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Abstract 

In this manuscript, a fifth order convergent one-step explicit method having L-stability 

is developed to deal with non-autonomous and autonomous initial value problems of 

ordinary differential equations (ODEs).The method is applied to many initial value 

problems and found more efficient and accurate, than existing methods of identical 

types. The proposed method is found to be a good solving technique for initial value 

problems having singular solution, stiff problems and singularly perturbed.
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1. Introduction 

Solving ordinary differential equations is of great worth among scientist, researchers, and mathematicians due to their significant 

applicability in modeling a physical phenomenon and scientific problems. Several numerical techniques are widely used to solve 

differential equations arising from different fields of engineering, science, chemical kinetics, population model, physics, and 

electrical networks, that are difficult or could not be solved analytically [1-4]. The presence of a pole in the solution or discontinuity 

in terms containing lower order derivative are specified as singular initial value problem. Generally, Taylor method and Runge-

kutta type methods and some linear multistep methods usually failed or very poor in performance near singularities because they 

are based on polynomial approximation. While the performance of some methods based upon rational approach is much better 

when solution passes through the singularity [5-9]. A rational approximation whose denominator is of greater degree than its 

numerator produces an L-stable method. More often L-stable type methods are non-linear methods [1]. In this regard, in this 

paper related with the development of a fifth order non-linear method based on rational approximation, to deal with various 

types of initial value problems having singularities [11-15]. The proposed method is found to be L-stable and will be utilized for 

the numerical integration of the initial value problem represents (1). The method has been tested on a variety of IVPs of first 

order ODEs. The comparison among the proposed method with some existing methods determines that the proposed method 

gives more accurate outcomes as associated to them. 

In next Section (i.e., section no. 2) the derivation of the L-stable method is given. The stability analysis is considered in Section 

3 Local truncation error in section 4, error analysis is carried out in Section 5, finally, result discussion and conclusions put an 

end to the manuscript. 

 

2. Derivation of proposed method  

Consider the first-order initial value problem (IVP) 

 
𝑑𝑦

𝑑𝑡
=  𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0  (1) 
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Where 𝑦, 𝑓(𝑡, 𝑦) ∈ ℝ, 𝑡 ∈ [𝑎, 𝑏] ⊆ ℝ. 

 

We assume that the problem has a single and continuously differentiable solution. In other words it is a well-posed problem. 

Here we express 𝑦𝑘  ≈ 𝑦(𝑡𝑘), where  𝑦𝑘 is the approximate to the theoretical solution of 𝑦(𝑡𝑘) at nodal point  𝑡𝑘 = 𝑎 + 𝑘ℎ ; k= 

0,1,2,… K where h =
𝑏−𝑎

𝑘
 is step-size. After the study of [1- 3] where a one–step explicit rational method is proposed to get an 

approximate solution of (1) resultantly, equation as follows to get fifth-order convergent method. It’s foist that the numerous 

solution at t = 𝑡𝑘+1 is specific by 

  

𝑦𝑘+1 = 
𝛼𝑘+𝛽𝑘ℎ+𝛾𝑘ℎ

2

1+𝜔𝑘ℎ+𝜓𝑘ℎ
2+𝜂𝑘ℎ

3, (2)  

 

Where 𝛼𝑘 , 𝛽𝑘, 𝛾𝑘 , 𝜔𝑘 , 𝜓𝑘 , 𝜂𝑘 are unknown constants fond with the help of Taylor series? 

 

𝑦𝑘+1 = [𝛼𝑘 + (𝛽𝑘 − 𝛼𝑘𝜔𝑘)ℎ + (𝛾𝑘 − 𝛼𝑘𝜓𝑘 + (−𝛽𝑘 + 𝛼𝑘𝜔𝑘)𝜔𝑘)ℎ
2 + (−𝛼𝑘𝜂𝑘 + (−𝛽𝑘 + 𝛼𝑘𝜔𝑘)𝜓𝑘 + (−𝛾𝑘 + 𝛼𝑘𝜓𝑘 +

