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Abstract 

This paper evaluates numerical approximation of Volterra integral equation of 

convolution type via Laplace transform. The linear and nonlinear both the cases are 

discussed. The numerical method used is the equal weight quadrature rule. The 

trapezoidal rule is utilized to approximate inverse Laplace transform using hyperbolic 

contour. The absolute error between exact and numerical value and error bound are 

evaluated. Numerical examples illustrate the efficiency and accuracy of present 

method.
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1. Introduction 

The Volterra integral equation plays a vital role in mathematics and engineering. Volterra integral equation is utilized to model 

different physical phenomena, like population dynamics, continuum mechanics of material with memory, economics problems 

and spread of epidemics. Also we come across to the Volterra integral equation in the study of fluid dynamics, electrostatics [6], 

diffusion problems [3] and conceret problem of mechanics. 

Various methods have been used to approximate the Volterra integral equation model numerically. For example the expansion 

methods [12, 14, 18], the interpolation methods [5, 8, 11, 16, 19], the operational matrix methods [1, 2, 20], the iterative methods [4, 7], and 

the Laguerre transform method [9]. 

In the present work we used the Laplace transform to solved Volterra integral equation of convolution type. In most of the cases 

the inverse Laplace transform is hard to evaluate analytically. In such cases we have to approximate the inverse Laplace 

transform with the help of numerical methods. The trapezoidal rule will be used for approximation inversion of Laplace.  

The inversion of Laplace transform itself difficult task to compute. For computing the inversion of Laplace transform efficiently, 

we need to choose an optimal contour of integration in the complex plane. Various optimal contour of integration to compute 

efficiently inversion of Laplace transform have been developed in the work of [15, 22]. In present work we used the path due to [15] 

to construct our numerical scheme for approximating the Volterra integral equation of convolution type. For such types of 

problems our scheme performed very efficiently and outperformed other numerical schemes for solving Volterra integral 

equation of convolution type. 

 

2. Preliminaries 

Definition 2.1. [21, p.17], A linear Volterra integral equation is defined as 

 

𝛼 𝑣(𝑡) = 𝑓(𝑡) +  𝜆 ∫ 𝑘(𝑡, 𝑠)𝑣(𝑠)𝑑𝑠,
𝑡

0
  (1) 
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Where 𝛼 and 𝜆 are constants and 𝑘(𝑡, 𝑠) is some kernel of the integral, 

 

If 𝛼 = 0 and𝜆 = −1, the (1) become 

 

∫ 𝑘(𝑡, 𝑠)𝑣(𝑠)𝑑𝑠
𝑡

0
= 𝑓(𝑡),  (2) 

 

If 𝛼 = 1 and𝜆 = 1, the (1) become 

 

𝑣(𝑡) = 𝑓(𝑡) + ∫ 𝑘(𝑡, 𝑠)𝑣(𝑠)𝑑𝑠,
𝑡

0
  (3) 

 

The equation (2) and equation (3) are known as linear Volterra integral equations of first and second kind respectively. 

Definition 2.2. [21, p.238] A Volterra integral equation of the form 

 

𝛼 𝑣(𝑡) = 𝑓(𝑡) +  𝜆 ∫ 𝑘(𝑡, 𝑠)𝑔(𝑣(𝑠))𝑑𝑠,
𝑡

0
  (4) 

 

In above equation 𝛼 and 𝜆 are constant is known as nonlinear Volterra integral equation. 

 

For example,∫ 𝑒𝑡−𝑠𝑡

0
ln(𝑢(𝑠)) 𝑑𝑠 = 𝑒𝑡 − 𝑡 − 1, [20] and 𝑒2𝑡 − 𝑒𝑡 = ∫ 𝑒𝑡−𝑠𝑢2𝑡

0
(𝑠)𝑑𝑠 [2]. 

