

On the second degree equation with three unknowns $5x^2 + 4y^2 = 189z^2$

S Vidhyalakshmi ^{1*}, J Shanthi ², K Hema ³, MA Gopalan ⁴

^{1, 2} Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India

³ Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India
⁴ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy, Tamil Nadu, India

* Corresponding Author: S Vidhyalakshmi

Article Info

Abstract

ISSN (online): 2582-7138 Volume: 03 Issue: 03 May-June 2022 Received: 12-04-2022; Accepted: 27-04-2022 Page No: 197-204 The homogeneous ternary quadratic equation given by $5x^2 + 4y^2 = 189z^2$ is analysed for its integral points on it. Also, formulae for generating sequence of integer solutions based on the given solution are presented.

Keywords: Ternary quadratic, Integer solutions, Homogeneous

Introduction

It is well known that the quadratic Diophantine equations with three unknowns (homogeneous or non-homogeneous) are rich in variety ^[1, 2, 3]. In particular, one may refer ^[4-17] for homogeneous or non-homogeneous ternary quadratic Diophantine equations that are analysed for obtaining their corresponding non-zero distinct integer solutions. In this communication, yet another interesting homogeneous ternary quadratic Diophantine equation given by $5x^2 + 4y^2 = 189z^2$ is analysed for its non-zero distinct integer solutions through different methods. A few interesting properties between the solutions are presented. Also, formulas for generating sequence of integer solutions based on the given solution are presented.

Methods of Analysis

The ternary quadratic equation to be solved for its integer solutions is

$5x^2 + 4y^2 = 189z^2$	(1)
Introduction of the linear transformations	
x = 6X, $y=3Y$, $z=2WIn (1) leads to$	(2)
$Y^2 + 5X^2 = 21W^2$	(3)

We present below different methods of solving (3) and in view of (2), one obtains different sets of integer solutions to (1).

Method: 1

Is written in the ratio form as

$$\frac{Y+4W}{W+X} = \frac{5(W-X)}{Y-4W} = \frac{\alpha}{\beta}, \ \beta \neq 0$$
(4)

Which is equivalent to the system of double equations

$$\alpha X - \beta Y + (\alpha - 4\beta)W = 0$$

$$5\beta X + \alpha Y - (4\alpha + 5\beta)W = 0$$

Applying the method of cross-multiplication to the above system of equations, note that

$$X = 8\alpha\beta + 5\beta^2 - \alpha^2$$
$$Y = 10\alpha\beta - 20\beta^2 + 4\alpha^2$$
$$W = \alpha^2 + 5\beta^2$$

In view of (2), one has

$$x = 6(8\alpha\beta + 5\beta^2 - \alpha^2)$$

$$y = 3(10\alpha\beta - 20\beta^2 + 4\alpha^2)$$

$$z = 2(\alpha^2 + 5\beta^2)$$

Which satisfy (1)

Note: 1

Expressing (3) in the ratio forms as below

$$\frac{Y+4W}{5(W+X)} = \frac{W-X}{Y-4W} = \frac{\alpha}{\beta}$$
$$\frac{Y+4W}{W-X} = \frac{5(W+X)}{Y-4W} = \frac{\alpha}{\beta}$$
$$\frac{Y+4W}{5(W-X)} = \frac{W+X}{Y-4W} = \frac{\alpha}{\beta}$$

One can also obtain other solutions to (1) by using the above method.

Method: 2

(3) Can be written as

 $Y^2 = 21W^2 - 5X^2 \tag{5}$

Introducing the linear transformations

 $W = \overline{X} + 5T, X = \overline{X} + 21T, Y = 4S \tag{6}$

In (5), it is written as

$$\overline{X}^2 = S^2 + 105T^2 \tag{7}$$

Which is satisfied by

$$T = 2rs, S = 105r^2 - s^2, \overline{X} = 105r^2 + s^2$$

Substituting the above values in (6) and using (2), the corresponding integer solutions to (1) are given by

$$x=6(105r^{2}+s^{2}+42rs), y=12(105r^{2}-s^{2}), z=2(105r^{2}+s^{2}+10rs)$$

Method: 3

(7) Is written as the system of double equations in Table 1 as follows.

Table 1: System of Double Equations

System	1	2	3	4	5	6	7	8	9	10
$\overline{X} + S$	$105T^{2}$	$35T^{2}$	$21T^{2}$	$7T^{2}$	$3T^2$	T^2	105T	35T	21T	15T
$\overline{X} - S$	1	3	5	15	35	105	Т	Т	5T	7T

Solving each of the above system of double equations, the values of \overline{X} , *S* and *T* are obtained. Using these values in (6) and employing (2) the value of *x*, *y* & *z* satisfying (1) are obtained. For simplicity and brevity, in what follows, the integer solutions thus obtained are exhibited.