𝜔𝑘𝛽𝑘 − 𝛼𝑘𝜔𝑘
2)ℎ3 +((−𝛽𝑘 + 𝛼𝑘𝜔𝑘)𝜂𝑘  + (−𝛾𝑘 + 𝛼𝑘𝜓𝑘 +𝜔𝑘𝛽𝑘 − 𝛼𝑘𝜓𝑘

2)𝜓𝑘  + (𝛼𝑘𝜂𝑘 + 𝜓𝑘𝛽𝑘 − 2𝜑𝑘𝛼𝑘𝜔𝑘 + 𝜔𝑘𝛾𝑘 −
𝜔𝑘
2𝛽𝑘 + 𝛼𝑘𝜔𝑘

3)𝜔𝑘)ℎ
4 + ((−𝛾𝑘 + 𝛼𝑘𝜓𝑘 +𝜔𝑘𝛽𝑘 − 𝛼𝑘𝜔𝑘

2)𝜂𝑘  + (𝛼𝑘𝜂𝑘 +𝜓𝑘𝛽𝑘 − 2𝜓𝑘𝛼𝑘𝜔𝑘 +𝜔𝑘𝛾𝑘 − 𝜔𝑘
2𝛽𝑘 + 𝛼𝑘

3)𝜓𝑘  +
(𝜂𝑘𝛽𝑘 − 2𝜂𝑘𝛼𝑘𝜔𝑘 + 𝜓𝑘𝛾𝑘 − 𝛼𝑘𝜓𝑘

2 − 2𝜓𝑘𝜔𝑘𝛽𝑘 + 3𝜓𝑘𝛼𝑘𝜔𝑘
2 −𝜔𝑘

2𝛾𝑘 + 𝜔𝑘
3𝛽𝑘 − 𝛼𝑘𝜔𝑘

4) 𝜔𝑘) ℎ
5]+ 𝑂(ℎ6).  

 

Equating with Taylor’s series of 𝑦𝑘+1 about 𝑡 = 𝑡𝑘. The constants 𝛼𝑘, 𝛽𝑘 , 𝛾𝑘, 𝜔𝑘 , 𝜓𝑘 , 𝜂𝑘 are determined by equating coefficients 

of above equation, with the coefficients of Taylor series up to ℎ5.  
-𝛼𝑘 = 𝑦𝑘 ,

 

 

𝛽𝑘 =
1

5

(

 
 
−120(𝑦𝑘

′ )2 𝑦𝑘
′′𝑦𝑘

′′′+30(𝑦𝑘
′ )3𝑦𝑘

(𝑖𝑣)
+40𝑦𝑘

′𝑦𝑘 (𝑦𝑘
′′′)

2
+90𝑦𝑘

′ (𝑦𝑘
′′ )3−5𝑦𝑘

2𝑦𝑘
′′′𝑦𝑘

(𝑖𝑣)
−30𝑦𝑘(𝑦𝑘

′′)2 𝑦𝑘
′′

−6𝑦𝑘
(𝑣)
(𝑦𝑘
′ )2+3𝑦𝑘

(𝑣)
𝑦𝑘
2𝑦𝑘
′′

−24𝑦𝑘
′𝑦𝑘
′′𝑦𝑘

′′′−3𝑦𝑘
′′𝑦𝑘𝑦𝑘

(𝑖𝑣)
+6(𝑦𝑘

′ )2𝑦𝑘
(𝑖𝑣)

+4𝑦𝑘(𝑦𝑘
′′′ )2+18(𝑦𝑘

′′′)2

)

 
 

, 

  

 

 𝛾𝑘 = −
1

20

(

 
 
360𝑦𝑘

′𝑦𝑘
′′𝑦𝑘

′′′+60𝑦𝑘
′′𝑦𝑘𝑦𝑘

(𝑖𝑣)
−120𝑦𝑘

′′(𝑦𝑘
′ )2𝑦𝑘

(𝑖𝑣)
−80𝑦𝑘

′′𝑦(𝑦𝑘
′′′ )2−180(𝑦𝑘

′′ )4−5𝑦𝑘
2(𝑦𝑘

(𝑖𝑣)
)2

+4𝑦𝑘
2 𝑦𝑘

(𝑣)
𝑦𝑘
′′′−24𝑦𝑘

′′𝑦𝑘
′𝑦𝑘
(𝑣)
+40𝑦𝑘𝑦𝑘

(𝑖𝑣)
𝑦𝑘
′𝑦𝑘
′′′−80(𝑦𝑘

′′′ )2(𝑦𝑘
′ )2+24𝑦𝑘

(𝑣)
(𝑦𝑘
′ )2

−24𝑦𝑘
′𝑦𝑘
′′𝑦𝑘

′′′−3𝑦𝑘
′′𝑦𝑘𝑦𝑘

(𝑖𝑣)
+6(𝑦𝑘

′ )2𝑦𝑘
(𝑖𝑣)

+4𝑦𝑘(𝑦𝑘
′′′ )2+18(𝑦𝑘

′′′)2

)

 
 

,  

 

 𝜔𝑘 = −
1

5
(
15𝑦𝑘

′𝑦𝑘
′′𝑦𝑘

(𝑖𝑣)
−5𝑦𝑘𝑦𝑘

′′′𝑦𝑘
(𝑖𝑣)