 

Definition 2.3. [17, p.499], The Laplace transform of a given function 𝑝(𝑡) of a real variable 𝑡 (𝑡 ≥ 0) is represented as  

 

ℒ[𝑝(𝑡)] = 𝑃(𝑧) = ∫ 𝑒−𝑧𝑡∞

0
𝑝(𝑡)𝑑𝑡, 𝑅𝑒(𝑧) > 0,  (5) 

 

Where 𝑒−𝑧𝑡 is the kernel of the transform and 𝑧 = 𝑠 + 𝑖𝜎 is the transformed complex variable. 

Definition 2.4. [17, p.450], The inverse Laplace transform of 𝐹(𝑧) is defined by 

 

𝑓(𝑡) =
1

2𝜋𝑖
∫ 𝐹(𝑧)𝑒𝑧𝑡𝑑𝑧,

𝐶+𝑖∞

𝐶−𝑖∞
 (6) 

 

Where 𝐶 − 𝑖∞ to 𝐶 + 𝑖∞ is aline parallel to y-axis and all the possible singularities of 𝐹(𝑧) is lies to the right side of it and > 𝜎 

. 

 

Definition 2.5. The Convolution of two functions 𝑔1(𝑡) and 𝑔2(𝑡) is represented as  

 

𝑔1(𝑡) ∗ 𝑔2(𝑡) = ∫ 𝑔1(𝑡 − 𝑠)𝑔2(𝑠)𝑑𝑠 𝑡 ≥ 0 .
𝑡

0
  (7) 

 

3. Analysis of the method 

 

Volterra equation of first kind with kernel depending on difference of the arguments has the form [17, p.463] 

 

∫ 𝑘(𝑡 − 𝑠)𝑣(𝑠)𝑑𝑠 = 𝑓(𝑡).
𝑡

0
 (8) 

 

Taking the Laplace transform of equation (8) and the convolution theorem we have 

 

ℒ{𝑘(𝑡)}. ℒ{𝑣(𝑡)} = ℒ{𝑓(𝑡)},  (9) 

 

If we denote ℒ{𝑘(𝑡)} = 𝐾(𝑧), ℒ{𝑣(𝑡)} = 𝑉(𝑧) and ℒ{𝑓(𝑡)} = 𝐹(𝑧), then we have 

 

𝑉(𝑧) =
𝐹(𝑧)

𝐾(𝑧)
 . (10) 

 

The inverse Laplace transform of 𝑉(𝑧) gives the solution of 𝑣(𝑡) of Volterra equation (8) 

 

𝑣(𝑡) =
1

2𝜋𝑖
∫ 𝑉(𝑧)𝑒𝑧𝑡𝑑𝑧.

𝐶+𝑖∞

𝐶−𝑖∞
  (11) 

 

We have to select the contour to approximate the line 𝐶 − 𝑖∞ to 𝐶 + 𝑖∞, for example parabolic or hyperbolic. The above 

integrand will be exponentially decayed if we deform 𝐶 − 𝑖∞ to 𝐶 + 𝑖∞ into the left half. The parametric equation of hyperbola 

is given by [15]. 

 

𝑧 = 𝜔 + 𝜆(1 − sin(𝜎 − 𝑖𝑢)), −∞ < 𝑢 <  ∞ (Γ) (12) 
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Γ Represents left branch of hyperbola is given below 

 

(
𝑥−𝜔−𝜆

𝜆 sin 𝜎
)

2

− (
𝑦

𝜆 cos 𝜎
)

2

= 1. 

 

The equation (11) can be written as 

 

dzezV
i

tv zt




 )(
2

1
)(


, (13) 

 

Where the Γ represent the contour of integration. Using the above contour 𝑧 = 𝑧(𝑢) given in Γequation (13) becomes 

 

duuzeuzV
i

tv tuz )('))((
2

1
)( )(







, (14) 

 

Where 𝑉(𝑧(𝑢)) = 𝑉(𝑧) and using equal weight quadrature rule i.e. trapezoidal rule with 𝑘 > 0 here we set  

 

 jj uzz   , )('' jj uzz   the equation (14) can be expressed as 

 

j
tz

Nj

Nj

jN zzV
i

k
tV e

j ')(
2

)( 







 . (15) 

 

Similarly we can derive the approximation for the second kind as well as nonlinear Volterra equation of convolution type. 

