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Abstract 
Google earth engine is an open source cloud based computing platform that is designed 

to process large scale datasets. Owing to its capacity and features, it can be useful to 
wide range of applications-the most prominent being vegetation mapping and 

monitoring, earth sciences related studies and many others. We have developed a web 

tool based on google earth engine to encourage and assist the researchers from non-

programming background to use google earth engine. This application is freely 

available and can be accessed at https://mapcoordinates.info/. In the current version, 

this application has some interesting features like data filter, generates time series 

plots, time series records and metadata in .csv format. Users can download the time 

series records of any location, select the satellite sensor, choose the model, filter the 

cloud cover, scale factor. This application also visualizes the time slider feature for the 

location selected on the map.
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1. Introduction 
Google earth engine is an open source cloud based computing platform that is designed to process large scale datasets (Prasai et 

al., 2021, Inman & Lyons, 2020, Gorelick et al., 2017, Midekisa et al., 2017). Users do not require the latest computers or 

software to work on big data (Phan et al., 2020, Thieme et al., 2020). Owing to its capacity and features, it can be useful to wide 

range of applications-the most prominent being vegetation mapping and monitoring (Venkatappa et al., 2019, Wang et al., 2015), 
disaster management (Xia et al., 2019), earth sciences related studies and many others (Prasai et al., 2021). We have developed 

a web tool based on google earth engine to encourage and assist the researchers from non-programming background to use 

google earth engine. This application is freely accessible and available at https://mapcoordinates.info/. This tool extracts the 

datasets from the google earth engine database. It uses Python API to interact with google earth engine database. In the current 

version, this application has some interesting features like data filter, generates time series plots, time series records and metadata 

in .csv format. Users can download the time series records of any location, select the satellite sensor, choose the algorithm to 

process the datasets, filter the cloud cover, scale factor. This application also visualizes the time slider feature for the location 

selected on the map.  

 

2. Data and Methods  

2.1. Conceptual Framework 
https://mapcoordinates.info/ has a web-client as the front-end and GEE as computing back-ends. The front end is the graphical 

user interface (GUI) web client where the users can specify the algorithms, date range, filter the datasets and send requests to 

run the analyses (Figure 1). We used Ipywidgets a python based library, HTML and CSS to design GUI/front end of this 

application. Since all storages and computing operations are made on the cloud (GEE), the web-client can be accessed from any 

browser supporting device such as mobile, laptop or desktop computing devices.  
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However, the framework is developed mainly with PC 

environments in mind and thus it is not optimized for mobile 

applications. The back end uses GEE to access satellite data, 

conduct the analyses and use Google’s cloud computing 

capabilities. We used Python API to interact with GEE 

backend. Current version of this tool has 3 algorithms 

(NDVI/NDCI), 2 BDA, Turbidity Index). We can select the 

location using polygon icon present on the left corner of the 

tool. It provides time slider to detect the changes on the map. 

Users can filter the datasets based on scale, clouds cover, 

dates. They get the time series datasets and metadata in .csv 

format and plots after passing request through submit button 

present on the GUI. 

 

 
Fig 1: Flow chart describing the overall application design 
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Source: Video link: https://www.youtube.com/watch?v=jgkYn6oyucY 

 

Fig 2: GUI of the application 

 

2.2. Data 
We have included three satellite imagery in the current 

version: Landsat (1984-current), Sentinel (2015-current) and 

MODIS (2000-current). We used these datasets from the 

google earth engine database. 

 

2.2.1. Landsat Datasets 
We used Landsat collection 2 tier 1 products available in 

google earth engine database. These collections include the 
improved dataset collections over collection 1 which supports 

recent developments in data processing and algorithm 

development (Gorelick et al., 2017). These collections have 

been corrected using the Landsat Ecosystem Disturbance 

Adaptive Processing System and Land Surface Reflectance 

Code software. USGS resampled these collections to a spatial 

resolution of 30 m using cubic convolution. These collections 

have been then filtered and images of higher quality have 

been stored in Tier1.  

 

2.2.1.1. Landsat 8 products 
We have included atmospherically corrected surface 

reflectance datasets from the collection 2 tier 1 collections. 

These products are derived/produced by the Landsat 8 

OLI/TIRS sensors (Gorelick et al., 2017). These collections  

include 5 visible and near infrared bands and 2 short wave 

bands. We have not included thermal band in this collection. 

These collections are created with the Land Surface 

Reflectance code (LaSRC) (Gorelick et al., 2017). More 

information about this product can be found at 

(https://developers.google.com/earthengine/datasets/catalog/

LANDSAT_LE08_C02_T1_L2. 