+20𝑦𝑘
′ (𝑦𝑘

′′′)2−30(𝑦𝑘
′′)2𝑦𝑘

′′′−6𝑦𝑘
(𝑣)
(𝑦𝑘
′ )2+3𝑦𝑘

(𝑣)
𝑦𝑘 (𝑦𝑘

′ )2

−24𝑦𝑘
′𝑦𝑘
′′𝑦𝑘

′′′−3𝑦𝑘
′′𝑦𝑘𝑦𝑘

(𝑖𝑣)
+6(𝑦𝑘

′ )2𝑦𝑘
(𝑖𝑣)

+4𝑦𝑘(𝑦𝑘
′′′ )2+18(𝑦𝑘

′′′)2
), 

 

𝜓𝑘 =
1

20
(
−5𝑦(𝑦𝑘

(𝑖𝑣)
)2+4𝑦𝑘𝑦𝑘

′′′𝑦𝑘
𝑣+30𝑦𝑘

(𝑖𝑣)
(𝑦𝑘
′′)2−40(𝑦𝑘

′′)(𝑦𝑘
′′′)2−12𝑦′′  𝑦′ 𝑦𝑣+20𝑦(𝑖𝑣) 𝑦′𝑦′′′ 

−24𝑦𝑘
′𝑦𝑘
′′𝑦𝑘

′′′−3𝑦𝑘
′′𝑦𝑘𝑦𝑘

(𝑖𝑣)
+6(𝑦𝑘

′ )2𝑦𝑘
(𝑖𝑣)

+4𝑦𝑘(𝑦𝑘
′′′ )2+18(𝑦𝑘

′′′)2
), 

  

  

𝜂𝑘 =
1

60
(
60𝑦𝑘

′′′𝑦𝑘
′′𝑦𝑘

(𝑖𝑣)
−40(𝑦𝑘

′′′)3−15𝑦𝑘
′ (𝑦𝑘

(𝑖𝑣)
)2+12𝑦𝑘

′𝑦𝑘
′′′𝑦𝑘

(𝑣)
−18𝑦𝑘

(𝑣)
(𝑦′′_𝑘)2

−24𝑦𝑘
′𝑦𝑘
′′𝑦𝑘

′′′−3𝑦𝑘
′′𝑦𝑘𝑦𝑘

(𝑖𝑣)
+6(𝑦𝑘

′ )2𝑦𝑘
(𝑖𝑣)

+4𝑦𝑘(𝑦𝑘
′′′ )2+18(𝑦𝑘

′′′)2
), 

 

𝑦𝑘+1 = 𝑧 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑦𝑛+

1

5

(

 
 
 
 
−120(𝑦𝑘

′ )2 𝑦𝑘
′′𝑦𝑘

′′′+30(𝑦𝑘
′ )3𝑦𝑘

(𝑖𝑣)
+40𝑦𝑘

′ 𝑦𝑘 (𝑦𝑘
′′′)

2
+90𝑦𝑘

′ (𝑦𝑘
′′ )3−5𝑦𝑘

2𝑦𝑘
′′′𝑦𝑘

(𝑖𝑣)
−30𝑦𝑘(𝑦𝑘

′′)2 𝑦𝑘
′′

−6𝑦𝑘
(𝑣)
(𝑦𝑘
′ )2+3𝑦𝑘

(𝑣)
𝑦𝑘
2𝑦𝑘
′′

(−24𝑦′𝑦′′𝑦′′′−3𝑦′′𝑦𝑦(𝑖𝑣)+6(𝑦′ )2𝑦(𝑖𝑣)+4𝑦(𝑦′′′ )2+18(𝑦′ ′′)2)

)

 
 
 
 

ℎ

 −
1

20

(

 
 
 

360𝑦𝑘
′ 𝑦𝑘
′′𝑦𝑘

′′′+60𝑦𝑘
′′𝑦𝑘𝑦𝑘

(𝑖𝑣)
−120𝑦𝑘

′′(𝑦𝑘
′ )2𝑦𝑘

(𝑖𝑣)
−80𝑦𝑘

′′𝑦(𝑦𝑘
′′′ 2−180(𝑦𝑘

′′ )4−5𝑦𝑘
2(𝑦𝑘

(𝑖𝑣)
)2

+4𝑦𝑘
2 𝑦𝑘

(𝑣)
𝑦𝑘
′′′−24𝑦𝑘

′′𝑦𝑘
′ 𝑦𝑘
(𝑣)
+40𝑦𝑘𝑦𝑘

(𝑖𝑣)
𝑦𝑘
′ 𝑦𝑘
′′′−80(𝑦𝑘

′′′ )2(𝑦𝑘
′ )2+24𝑦𝑘

(𝑣)
(𝑦𝑘
′ )2

−24𝑦𝑘
′ 𝑦𝑘
′′𝑦𝑘

′′′−3𝑦𝑘
′′𝑦𝑘𝑦𝑘

(𝑖𝑣)
+6(𝑦𝑘

′ )2𝑦
𝑘
(𝑖𝑣)

