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Abstract 

The cubic equation with three unknowns given by 3(x2 + y2)-

2xy+4(x + y)+4 = 51z3

 
is analysed for its different patterns of 

non-zero distinct integer solutions.
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Introduction 

The Diophantine equations offer an unlimited field for research due to their variety [1, 2]. In particular, one may refer [3-16] for 

cubic equations with three unknowns. This communication concerns with yet another interesting equation 

   51z=4+y)+4(x+2xy-)y+ x3( 322

 representing non- homogeneous cubic equation with three unknowns for determining 

its infinitely many non-zero integral points.  

 

Method of Analysis 

The ternary cubic equation to be solved is 

 

   51z=4+y)+4(x+2xy-)y+ x3( 322
 (1) 

 

Introducing the linear transformations 

 

0)v(u,v-uyv,ux    (2) 

 

In (1), it is written as 

 

   51z=8v+2)+(2u                   322
  (3) 

 

Now, (3) is solved through different ways and using (2), different sets of integer solutions to (1) are obtained. 

  

Way 1       

Assume 
22 8b+a=z  (4) 

 

Write 51 as           )2i-)(72i+(7=51   (5) 

 

Using (4) and (5) in (3) and applying factorization, it is written as 

33 b)2i2-(a b)2i2+(a )2i-)(72i+(7=v))2i2-2)+ v)((2u2i2+2)+((2u  Which is equivalent 
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to the system of equations. 

 

3b)2i2+(a )2i+(7=v2i2+2)+(2u   (6)  

3b)2i2-(a )2i-(7=v2i2+2)-(2u   (7)  

 

Equating the real and imaginary parts in either (6) or (7), the values of u and v are 

 

)112b-b 42a+24ab-(a  
2

1
=      v

2)-32b+b 12a-168ab-(7a 
2

1
=u     

3223

3223

 
 

Substituting the above value of u & v in (2), the values of x & y are given by  

 

1-72b+b 27a-72ab-3a=y 

                               1-0b 4-b 15a+96ab-4a=x

3223

3223

 (8) 

 

Thus,(8) & (4) represent the non-zero distinct integer solutions to (1).  

 

Note 1  

The integer 51 on the R.H.S. of (3) may be expressed as the product of complex conjugates as below: 

 

Choice 1: )27()27(51 ii   

 

Choice 2: )251()251(51 ii   

 

Choice 3: )251()251(51 ii   

 

For each of the above choices to 51, the corresponding integer solutions to (1) are given below: 

 

Solutions to choice 1 

 

22

3223

3223

8b+a=z 

1-40b-b 15a+96ab+-4a=y  

172b+b 27a-72ab+-3a= x 

 

 

Solutions to choice 2 

 

22

3223

3223

8b+a=z   

      1-88b+b 33a-48ab+-2a=y   

1-72b+b 27a-72ab-3a=   x

 

 

Solutions to choice 3 

 

22

3223

3223

8b+a=z  

1-72b+b27a-72ab+-3a=y  

1-88b+b 33a-48ab-2a=  x

 

 

 

Way 2 
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Write (3) as      1*51z=8v+2)+(2u  322
 (9) 

 

The integer 1 on the R.H.S. of (9) is written as 

 

9

)221()221(
1

ii 
   (10) 

 

Substituting (5) & (10) in (9) and repeating the process as  in Way:1, the corresponding integer solutions to (1) are given by 

 

)8(9

1)4015964(27

1)29611124(9

22

3223

3223

baz

bbaabay

bbaabax







 

 

Note 2 

The integer 1 on the R.H.S. of (9) may be written as follows: 

 

Choice 4: 
121

)267()267(
1

ii 
  

Choice 5: 
121

)267()267(
1

ii 
  

 

For each of the above choices to 1, the corresponding integer solutions to (1) are given below: 

 

Solutions to choice 4 

 

)8b+(a 121=z 

1-)72bb 27a-1152ab+(-48a 121=y 

1-)1048b+b 393a-312ab+(-13a121= x

22

3223

3223

  

 

Solutions to choice 5 

 

22

3223

3223

968B+121A=z

1-130680B+17424AB+B49005A--726A=y

   1-59048B+124872AB-B 22143A-5203A=x

 

 

 

Way 3           
Replacing z by 2w in (3), it is written as 

 
322 w102=2v+1)+(u    (11) 

 

Write 102 as   )2i-)(102i+(10=102  (12) 

 

Performing the analysis as given above, the corresponding integer   solutions to (1) are found to be 

 

)2b+2(a=z   

1-24b+b 36a-54ab-9a=y  

1-16b-b 24a+66ab-11a=  x

22

3223

3223

  

 

Note 3 
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Further, in (11) writing 102 as )2i-)(-102i+(-10=102   and performing a few calculations, the corresponding integer 

solutions to (1) are given by 

 

 )2b+2(a=z        

1-16b-b 24a+66ab+-11a=y       

1-24b+b 36a-54ab+-9a=      x

22

3223

3223

 
 

Conclusion 

To conclude, one may search for other patterns of solutions and their corresponding properties. 
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