Theorem 3.1. [15] Let 𝑣 is solution of (8) and f̂  is analytic in



. Let 0 < 𝑡0 < 𝑇, 0 < 𝜃 < 1, and let 𝑏 > 0 is given as 

cosh 𝑏 =
1

𝜃𝜏 sin 𝜎
 where =

𝑡0
𝑇⁄  . Let 𝑟 satisfy 0 < 𝑟 < min (𝜎, 𝛽 − 𝜋

2⁄ − 𝜎) so that Γ ⊂ Sr ⊂



, and let the scaling factor 

be
bT

Nr~  . Therefore, we have for the approximate solution )(tvN
defined by (15) with

.2log

~r
N

bk 

‖𝑣𝑁(𝑡) − 𝑣(𝑡)‖ ≤ 𝐶𝑀𝑒𝜔𝑡𝑙(𝜌𝑟𝑁)𝑒−𝜇𝑁(‖𝑣0‖ +  ‖𝑓‖




 ), for 𝑡0 < 𝑡 < 𝑇, where 𝜇 =
r~ (1 − 𝜃)

𝑏
⁄  ,𝜌𝑟 =

𝜃 r~ τ sin(σ − r)
𝑏

⁄ , = 𝐶𝜎,𝑟,𝛽 , r~ = 2πr and𝑙(𝜌𝑟𝑁) = max(1, log(1
𝜌𝑟

⁄ 𝑁)). 

 

We will use the above theorem to find the error bound corresponding to the contour Γ in our numerical experiments. 

 

4. Application of proposed numerical scheme 

In this section we validated our numerical scheme by solving various types of Volterra integral equation linear as well as 

nonlinear of convolution type. All the numerical result obtained using the following values of optimal parameters, 𝑡 = 0.1, 𝑇 =

1, 𝑡0 = 0.01, 𝜃 = 0.1, 𝜎 = 0.3812, 𝜏 =
𝑡0

𝑇⁄ , 𝑏 = cosh−1(1
𝜃𝜏 sin(𝜎)⁄ ), 𝑟 = 0.3431, r~ = 2πr, k = b

N⁄  , ω = 02, λ =

 𝜃
r~ N

𝑏𝑇
⁄  . In Examples 1-5 we solved linear Volterra integral equations and in Examples 6-7, we solved the nonlinear Volterra 

integral equations. Let 𝐸𝑁(𝑡) represents absolute error between numerical and exact value using the contours Γ and 𝑙(𝜌𝑟𝑁)𝑒−𝜇𝑁 

represent the error bound for contour Γ. 

 

4.1 Example 1. 

We consider the following integral equation [1]. 

 

∫ cos(𝑡 − 𝑠)𝑢(𝑠)𝑑𝑠 = sin(𝑡)
𝑡

0
, (16) 

 

We approximate this problem using the method discussed in section 3. The exact solution of this problem is 𝑢(𝑡) = 1, the error 

between numerical and exact solution are given in Table 1. 

 
Table 1: Approximate solution using the present method in terms of actual error and estimated error corresponding to Example 1. 

 

N 𝑬𝑵(𝒕) 𝒍(𝝆𝒓𝑵)𝒆−𝝁𝑵 

20 7.3566e-004 9.3500e-002 

30 3.5890e-005 9.3000e-003 

32 2.1109e-005 5.9000e-003 
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40 2.0712e-005 9.3775e-004 

50 1.1044e-007 9.5200e-005 

60 6.7561e-009 9.7094e-006 

70 3.6950e-010 9.9351e-007 

80 2.3408e-011 1.0191e-007 

90 1.2895e-012 1.0473e-008 

100 8.3455e-014 1.0779e-009 

110 4.9641e-015 1.1107e-010 

120 4.6967e-016 1.1458e-011 

128 1.1509e-016 1.8629e-012 

[18] 6.6000e-014 

Method 1 [19] 2.4000e-014 

Method 2 [19] 8.1000e-013 

 

4.2 Example 2. 

Here we consider our second example [1, 13] to validate our numerical scheme 

 

∫ cos(𝑡 − 𝑠)𝑢(𝑠)𝑑𝑠 = tsin(𝑡)
𝑡

0
, (17) 

 

The exact solution of Example 2 is 𝑢(𝑡) = 2 sin(𝑡) the actual errors and estimated errors are given in Table 2. 