+4𝑦𝑘(𝑦𝑘
′′′ )2+18(𝑦𝑘

′′′)2

)

 
 
 

ℎ2

1−
1

5
(
15𝑦𝑘

′ 𝑦𝑘
′′𝑦

𝑘
(𝑖𝑣)

−5𝑦𝑘𝑦𝑘
′′′𝑦

𝑘
(𝑖𝑣)

+20𝑦𝑘
′ (𝑦𝑘

′′′)2−30(𝑦𝑘
′′)2𝑦𝑘

′′′−6𝑦
𝑘
(𝑣)
(𝑦𝑘
′ )2+3𝑦

𝑘
(𝑣)
𝑦𝑘 (𝑦𝑘

′ )2

−24𝑦𝑘
′ 𝑦𝑘
′′𝑦𝑘

′′′−3𝑦𝑘
′′𝑦𝑘𝑦𝑘

(𝑖𝑣)
+6(𝑦𝑘

′ )2𝑦
𝑘
(𝑖𝑣)

+4𝑦𝑘(𝑦𝑘
′′′ )2+18(𝑦𝑘

′′′)2
)ℎ

+
1

20
(
−5𝑦(𝑦

𝑘
(𝑖𝑣)

)2+4𝑦𝑘𝑦𝑘
′′′𝑦𝑘

𝑣+30𝑦
𝑘
(𝑖𝑣)

(𝑦𝑘
′′)2−40(𝑦𝑘

′′)(𝑦𝑘
′′′)2−12𝑦′′  𝑦′ 𝑦𝑣+20𝑦(𝑖𝑣) 𝑦′𝑦′′′ 

−24𝑦𝑘
′ 𝑦𝑘
′′𝑦𝑘

′′′−3𝑦𝑘
′′𝑦𝑘𝑦𝑘

(𝑖𝑣)
+6(𝑦𝑘

′ )2𝑦
𝑘
(𝑖𝑣)

+4𝑦𝑘(𝑦𝑘
′′′ )2+18(𝑦𝑘

′′′)2
)ℎ2

+
1

60
(
60𝑦𝑘

′′′𝑦𝑘
′′𝑦

𝑘
(𝑖𝑣)

−40(𝑦𝑘
′′′)3 −15𝑦𝑘

′ (𝑦
𝑘
(𝑖𝑣)

)2+12𝑦𝑘
′ 𝑦𝑘
′′′𝑦

𝑘
(𝑣)
−18𝑦

𝑘
(𝑣)
(𝑦𝑘
′′)2

−24𝑦𝑘
′ 𝑦𝑘
′′𝑦𝑘

′′′−3𝑦𝑘
′′𝑦𝑘𝑦𝑘

(𝑖𝑣)
+6(𝑦𝑘

′ )2𝑦
𝑘
(𝑖𝑣)

+4𝑦𝑘(𝑦𝑘
′′′ )2+18(𝑦𝑘

′′′)2
)ℎ3

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3) 
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. After simplification, we get. 

 

𝑦𝑘+1 =

(

 
 
 
 