Solutions for system: 1

$$x = 6(210K^{2} + 252K + 74), y = 12(210K^{2} + 210K + 52), z = 2(210K^{2} + 220K + 58)$$

Solutions for system: 2

$$x = 6(70K^{2} + 112K + 40), y = 12(70K^{2} + 70K + 16), z = 2(70K^{2} + 80K + 24)$$

Solution for system: 3

$$x = 6(42K^2 + 84K + 34), y = 12(42K^2 + 42K + 8), z = 2(42K^2 + 52K + 18)$$

Solution for system: 4

$$x = 6(14K^2 + 56K + 32), y = 12(14K^2 + 14K - 4), z = 2(14K^2 + 24K + 16)$$

Solution for system: 5

$$x=6(\,6K^2\,+\,48K\,+\,40\,),\,y=12(\,6K^2\,+\,6K\,-\,16\,),z=2(\,6K^2\,+\,16K\,+\,24\,)$$

Solution for system: 6

x= 6(
$$2K^2 + 44K + 74$$
), y= 12($2K^2 + 2K - 52$), z= 2($2K^2 + 12K + 58$)

Solution for system: 7

x= 444T, y= 624T, z= 116T

Solution for system: 8

x= 234T, y= 204T, z= 46T

Solution for system: 9

x= 204T, y= 96T, z= 36T

Solution for system: 10

x= 192T, y= 48T, z= 32T

Method: 4

(3) Is written as

$$21W^2 - 5X^2 = Y^2 * 1 \tag{8}$$

Assume Y as

$$Y = 21a^2 - 5b^2$$
(9)

Write 1 on the R.H.S. of (8) as

$$1 = \frac{(\sqrt{21} + \sqrt{5})(\sqrt{21} - \sqrt{5})}{16} \tag{10}$$

Using (9) & (10) in (8) and employing the method of factorization, consider

$$\sqrt{21}W + \sqrt{5}X = \frac{1}{4} \left(\sqrt{21} + \sqrt{5}\right) \left(\sqrt{21}a + \sqrt{5}b\right)^2$$

After Equating the corresponding terms on both sides, it is seen that

$$W = \frac{1}{4} \left(21a^2 + 5b^2 + 10ab \right), \quad X = \frac{1}{4} \left(21a^2 + 5b^2 + 42ab \right)$$
(11)

Using (9) and (11) in (2), one has

$$x = \frac{3}{2} \left(21a^2 + 5b^2 + 42ab \right), \ y = 3(21a^2 - 5b^2), \ z = \frac{1}{2} \left(21a^2 + 5b^2 + 10ab \right)$$
(12)

As our interest is on finding integer solutions, the values of a and b should be of the same parity.

Note: 2

In addition to (10), the integer 1 on the R.H.S. of (8) is written as

$$1 = (\sqrt{21} + 2\sqrt{5})^*(\sqrt{21} - 2\sqrt{5})$$

Following the above procedure, one may obtain different set of integer solutions to (1).

Method 5:

In (3), assume W as

$$W=a^2+5b^2 \tag{13}$$

Write 21 as

$$21 = (1 + i2\sqrt{5})(1 - i2\sqrt{5}) \tag{14}$$

Using (13) and (14) in (3) and employing the method of factorisation, consider

$$Y + i \sqrt{5} X = (1 + i 2\sqrt{5})(a + i\sqrt{5}b)^2$$

Equating the real and imaginary parts, one has

$$Y = a^2 - 5b^2 - 20ab$$
, $X = 2(a^2 - 5b^2) + 2ab$

Therefore, in view of (2), the corresponding integer solutions to (1) are given by

x =
$$12(a^2 - 5b^2 + ab)$$
, y = $3(a^2 - 5b^2 - 20ab)$, z = $2(a^2 + 5b^2)$

Note 3

In addition to (14), the integer 21 on the R.H.S. of (3) is written as

$$21 = (4 + i\sqrt{5})(4 - i\sqrt{5})$$

Following the above procedure, one may obtain different set of integer solutions to (1).