 
Table 2: Approximate solution using the present method in terms of actual error and estimated error corresponding to Example 2. 

 

N 𝑬𝑵(𝒕) 𝒍(𝝆𝒓𝑵)𝒆−𝝁𝑵 

16 1.6225e-004 2.3670e-001 

32 1.6305e-007 5.9000e-003 

48 1.0698e-009 1.5036e-004 

64 8.4013e-012 3.8998e-006 

80 7.1641e-014 1.0191e-007 

83 2.7800e-015 5.1485e-008 

88 6.8996e-015 1.6506e-008 

93 3.5561e-015 5.2936e-009 

96 1.1657e-015 2.6760e-009 

112 8.8819e-016 7.0515e-011 

122 1.9792e-016 7.2754e-012 

125 3.0531e-016 3.6813e-012 

126 7.4949e-016 2.9335e-012 

128 7.3501e-017 1.8629e-012 

[1] 2.0970e-003 

[10] 1.5000e-008 

[13] 2.7700e-015 

[18] 1.9000e-013 

Method 1 [19] 6.5000e-011 

Method 2 [19] 5.4000e-013 

 

4.3 Example 3.  
In this example we take the following integral equation [2]. 

 

∫ 𝑒𝑡−𝑠𝑡

0
𝑢(𝑠)𝑑𝑠 = 𝑡, (18)  

 

The exact solution of the problem is 𝑢(𝑡) = 1 − 𝑡, and the results are given in the Table 3. 

 
Table 3: Approximate solution using the present method in terms of actual error and estimated error corresponding to Example 3. 

 

N 𝑬𝑵(𝒕) 𝒍(𝝆𝒓𝑵)𝒆−𝝁𝑵 

32 2.1990e-005 5.9000e-003 

48 2-0808e-007 1.5036e-004 

64 2.1723e-009 3.8998e-006 

80 2.3444e-011 1.0191e-007 

96 2.5848e-013 2.6760e-009 

112 3.9630e-015 7.0515e-011 

128 4.4593e-016 1.8629e-012 

144 3.5530e-015 4.9312e-014 

[2] 3.1300e-002 

 

4.4 Example 4. [2] 
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𝑢(𝑡) = 𝑡 +
4

3
𝑡

3

2 − ∫
𝑢(𝑠)

√𝑡−𝑠

𝑡

0
𝑑𝑠, (19) 

 

Taking Laplace of equation (19) and using convolution theorem we have 

 

ℒ{𝑢(𝑡)} = ℒ{𝑡} + ℒ {
4

3
𝑡

3

2} − ℒ {
1

√𝑡
∗ 𝑢(𝑡)},  (20) 

 

ℒ{𝑢(𝑡)} = ℒ{𝑡} + ℒ {
4

3
𝑡

3

2} − ℒ {
1

√𝑡
} . ℒ{𝑢(𝑡)},  (21)  

 

And we know that  

  

ℒ{𝑡} =
1

𝑧2, ℒ{𝑢(𝑡)} = 𝑢(𝑧), {𝑡
3

2} =
3√𝜋

4 𝑧
5
2

 and {𝑡
−1

2 } =
√𝜋

 𝑧
1
2

 . (22) 

 

Using the above result we have  

𝑢{𝑧} =
1

𝑧2 .  (23)  

 

The exact solution is 𝑢{𝑡} = 𝑡 , the error between numerical and exact value are given in the Table 4 using equations (15), (Γ) 

and also error bound for (Γ) at 𝑡 =
1

8
 .  