 
−3(480𝑓𝑘

2𝑗𝑘𝑘𝑘ℎ+120𝑓𝑘
2𝑘𝑘ℎ+120𝑓𝑘

3𝑙𝑘ℎ−24𝑚𝑘𝑓𝑘ℎ
2−360𝑓𝑘𝑗𝑘

2𝑘𝑘ℎ
2+180𝑗𝑘

4ℎ2+24𝑗𝑘𝑓𝑘𝑚𝑘ℎ
2

+80𝑘𝑘
2𝑓𝑘
2ℎ2−24𝑚𝑘𝑓𝑘

3ℎ2)+(−480𝑓𝑘𝑗𝑘𝑘𝑘+120𝑓𝑘
2𝑙𝑘+360𝑗𝑘

3+160𝑓𝑘𝑘𝑘
2ℎ−120𝑗𝑘

2𝑘𝑘ℎ−60𝑗𝑘
2𝑙𝑘ℎ

2

+80𝑗𝑘𝑘𝑘
2ℎ2−90𝑙𝑘𝑘𝑘ℎ

2)𝑦𝑘+(60𝑗𝑘𝑙𝑘+80𝑘𝑘
2−20𝑘𝑘𝑙𝑘ℎ+12𝑚𝑘𝑗𝑘+4ℎ

2𝑚𝑘𝑘𝑘)𝑦𝑘 
1440𝑓𝑘𝑗𝑘𝑘𝑘−6𝑓𝑘

3𝑙𝑘−18𝑗𝑘
3+240𝑘𝑘

2𝑓𝑘−(180𝑓𝑘𝑗𝑘𝑙𝑘+360𝑗𝑘
2𝑘𝑘+6𝑚𝑘𝑓𝑘

2)ℎ+

(90𝑙𝑘𝑗𝑘
2−120𝑗𝑘𝑘𝑘

2−36𝑗𝑘𝑓𝑘)ℎ
2+(60𝑙𝑘𝑓𝑘𝑘𝑘)ℎ

2+(60𝑘𝑘𝑗𝑘𝑙𝑘−40𝑘𝑘
3−15𝑓𝑘𝑙𝑘

2)+

12𝑓𝑘𝑘𝑘𝑚𝑘−18𝑚𝑘𝑗𝑘
2)ℎ3+(

3𝑗𝑘𝑙𝑘−4𝑘𝑘
2−(60𝑘𝑘𝑙𝑘−3𝑚𝑘𝑗𝑘)ℎ−(15𝑙𝑘

2−12𝑘𝑘𝑙𝑘)ℎ
2
)𝑦𝑘

 )

 
 
 
 
 

, 

 

Where 𝑦𝑘 = 𝑦(𝑡𝑘), 𝑦𝑘+1 ≃ 𝑦(𝑡𝑘+1 ), 𝑓𝑘 = 𝑓(𝑡𝑘, 𝑦𝑘) and), 𝑙𝑘 =
𝑑3𝑓

𝑑𝑡3
(𝑡𝑘, 𝑦𝑘),  

 
𝑘𝑘 =

𝑑2𝑓

𝑑𝑡2
(𝑡𝑘, 𝑦𝑘),   𝑚𝑘 =

𝑑4

𝑑𝑡4
(𝑡𝑘, 𝑦𝑘),  

 

3. Local Truncation Error  

Truncation error of the proposed method (3) can be obtained by considering the functional equation given below: 

 

. ℒ(𝑠(𝑡), ℎ) = 𝑠(𝑡 + ℎ) −

−3(480𝑠(𝑡)2𝑠′′(𝑡)𝑠′′′(𝑡)ℎ+120𝑠′(𝑡)2𝑠′′′(𝑡)ℎ+120𝑠′(𝑡)3𝑠(𝑖𝑣)(𝑡)ℎ−24𝑠(𝑣)(𝑡)𝑠′(𝑡)ℎ2

−360𝑠′(𝑡)𝑠′′(𝑡)2𝑠′′′ℎ2+180𝑠′′(𝑡)4ℎ2+24𝑠′′(𝑡)𝑠′(𝑡)𝑠(𝑣)(𝑡)ℎ2+80𝑠′′′(𝑡)2𝑠′(𝑡)2ℎ2

−24𝑠′(𝑡)3𝑠(𝑣)ℎ2)+(−480𝑠′(𝑡)𝑠′′(𝑡)𝑠′′′(𝑡)+120𝑠′(𝑡)2𝑠(𝑖𝑣)(𝑡)+360𝑠′′(𝑡)3+160𝑠′′′(𝑡)2𝑠′(𝑡)ℎ

−120𝑠′′(𝑡)2𝑠′′′(𝑡)ℎ−60𝑠′′(𝑡)2𝑠(𝑖𝑣)(𝑡)ℎ2+80𝑠′′(𝑡)2𝑠′′′(𝑡)2ℎ2−90𝑠′′′(𝑡)𝑠(𝑖𝑣)(𝑡)ℎ2)𝑦𝑘 +

(60𝑠′′(𝑡)𝑠(𝑖𝑣)(𝑡)+80𝑠′′′(𝑡)2−20𝑠′′(𝑡)𝑠(𝑖𝑣)(𝑡)ℎ+4𝑠′′′(𝑡)𝑠(𝑣)(𝑡))𝑦𝑘
 

1440𝑠′(𝑡)𝑠′′(𝑡)𝑠′′′(𝑡)−6𝑠′(𝑡)3𝑠(𝑖𝑣)(𝑡)−18𝑠′′(𝑡)3+240𝑠′′′(𝑡)2𝑠′(𝑡)−

(180𝑠′(𝑡)𝑠′′(𝑡)𝑠(𝑖𝑣)(𝑡)+360𝑠′′(𝑡)2𝑠′′′(𝑡)+6𝑠(𝑣)(𝑡)𝑠′′(𝑡)2)ℎ+(90𝑠(𝑖𝑣)(𝑡)𝑠′′(𝑡)2−120𝑠′′(𝑡)𝑠′′′(𝑡)2

−36𝑠′′(𝑡)𝑠′(𝑡))ℎ2+(60𝑠′(𝑡)𝑠′′′(𝑡)𝑠(𝑖𝑣)(𝑡))ℎ2+(60𝑠′′′(𝑡)𝑠′′(𝑡)𝑠(𝑖𝑣)(𝑡)−40𝑠′′′(𝑡)3−15𝑠′(𝑡)𝑠(𝑖𝑣)(𝑡)2)

