\|=\left\|\sum_{i=m}^{n-1} T i\right\| \leq \sum_{i=m}^{n-1}\|T\| i \\
& =\frac{\|T\| m\|T\| n}{1-\|T\|} \leq \frac{\|T\| m}{1-\|T\|}
\end{aligned}
$$

Since this goes to zero as $\rightarrow \infty$, we see that the limiton $n \rightarrow \infty$ An exists.
Next, we observe that

$$
(I-T)\left(I+T+T^{2}+\ldots \ldots .+T^{4-1}\right)=\mathrm{I}-\mathrm{T}^{4}
$$

$\sin \|T\|<1$, we have $\lim _{\mathrm{K} \rightarrow \infty} \rightarrow T^{\mathrm{K}}=0$ because $\|T k\| \leq\|T\|^{\mathrm{k}} \rightarrow 0$ Taking the limit $n \rightarrow a$ of both sides we get.

$$
(I-T) \sum_{i=o}^{a} T=\lim _{n \rightarrow \infty}\left(I-T^{n}\right)=I
$$

Like, reversing the order multiplication results in the same result. This shows that $\sum_{i=o}^{\infty} t^{\mathrm{i}}$ must be the increase of $I=T$. If one only needs to support that $I-T$ is non-singular, then proof by contradiction is some what simple. Suppose $I-T$ is singular, that there exists a non-zero vector V such that $(I-T) V=0$. But this implies that $\|V\|=\|T V\| \leq\|T\|\|V\|$. Since $\|V\| \neq 0$, this gives the contradiction $\|T\| \geq 1$ and implies that $I-T$ is non-singular.

Conclusion

Linear transformation and operations are useful because the presence the stature of a vector spaces. So many qualitative assessments of vectors spaces that Is the domain of linear transformation may under certain conditions atomically hold the image of the linear transformation.

References

1. Linear Algebra; Shamus out lines series.
2. Linear transformation and operators ;lttps//Pfister.ee.edu
