International Journal of Multidisciplinary Research and Growth Evaluation

International Journal of Multidisciplinary Research and Growth Evaluation
ISSN: 2582-7138
Received: 01-10-2021; Accepted: 15-10-2021
www.allmultidisciplinaryjournal.com
Volume 2; Issue 6; November-December 2021; Page No. 63-66

On the non-homogeneous ternary cubic equation $3\left(x^{2}+y^{2}\right)-2 x y+4(x+y)+4=51 z^{3}$

S Vidhyalakshmi ${ }^{1}$, MA Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy, TamilNadu, India
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy, TamilNadu, India.
Corresponding Author: S Vidhyalakshmi

Abstract

The cubic equation with three unknowns given by $3\left(x^{2}+y^{2}\right)-\quad$ non-zero distinct integer solutions. $2 x y+4(x+y)+4=51 z^{3}$ is analysed for its different patterns of

Keywords: Ternary cubic, non-homogeneous cubic, integer solutions

Introduction

The Diophantine equations offer an unlimited field for research due to their variety ${ }^{[1,2]}$. In particular, one may refer ${ }^{[3-16]}$ for cubic equations with three unknowns. This communication concerns with yet another interesting equation $3\left(x^{2}+y^{2}\right)-2 x y+4(x+y)+4=51 z^{3}$ representing non- homogeneous cubic equation with three unknowns for determining its infinitely many non-zero integral points.

Method of Analysis

The ternary cubic equation to be solved is

$$
\begin{equation*}
3\left(x^{2}+y^{2}\right)-2 x y+4(x+y)+4=51 z^{3} \tag{1}
\end{equation*}
$$

Introducing the linear transformations

$$
\begin{equation*}
x=u+v, y=u-v, \quad(u \neq v \neq 0) \tag{2}
\end{equation*}
$$

In (1), it is written as

$$
\begin{equation*}
(2 u+2)^{2}+8 v^{2}=51 z^{3} \tag{3}
\end{equation*}
$$

Now, (3) is solved through different ways and using (2), different sets of integer solutions to (1) are obtained.
Way 1
Assume $\mathrm{z}=\mathrm{a}^{2}+8 \mathrm{~b}^{2}$
Write 51 as $51=(7+i \sqrt{2})(7-i \sqrt{2})$
Using (4) and (5) in (3) and applying factorization, it is written as
$((2 u+2)+i 2 \sqrt{2} v)((2 u+2)-i 2 \sqrt{2} v))=(7+i \sqrt{2})(7-i \sqrt{2})(a+i 2 \sqrt{2} b)^{3}(a-i 2 \sqrt{2} b)^{3}$ Which is equivalent
to the system of equations.

$$
\begin{align*}
& (2 u+2)+i 2 \sqrt{2} v=(7+i \sqrt{2})(a+i 2 \sqrt{2} b)^{3} \tag{6}\\
& (2 u-2)+i 2 \sqrt{2} v=(7-i \sqrt{2})(a-i 2 \sqrt{2} b)^{3} \tag{7}
\end{align*}
$$

Equating the real and imaginary parts in either (6) or (7), the values of u and v are

$$
\begin{aligned}
\mathrm{u} & =\frac{1}{2}\left(7 \mathrm{a}^{3}-168 a b^{2}-12 a^{2} b+32 b^{3}-2\right) \\
\mathrm{v} & =\frac{1}{2}\left(\mathrm{a}^{3}-24 a b^{2}+42 a^{2} b-112 b^{3}\right)
\end{aligned}
$$

Substituting the above value of $\mathrm{u} \& \mathrm{v}$ in (2), the values of $x \& y$ are given by

$$
\begin{align*}
& x=4 a^{3}-96 a b^{2}+15 a^{2} b-40 b^{3}-1 \\
& y=3 a^{3}-72 a b^{2}-27 a^{2} b+72 b^{3}-1 \tag{8}
\end{align*}
$$

Thus,(8) \& (4) represent the non-zero distinct integer solutions to (1).