+12𝑠′(𝑡)𝑠′′′(𝑡)𝑠(𝑣)(𝑡)−18𝑠(𝑣)(𝑡)𝑠′′(𝑡)2)ℎ3

(
3𝑠′′(𝑡)𝑠𝑖𝑣(𝑡)−4𝑠′′′(𝑡)2−(60𝑠′′′(𝑡)𝑠𝑖𝑣(𝑡)−3𝑠(𝑣)(𝑡)𝑠′′(𝑡))ℎ−(15𝑠𝑖𝑣(𝑡)2−12𝑠𝑖𝑣(𝑡)𝑠′′′(𝑡))ℎ2

)𝑦𝑘
 

, 

 

Where, 𝑠(𝑡) is a function defined over interval of integration and differentiable n times? The local truncation error of the above 

method is obtained by the terms in power of h that are collected from Taylor series expended around t,  

 

𝑇𝑘+1 =
1

7200
(

1

24𝑦𝑘
′𝑦𝑘
′′𝑦𝑘

′′′+3𝑦𝑘
′′𝑦𝑘 𝑦𝑘

(𝑖𝑣)
−6(𝑦𝑘

′)
2
𝑦𝑘
(𝑖𝑣)

−4𝑦𝑘(𝑦𝑘
′′′)

2
 −18(𝑦𝑘

′′)
3
 
) [240𝑦𝑘

′′′𝑦𝑘
′′𝑦𝑘

′𝑦𝑘
(𝑣𝑖)

+ 30𝑦𝑘
(𝑖𝑣)
𝑦𝑘
′′𝑦𝑘

(𝑣𝑖)
−

60𝑦𝑘
(𝑖𝑣)(𝑦𝑘

′ )𝑦𝑘
(𝑣𝑖) − 40(𝑦𝑘

′′′)2𝑦𝑘
(𝑣𝑖)𝑦𝑘 − 180 𝑦𝑘

(𝑣𝑖) (𝑦𝑘
′′)3 − 1800𝑦𝑘

(𝑖𝑣)𝑦𝑘
′′𝑦𝑘

(𝑣𝑖) +

800(𝑦𝑘
′′′)4600 𝑦𝑘

′′′ 𝑦𝑘  (𝑦𝑘
(𝑖𝑣)) 2 − 480(𝑦𝑘

′′′)2 𝑦𝑘
(𝑣)𝑦𝑘

′ + 720(𝑦𝑘
′′)2 𝑦𝑘

(𝑣)𝑦𝑘
′′ − 75(𝑦𝑘

(𝑖𝑣)) 3 +

120𝑦𝑘
(𝑖𝑣)𝑦𝑘𝑦𝑘

′′′𝑦𝑘
(𝑣) + 450(𝑦𝑘

(𝑖𝑣))2(𝑦𝑘
′′)2 − 360𝑦𝑘

(𝑣)𝑦𝑘
′′𝑦𝑘

(𝑖𝑣)𝑦𝑘
′ + 72(𝑦𝑘

(𝑣))2(𝑦𝑘
′ )2 − 36(𝑦𝑘

(𝑣))2𝑦𝑘]ℎ
6 +

𝑂(ℎ7).
 

(4) 

 

This confirms that the proposed method has fifth order of accuracy. The above obtained local truncation error of the method is 

of order sixth, where 𝑦𝑘
′ , 𝑦𝑘

′′, 𝑦𝑘
′′′,  𝑦𝑘

(𝑖𝑣)
, 𝑦𝑘
(𝑣)

 represent the values to the first, second, third, fourth, fifth derivatives of y(t) at point 

t respectively, provided that 24𝑦𝑘
′ 𝑦𝑘
′′𝑦𝑘

′′′ + 3𝑦𝑘
′′𝑦𝑘  𝑦𝑘

(𝑖𝑣)
− 6(𝑦𝑘

′ )2𝑦𝑘
(𝑖𝑣) − 4𝑦(𝑦𝑘

′′′)2 − 18(𝑦𝑘
′′)3 ≠ 0 

Hence, whenever the solution of the differential equation in (1) is a function of the following form. The described proposed 

method is true: 

 

𝑦(𝑡) =
𝛼𝑘+𝛽𝑘ℎ+𝛾𝑘ℎ

2

𝜌𝑘+𝜔𝑘ℎ+𝜓𝑘 ℎ
2+𝜂𝑘ℎ

3, (5) 

 

Where 𝛼𝑘, 𝛽𝑘 , 𝛾𝑘, 𝜌𝑘 , 𝜔𝑘 , 𝜓𝑘 , 𝜂𝑘  ∈ ℝ and these undetermined constants shall be selected so that both the numerator and 

denominator of (5) should not be zero.  