 
Table 4: Example 4 

 

N 𝑬𝑵(𝒕) 𝒍(𝝆𝒓𝑵)𝒆−𝝁𝑵 

16 4.0041e-005 2.3670e-001 

32 1.6316e-007 5.9000e-003 

48 8.1636e-010 1.5036e-004 

64 2.5757e-012 3.8998e-006 

80 1.6734e-014 1.0191e-007 

96 3.3244e-016 2.6760e-009 

112 6.6617e-016 7.0515e-011 

128 2.8057e-017 1.8629e-012 

144 7.9149e-016 4.9312e-014 

160 1.1936e-015 1.3074e-015 

[2] 3.1200e-002 

 

4.5 Example 5. [1, 10, 13] 

 

∫ 𝑒𝑡+𝑠𝑢(𝑠)𝑑𝑠 = 𝑡𝑒𝑡𝑡

0
,  (24) 

 

Using Leibnitz generalized formula [21, p.30], the equation (24) become 

 

𝑢(𝑡) + ∫ 𝑒𝑠−𝑡𝑢(𝑠)𝑑𝑠 = 𝑒−𝑡(1 + 𝑡)
𝑡

0
, (25) 

 

The equation (25) also be written as 𝑢(𝑡) + ∫ 𝑒−(𝑡−𝑠)𝑢(𝑠)𝑑𝑠 = 𝑒−𝑡(1 + 𝑡)
𝑡

0
. (26) 

 

Taking Laplace of equation (26) we have 

 

ℒ{𝑢(𝑡)} + ℒ{𝑒−𝑡 ∗ 𝑢(𝑡)} = ℒ{𝑒−𝑡(1 + 𝑡)}, (27) 

ℒ{𝑢(𝑡)} + ℒ{𝑒−𝑡}. ℒ{𝑢(𝑡)} = ℒ{𝑒−𝑡} + ℒ{𝑡𝑒−𝑡},  (28) 

 

And we know that  

 

ℒ{𝑒−𝑡} =
1

𝑧+1
, ℒ{𝑡𝑒−𝑡} =

1

(𝑧+1)2 and ℒ{𝑢(𝑡)} = 𝑢(𝑧). (29) 

 

Using the above result we have 

 

𝑢(𝑧) =
1

𝑧+2
+

1

(𝑧+1)(𝑧+2)
, (30) 

 

or  
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𝑢(𝑧) =
1

𝑧+1
. (31) 

 

The exact solution is 𝑢{𝑡} = 𝑒−𝑡, the error between numerical and exact value are given in the Table 4 using equations (15), (Γ) 

and also error bound for (Γ).  

 
Table 5: Example 5 

 

N 𝑬𝑵(𝒕) 𝒍(𝝆𝒓𝑵)𝒆−𝝁𝑵 

16 2.5097e-003 2.3670e-001 

32 2.1189e-005 5.9000e-003 

48 2.0808e-007 1.5036e-004 

53 2.2050e-009 4.7976e-005 

64 2.1723e-009 3.8998e-006 

80 2.3444e-011 1.0191e-007 

96 2.5770e-013 2.6760e-009 

112 4.6315e-015 7.0515e-011 

128 5.5512e-016 1.8629e-012 

144 3.5531e-015 4.9312e-014 

160 3.8859e-015 1.3074e-015 

[1] 9.3100e-004 

[10] 4.7000e-006 

[13] 1.1100e-014 

  

4.6 Example 6. [2] 

Consider the nonlinear VIE 

 

𝑒2𝑡 − 𝑒𝑡 = ∫ 𝑒𝑡−𝑠𝑡

0
𝑢2(𝑠)𝑑𝑠,  (32) 

 

Let𝑢2(𝑠) = 𝑣(𝑠), the equation (32) become 

 

𝑒2𝑡 − 𝑒𝑡 = ∫ 𝑒𝑡−𝑠𝑡

0
𝑣(𝑠)𝑑𝑠,  (33) 

 

Taking Laplace of equation (33) we have 

 

ℒ{𝑒2𝑡 − 𝑒𝑡} = ℒ{𝑒𝑡 ∗ 𝑣(𝑡)},  (34) 

 

ℒ{𝑒2𝑡} − ℒ{𝑒𝑡} = ℒ{𝑒𝑡}. ℒ{𝑣(𝑡)}. (35) 

 

We know that 

 