Note 1

The integer 51 on the R.H.S. of (3) may be expressed as the product of complex conjugates as below:
Choice 1: $51=(-7+i \sqrt{2})(-7-i \sqrt{2})$
Choice 2: $51=(1+i 5 \sqrt{2})(1-i 5 \sqrt{2})$
Choice 3: $51=(-1+i 5 \sqrt{2})(-1-i 5 \sqrt{2})$
For each of the above choices to 51, the corresponding integer solutions to (1) are given below:

Solutions to choice 1

$$
\begin{aligned}
& x=-3 a^{3}+72 a b^{2}-27 a^{2} b+72 b^{3}-1 \\
& y=-4 a^{3}+96 a b^{2}+15 a^{2} b-40 b^{3}-1 \\
& z=a^{2}+8 b^{2}
\end{aligned}
$$

Solutions to choice 2

$$
\begin{aligned}
& x=3 a^{3}-72 a b^{2}-27 a^{2} b+72 b^{3}-1 \\
& y=-2 a^{3}+48 a b^{2}-33 a^{2} b+88 b^{3}-1 \\
& z=a^{2}+8 b^{2}
\end{aligned}
$$

Solutions to choice 3

$$
\begin{aligned}
& x=2 a^{3}-48 a b^{2}-33 a^{2} b+88 b^{3}-1 \\
& y=-3 a^{3}+72 a b^{2}-27 a^{2} b+72 b^{3}-1 \\
& z=a^{2}+8 b^{2}
\end{aligned}
$$

Way 2

$$
\begin{equation*}
\text { Write (3) as }(2 u+2)^{2}+8 \mathrm{v}^{2}=51 \mathrm{z}^{3} * 1 \tag{9}
\end{equation*}
$$

The integer 1 on the R.H.S. of (9) is written as

$$
\begin{equation*}
1=\frac{(-1+i 2 \sqrt{2})(-1-i 2 \sqrt{2})}{9} \tag{10}
\end{equation*}
$$

Substituting (5) \& (10) in (9) and repeating the process as in Way:1, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x=9\left(a^{3}-24 a b^{2}-111 a^{2} b+296 b^{3}\right)-1 \\
& y=27\left(-4 a^{3}+96 a b^{2}-15 a^{2} b+40 b^{3}\right)-1 \\
& z=9\left(a^{2}+8 b^{2}\right)
\end{aligned}
$$

Note 2

The integer 1 on the R.H.S. of (9) may be written as follows:

$$
\begin{aligned}
& \text { Choice 4: } 1=\frac{(-7+i 6 \sqrt{2})(-7-i 6 \sqrt{2})}{121} \\
& \text { Choice 5: } 1=\frac{(7+i 6 \sqrt{2})(7-i 6 \sqrt{2})}{121}
\end{aligned}
$$

For each of the above choices to 1 , the corresponding integer solutions to (1) are given below:

Solutions to choice 4

$$
\begin{aligned}
& x=121\left(-13 a^{3}+312 a b^{2}-393 a^{2} b+1048 b^{3}\right)-1 \\
& y=121\left(-48 a^{3}+1152 a b^{2}-27 a^{2} b+72 b^{3}\right)-1 \\
& z=121\left(a^{2}+8 b^{2}\right)
\end{aligned}
$$

Solutions to choice 5

$$
\begin{aligned}
& x=5203 A^{3}-22143 A^{2} B-124872 A B^{2}+59048 B^{3}-1 \\
& y=-726 A^{3}-49005 A^{2} B+17424 A B^{2}+130680 B^{3}-1 \\
& z=121 A^{2}+968 B^{2}
\end{aligned}
$$

Way 3

Replacing z by $2 w$ in (3), it is written as

$$
\begin{equation*}
(\mathrm{u}+1)^{2}+2 \mathrm{v}^{2}=102 \mathrm{w}^{3} \tag{11}
\end{equation*}
$$

Write 102 as

$$
\begin{equation*}
102=(10+i \sqrt{2})(10-i \sqrt{2}) \tag{12}
\end{equation*}
$$

Performing the analysis as given above, the corresponding integer solutions to (1) are found to be

$$
\begin{aligned}
& x=11 a^{3}-66 a b^{2}+24 a^{2} b-16 b^{3}-1 \\
& y=9 a^{3}-54 a b^{2}-36 a^{2} b+24 b^{3}-1 \\
& z=2\left(a^{2}+2 b^{2}\right)
\end{aligned}
$$