 

4. Linear stability Analysis  
The Dahlquist’s test is applied to the proposed method (3) to determine its stability as below: 

 

𝑦′ = 𝜆ℎ 𝑅𝑒(𝜆) < 0, (6) 

 

From this we obtained the difference equations as follows: 

 

𝑦𝑘+1 =
3(−20𝑦(𝑥)−16𝑦(𝑥)ℎ𝜆+8𝑦(𝑥)𝜆ℎ+4𝜆2ℎ2𝑦(𝑥)−4𝜆2ℎ2𝑦(𝑥)−𝜆2ℎ2𝑦(𝑥) 

−60𝑦(𝑥)+12𝜆ℎ𝑦(𝑥)+24𝑦(𝑥)𝜆ℎ−3𝜆2ℎ2𝑦(𝑥)−6𝜆2ℎ2𝑦(𝑥)+𝑦(𝑥)𝜆3ℎ3
𝑦𝑛, 
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Taking 𝑦(𝑥) common from above equation, we get 

 

𝑦𝑘+1 =
3(−20−16ℎ𝜆+8𝜆ℎ+4𝜆2ℎ2−4𝜆2ℎ2−𝜆2ℎ2

−60+12𝜆ℎ𝑦+24𝜆ℎ−3𝜆2ℎ2−6𝜆2ℎ2+𝜆3ℎ3
𝑦𝑘 . 

 

Establishing 𝑧 = 𝜆ℎ then the stability function defined as follows 

 

𝜙(𝑧) = (
−60−25𝑧−3𝑧2

−60+36𝑧−9𝑧2+𝑧3
). (7) 

 

Following figure is showing the stability region inside the closed curve for the proposed method. 

 

 
 

Fig 1 

 

The figure shows the method is satisfying the A-stability condition and contains the left half complex plane in the region of its 

absolute convergence. Further, the condition. 

 

lim
𝑧→−∞

∅(𝑧) = 0 

 

Satisfies which prove that the method is L-stable. 

 

5. Numerical test problem 
To check the numerical result of proposed method (3), few numerical methods of fifth-order are used for comparison. 

Particularly, the Taylor’s series method and RK5 are chosen for comparison method. Numerical outcome has been considered 

in term of max error, absolute error and average error. The MATLAB setting of version 8.3.0832 (R2014a) has been utilized for 

the proposed method. Consider first example from non-liner ordinary differential equation and second example from application 

problem of population model. Nature of third problem is autonomous and the last example is non-autonomous type of initial 

value problem.  

 

Problem1. Here we have solved a non-linear initial value problem. 

 

𝑦′(𝑡) = −2𝑦(𝑡)2, 𝑦(−2) =
1

5
; −2 ≤ 𝑡 ≤ 2 
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Fig 2 

 

Whose theoretical Solution is given by: 𝑦(𝑡) =
1

1+𝑡2
 

 
Table 1 

 

Method\N 
 No. Of steps  

512 
64 128 256 

Taylor 

6.9359e-11 2.1909e-12 6.7724e-14 7.1054e-15 

2.2277e-10 9.8167e-12 4.3031e-13 7.0729e-14 

2.0310e-11 6.3669e-13 2.0278e-14 2.4369e-15 

Rk5 

5.0662e-03 2.5410e-03 1.2725e-03 6.3673e-04 

1.4280e-02 9.9621e-03 6.9962e-03 4.9300e-03 

1.1025e-03 5.4717e-04 2.7256e-04 1.3603e-04 

Proposed 

5.5831e-12 1.8807e-13 1.9540e-14 4.5075e-14 

3.3347e-11 1.5279e-12 9.4275e-14 3.8454e-13 

3.7446e-12 1.2108e-13 4.9040e-15 1.1947e-14 

 

First row is showing absolute error at: 𝑡 = 2. While maximum absolute error is shown in second row for −2 ≤ 𝑡 ≤ 2 and third 

row is showing average error of each described method for example 1.  

Proplem2. Consider the application problem of population model 

𝑦′ = 𝑘𝑦, 𝑘 = 1, where k is proportionality constant.  

Whose theoretical solution is 𝑦(𝑥) = 𝑒𝑘𝑥 .  
 

Table 2 
 

Method 
 No. Of steps  

512 
64 128 256 

Proposed 

3.0409e-07 9.4356e-09 3.1307e-10 8.3844e-12 

7.3004e-07 3.1298e-08 1.4553e-09 6.7277e-11 

5.0362e-08 1.5374e-09 5.1067e-11 1.9469e-12 

Taylor 

2.8054e-06 9.0651e-08 2.8807e-09 9.0523e-11 

6.7351e-06 3.0071e-07 1.3356e-08 5.9004e-10 

4.6462e-07 1.4770e-08 4.6552e-10 1.4564e-11 

RK5 

3.0340e+01 1.6136e+01 8.3290e+00 4.2324e+00 

7.3433e+01 5.3761e+01 3.8704e+01 2.7619e+01 

5.1065e+00 2.6514e+00 1.3518e+00 6.8262e-01 

 

First row is showing absolute error at: 𝑡 = 1. While maximum absolute error is shown in second row for 0 ≤ 𝑡 ≤ 1 and third 

row is showing average error of 
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Fig 3: Absolut error for Taylor series method, RK5 method and proposed method for problem2. 