ℒ{𝑒2𝑡} =
1

𝑧−2
 , ℒ{𝑒𝑡} =

1

𝑧−1
 and ℒ{𝑣(𝑡)} = 𝑣(𝑧),  (36) 

 

Using the above result, equation (35) become 

 

𝑣(𝑧) =
1

𝑧−2
,  (37) 

 

𝑈𝑁(𝑡) = √𝑉𝑁(𝑡),  (38) 

 

 

Where 𝑉𝑁(𝑡) is given in equation (15) and exact solution is 𝑢(𝑡) = 𝑒𝑡 . The error between numerical and exact value are given 

in the Table 6 using equation (38), (Γ) and also error bound for (Γ).  
 

Table 6: Example 6 
 

N 𝑬𝑵(𝒕) 𝒍(𝝆𝒓𝑵)𝒆−𝝁𝑵 

16 1.1000e-003 2.3670e-001 

32 9.4769e-006 5.9000e-003 

48 9.3412e-008 1.5036e-004 

64 9.7706e-010 3.8998e-006 

80 1.0558e-011 1.0191e-007 

96 1.2388e-013 2.6760e-009 

112 3.9176e-015 7.0515e-011 
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128 2.2388e-016 1.8629e-012 

144 2.8866e-015 4.9312e-014 

160 4.9406e-015 1.3074e-015 

[2] 3.2800e-002 

 

4.7 Example 7. [20] 

Consider the nonlinear VIE 

 

∫ 𝑒𝑡−𝑠𝑡

0
𝑙𝑛(𝑢(𝑠)) 𝑑𝑠 = 𝑒𝑡 − 𝑡 − 1, (39) 

 

letln(𝑢(𝑠)) = 𝑣(𝑠), the equation (39) become 

 

∫ 𝑒𝑡−𝑠𝑡

0
𝑣(𝑠)𝑑𝑠 = 𝑒𝑡 − 𝑡 − 1.  (40) 

 

Taking Laplace of equation (40) we have 

 

ℒ{𝑒𝑡 ∗ 𝑣(𝑡)} = ℒ{𝑒𝑡 − 𝑡 − 1}, (41) 

 

ℒ{𝑒𝑡}. ℒ{𝑣(𝑡)} = ℒ{𝑒𝑡} − ℒ{𝑡} − ℒ{1},  (42) 

 

And we have 

 

ℒ{𝑒𝑡} =
1

𝑧−1
 , ℒ{𝑡} =

1

𝑧2 , ℒ{1} =
1

𝑧
 and ℒ{𝑣(𝑡)} = 𝑣(𝑧).  (43) 

 

Using the above result equation (42) become 

 

 

𝑣(𝑧) =
1

𝑧2 ,  (44) 

 

𝑈𝑁(𝑡) = 𝑒𝑉𝑁(𝑡),  (45) 

 

Where 𝑈𝑁(𝑡) is given in equation (15). The exact solution is 𝑢{𝑡} = 𝑒𝑡, the error between numerical and exact value are given 

in the Table 7 using equations (15), (Γ) and also error bound for (Γ). 

 
Table 7: Example 7 

 

N 𝑬𝑵(𝒕) 𝒍(𝝆𝒓𝑵)𝒆−𝝁𝑵 

16 1.4818e-005 2.3670e-001 

32 8.8652e-008 5.9000e-003 

48 5.9114e-010 1.5036e-004 

64 4.6424e-012 3.8998e-006 

80 3.9724e-014 1.0191e-007 

96 6.9564e-016 2.6760e-009 

112 6.6620e-016 7.0515e-011 

128 3.0019e-017 1.8629e-012 

144 8.8841e-016 4.9312e-014 

160 1.1103e-015 1.3074e-015 

 

5. Conclusion 

In this paper we proposed a Laplace transform based numerical method coupled with quadrature rule with high accuracy. The 

method has more accuracy than the Lagrange interpolation, integral expansion, operational matrix with block-pulse function and 

piecewise constant orthogonal function. The present method is also having better accuracy then optimal homotopy asymptotic 

method and numerical solution by using recursive scheme. The method is applicable to Volterra integral of convolution type. 
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