Note 3

Further, in (11) writing 102 as $102=(-10+i \sqrt{2})(-10-i \sqrt{2})$ and performing a few calculations, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x=-9 a^{3}+54 a b^{2}-36 a^{2} b+24 b^{3}-1 \\
& y=-11 a^{3}+66 a b^{2}+24 a^{2} b-16 b^{3}-1 \\
& z=2\left(a^{2}+2 b^{2}\right)
\end{aligned}
$$

Conclusion

To conclude, one may search for other patterns of solutions and their corresponding properties.

References

1. LE Dickson. History of Theory of Numbers, Chelsea Publishing Company, New York, 1952, 2.
2. LJ Mordell. Diophantine equations, Academic press, New York, 1969.
3. MA Gopalan, G Sangeetha. On the ternary cubic Diophantine equation $y^{2}=D x^{2}+z^{3 "}$, Archimedes J. Math. 2011; 1(1):714.
4. MA Gopalan, B Sivakami. Integral solutions of the ternary cubic equation $4 \mathrm{x}^{2}-4 \mathrm{xy}+6 \mathrm{y}^{2}=\left((\mathrm{k}+1)^{2}+5\right) \mathrm{w}^{3}$, Impact J Sci. Tech. 2012; 6(1):15-22.
5. MA Gopalan, B Sivakami. On the ternary cubic Diophantine equation $2 x z=y^{2}(x+z)$, Bessel J Math. 2012; 2(3):171-177.
6. S Vidyalakshmi, TR Usharani, MA Gopalan. Integral solutions of non-homogeneous ternary cubic equation $\mathrm{ax}^{2}+\mathrm{by}^{2}=(\mathrm{a}+\mathrm{b}) \mathrm{z}^{3}$, Diophantus J Math. 2013; 2(1):31-38.
7. MA Gopalan, K Geetha. On the ternary cubic Diophantine equation $x^{2}+y^{2}-x y=z^{3}$, Bessel J Math. 2013; 3(2):119-123.
8. MA Gopalan, S Vidhyalakshmi, A Kavitha. Observations on the ternary cubic equation $x^{2}+y^{2}+x y=12 z^{3}$, Antartica J Math. 2013; 10(5):453-460.
9. MA Gopalan, S Vidhyalakshmi, K Lakshmi. Lattice points on the non-homogeneous cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}+(\mathrm{x}+\mathrm{y}+\mathrm{z})=0$, Impact J Sci. Tech. 2013; 7(1):21-25.
10. MA Gopalan, S Vidhyalakshmi, K Lakshmi. Lattice points on the non-homogeneous cubic equation $x^{3}+y^{3}+z^{3}-(x+y+z)=0 "$, Impact J Sci. Tech. 2013; 7(1):51-55.
11. MA Gopalan, S Vidhyalakshmi, S Mallika. On the ternary non-homogenous cubic equation $x^{3}+y^{3}-3(x+y)=2\left(3 k^{2}-2\right) z^{3}$, Impact J Sci. Tech. 2013; 7(1):41-45.
12. S Vidhyalakshmi, MA Gopalan, S Aarthy Thangam. On the ternary cubic Diophantine equation $4\left(x^{2}+x\right)+5\left(y^{2}+2 y\right)=-6+14 z^{3}$ International Journal of Innovative Research and Review (JIRR). 2014; 2(3):34-39.
13. MA Gopalan, N Thiruniraiselvi, V Kiruthika. On the ternary cubic diophantine equation $7 x^{2}-4 y^{2}=3 z^{3}$, IJRSR. 2015; 6(9):6197-6199
14. MA Gopalan, S Vidhyalakshmi, J Shanthi, J Maheswari. On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=12 z^{3}$, International Journal of Applied Research. 2015; 1(8):209-212.
15. R Anbuselvi, K Kannaki. On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=15 z^{3}$, IJSR. 2016; 5(9):369375.
16. G Janaki, C Saranya. Integral solutions of the ternary cubic equation $3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{3}$, IRJET. 2017; 4(3):665-669.