 

2.2.1.2. Landsat 7 products 
We included atmospherically corrected surface reflectance 

datasets from the collection 2 tier 1 collections. These 

datasets contain 4 visible and near-infrared bands and 2 short 

wave infrared bands which are orthorectified to get surface 

reflectance, one thermal infrared (TIR) band which is 

processed to orthorectified surface temperature (Gorelick et 

al., 2017). There is also intermediate bands used in the 

calculation of the ST products as well as QA bands. These 

products are created with the Landsat Ecosystem Disturbance 

Adaptive Processing Systems (LEDAPS) algorithm (version 

3.4.0) (Gorelick et al., 2017). More information about the 

datasets can be found at 

(https://developers.google.com/earthengine/datasets/catalog/

LANDSAT_LE07_C02_T1_L2) 
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2.2.1.3. Landsat 5 products 
We have included surface reflectance and land surface 

temperature datasets that are atmospherically corrected and 

derived from the Landsat TM sensor. These datasets contains 

4 visible and near-infrared (VNIR) bands and 2 short-wave 

infrared (SWIR) bands which are processed to obtain 

orthorectified surface reflectance, and one thermal infrared 

(TIR) band processed to orthorectified surface temperature 

(Gorelick et al., 2017). They also contain intermediate bands 

used in calculation of the ST products, as well as QA bands 

(Gorelick et al., 2017). These datasets are created with the 
Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) algorithm (version 3.4.0). More information 

about these datasets can be obtained from the link: 

https://developers.google.com/earth-

engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2 

 

2.2.1.4. Merging Landsat Products 
We used merge algorithm to merge the Landsat products. We 

matched the bands in Landsat 8 with Landsat 7 and Landsat 

5 before merging the datasets. We did not include the thermal 

band from Landsat 8 products while merging the datasets. 

 

2.2.2. MODIS datasets 
We have included the datasets that provides an estimate of 

the surface reflectance of Terra MODIS bands. They have 7 

bands and 500m resolution. The datasets is atmospherically 

corrected for gasses, aerosols and Rayleigh scattering 

(Gorelick et al., 2017). There are also quality layer and 4 
observation bands included (Gorelick et al., 2017). The value 

for each pixel is selected from all the acquisitions within the 

8-day composite on the basis of high observation coverage, 

low view angle, the absence of clouds or cloud shadow and 

aerosol loading. More information of the datasets can be 

found from the link:  

https://developers.google.com/earthengine/datasets/catalog/

MODIS_006_MOD09A1 

 

2.2.3. Sentinel dataset 
This dataset consist high resolution, multi-spectral imaging 

mission supporting Copernicus Land monitoring. This 
dataset contains 12 UINT 16 spectral bands representing SR. 

They were downloaded from scihub and computed by 

running sen2cor. We used cloud filter to filter out the clouds 

from the datasets (Gorelick et al., 2017). These datasets are 

ready to use for monitoring vegetation, soil, water cover as 

well as observation of inland waterways and coastal areas. 

More information about the datasets can be found at: 

https://developers.google.com/earthengine/datasets/catalog/

COPERNICUS_S2_SR#description 

 

2.3. Tools and techniques 
We used both existing as well as newly developed scripts to 

retrieve data, compute and visualize. For example, time 

slider, plots display on the map are existing source codes we 

used and we developed source codes to design GUI, 

algorithms and time series computation and download 

functionality using GEE Python API. Table 1 shows our 

method of algorithms development based on dataset/satellite 
imagery type.  
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Fig 3: Sample codes used to develop algorithms from the satellite reflectance data 

 

2.3.1. Algorithms used 
We used normalized difference vegetation index (NDVI), 

2BDA, 3 BDA and Turbidity Index (TI) algorithms in our 

web-based tool. NDVI is the ratio of red and near infrared 

bands and used in wide range of research related to assess 

vegetation health (Gandhi et al., 2015; Prasai, 2021). NDVI 

is widely used in studying land use land cover (Somayajula 

et al., 2021), habit suitability (Prasai et al., 2021), species 

conservation (Nieto et al., 2015), floods and risk mapping 

(Gabban et al., 2006) related research projects. Normalized 

difference chlorophyll index (NDCI) is also the ratio of red 
and near infrared bands and used to quantify the chlorophyll 

pigments in inland water bodies (S. Mishra & Mishra, 2012) 

2BDA and 3BDA algorithms are also used to extract 

chlorophyll concentration in inland water bodies (Buma & 

Lee, 2020). TI is one of the water quality parameters and 

gives information about the clarity of the water (Zheng & 

DiGiacomo, 2020). 

 
Table 1: Algorithms used in the web-based tool 

 

Sensor 

Image 
Index Band combination 

Landsat NDVI/NDCI (Near Infrared-Red)/(Near Infrared + Red) 

 2BDA Near Infrared/Red 

 3 BDA (Green-Red)/(Green + Red) 

 TI (Green-Red)/Red 

MODIS NDVI/NDCI 
(Sur_refl_b02- Sur_refl_b01)/ 
(Sur_refl_b02 + Sur_refl_b01) 

 2 BDA Sur_refl_b02/Sur_refl_b0 

 3 BDA 
(Sur_refl_b04- Sur_refl_b03)/ 

(Sur_refl_b04 

 TI 
(Sur_refl_b04- Sur_refl_b03)/ 

(Sur_refl_b04 + Sur_refl_b03) 

Sentinel NDVI/NDCI (B8-B4)/(B8 + B4) 

 2 BDA B8/B4 

 3 BDA (B3-B4)/(B3) 

 TI (B4-B3)/(B4 + B3) 
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