 

Problem3.Consider autonomous problem 

 

𝑦′ = 1 + 𝑦2 𝑦(0) = 1 0 ≤ 𝑡 ≤
1

5
 

 

Theoretical solution is 𝑦(𝑡) = tan (𝑡 +
𝜋

4
) 

 
Table 3 

 

Method 
No. of steps 

512 
64 128 256 

Proposed 

4.5453e-12 5.7576e-12 1.0339e-11 1.2409e-11 

4.5453e-12 1.4459e-11 4.7131e-11 5.7299e-11 

6.5604e-13 6.1489e-13 1.3362e-12 1.4782e-12 

Taylor 

1.1997e-08 3.8966e-10 1.2427e-11 4.0323e-13 

2.3400e-08 1.0330e-09 4.5665e-11 2.0881e-12 

1.3904e-09 4.3692e-11 1.3719e-12 4.6267e-14 

Rk5 

1.0076e-01 5.2068e-02 2.6480e-02 1.3354e-02 

2.7289e-01 1.9475e-01 1.3836e-01 9.8070e-02 

2.2205e-02 1.1255e-02 5.6667e-03 2.8433e-03 

 

 
 

Fig 4: Absolut error for Taylor series method, RK5 method and proposed method for problem3. 
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First row is showing absolute error at: 𝑡 = 0.5. While maximum absolute error is shown in second row for 0 ≤ 𝑡 ≤ 0.5 and 

(Third row) is showing average error of each described method for example 

 

Problem4. Consider the Non-autonomous of initial value problem 

 

 𝑦′ = 𝑡 𝑦 𝑦(0) = 1 0 ≤ 𝑡 ≤ 1 

 

 Exact solution is  𝑦(𝑡) = 𝑒
𝑡2

2  

 
Table 4 

 

Method\N 
No. Of steps 

512 
64 128 256 

Taylor 

6.9359e-11 2.1909e-12 6.7724e-14 7.1054e-15 

2.2277e-10 9.8167e-12 4.3031e-13 7.0729e-14 

2.0310e-11 6.3669e-13 2.0278e-14 2.4369e-15 

Rk5 

5.0662e-03 2.5410e-03 1.2725e-03 6.3673e-04 

1.4280e-02 9.9621e-03 6.9962e-03 4.9300e-03 

1.1025e-03 5.4717e-04 2.7256e-04 1.3603e-04 

Proposed 

5.5831e-12 1.8807e-13 1.9540e-14 4.5075e-14 

3.3347e-11 1.5279e-12 9.4275e-14 3.8454e-13 

3.7446e-12 1.2108e-13 4.9040e-15 1.1947e-14 

 

 
 

Fig 5: Absolut error for Taylor series method, RK5 method and proposed method for problem4 

 

First row is showing absolute error at: 𝑡 = 1. While maximum absolute error is shown in second row for 0 ≤ 𝑡 ≤ 1 and third 

row is showing average error of each described method for example 4 

 

Result and Discussion  
The IVPs of ODEs can be solved easily by using new proposed one-step explicit method (3). Four numerical problems have 

been solve to check the accuracy level and computional time of the proposed method (3) and compared with two standard 

numerical methods (Taylor and Rk-5) taken from relevent literature. Approximate result obtained by different step-size are 

shown using the result analysis table 1-4, and computed absulte error, max error, average error at the final mesh point of the 

intergration interval. Table 1-4 resolve that small step-size gives better accuracy with less computional error. It may observed 

from Table 1-4 thatproposed method less error than other methods. Hence the new proposed is superier than Taylor and RK-5 

method  

 

Conclusion 
In this manuscript, a fifth order improved L-stable method has been derived. Also Taylor series method and RK-5 method are 

compared with the proposed method on initial value problem (IVPs) and proposed method is found more applicable to solve 

such problems. The local truncation error and stability of proposed method were also investigated. The performance measure of 

the method is examined on four IVPs. The results and errors obtained via the newly developed scheme shown in Tables 1, 2, 3 

and 4 respectively, compared favorably with other existing methods, this proves that the new proposed scheme performs better 

and is a best choice for solving the IVPs in ODEs. The proposed numerical method is found to be L-stable. Therefore, it is 

employable for stiff and singular ordinary differential equations.  
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