Method 6

(3) Is written as

$$Y^2 + 5X^2 = 21W^2 * 1 \tag{15}$$

Write the integer 1 on the R.H.S. of (15) as

$$1 = \frac{1}{81} \left(1 + i4\sqrt{5} \right) \left(1 - i4\sqrt{5} \right)$$
(16)

Using (13), (14) and (16) in (15) and employing the method of factorisation, consider

$$Y + i\sqrt{5}X = (1 + i2\sqrt{5})(a^2 - 5b^2 + i\sqrt{5}2ab)\frac{(1 + i4\sqrt{5})}{9}$$

Equating the real and imaginary parts,

$$Y = \frac{1}{3} \left[\left(a^2 - 5b^2 \right) \left(-13 \right) - 20ab \right]$$
$$X = \frac{1}{3} \left[2 \left(a^2 - 5b^2 \right) - 26ab \right]$$

In view of (2), the corresponding integer solutions to (1) are given by

$$x = 4(a^{2} - 5b^{2}) - 52ab$$

$$y = -13(a^{2} - 5b^{2}) - 20ab$$

$$z = 2(a^{2} + 5b^{2})$$

Note 4

In addition to (16), the integer 1 on the R.H.S. of (15) is written as

$$1 = \frac{\left(2 + i3\sqrt{5}\right)\left(2 - i3\sqrt{5}\right)}{49}$$

Following the above procedure, one may obtain different set of integer solution to (1). It is worth mentioning that the above solutions are different from [17].

Generation of Solutions

Different formulas for generating sequence of integer solutions based on the given solutions are presented below: Let (x_0, y_0, z_0) be any given solutions to (1)

www.allmultidisciplinaryjournal.com

Formula 1

Let (x_1, y_1, z_1) given by

$$x_1 = 7x_0, y_1 = -7y_0 + 7h, z_1 = 7z_0 + h$$
⁽¹⁷⁾

Be the second solution to (1). Using (17) in (1) and simplifying, one obtains

$$h = 56 y_0 + 378 z_0$$

In view of (17), the values of y_1 and z_1 are written in the matrix form as

$$(y_1, z_1)^t = M(y_0, z_0)^t$$

Where

$$M = \begin{bmatrix} 385 & 2646 \\ 56 & 385 \end{bmatrix}$$

And t is the transpose.

The repetition of the above process leads to the n^{th} solutions y_n, z_n given by

$$(y_n, z_n)^t = M^n (y_0, z_0)^t$$

If α, β are the distinct eigen values of M, then

$$\alpha = 763, \beta = 7$$

We know that

$$M^{n} = \frac{\alpha^{n}}{(\alpha - \beta)} (M - \beta I) + \frac{\beta^{n}}{\beta - \alpha} (M - \alpha I), I = 2 \times 2$$
 Identity Matrix

Thus, the general formulas for integer solutions to (1) are given by

$$\begin{aligned} x_n &= 7^n x_0, \\ \begin{pmatrix} y_n \\ z_n \end{pmatrix} &= \frac{1}{108} \begin{bmatrix} 54(\alpha^n + \beta^n) & 378(\alpha^n - \beta^n) \\ 8(\alpha^n - \beta^n) & 54(\alpha^n + \beta^n) \end{bmatrix} \begin{bmatrix} y_0 \\ z_0 \end{bmatrix} \end{aligned}$$

Formula 2

Let (x_1, y_1, z_1) given by

$$x_1 = 9x_0 + 6h, y_1 = 9y_0, z_1 = -9z_0 + h$$
(18)

Be the second solution to (1). Using (18) in (1) and simplifying, one obtains

h=
$$60x_0 + 378z_0$$

In view of (17), the values of x_1 and z_1 are written in the matrix form as

 $(x_1, z_1)^t = M(x_0, z_0)^t$

Where

$$M = \begin{bmatrix} 369 & 2268 \\ 60 & 369 \end{bmatrix}$$

and t is the transpose.

The repetition of the above process leads to the n^{th} solutions x_n, z_n given by

$$(x_n, z_n)^t = M^n (x_0, z_0)^t$$

If α, β are the distinct eigen values of M, then

$$\alpha = 729, \beta = 9$$

We know that

$$M^{n} = \frac{\alpha^{n}}{(\alpha - \beta)} (M - \beta I) + \frac{\beta^{n}}{\beta - \alpha} (M - \alpha I), I = 2 \times 2$$
 Identity Matrix

Thus, the general formulas for integer solutions to (1) are given by

$$\begin{pmatrix} x_n \\ z_n \end{pmatrix} = \frac{1}{180} \begin{bmatrix} 90(\alpha^n + \beta^n) & 567(\alpha^n - \beta^n) \\ 15(\alpha^n - \beta^n) & 90(\alpha^n + \beta^n) \end{bmatrix} \begin{pmatrix} x_0 \\ z_0 \end{pmatrix}$$

$$y_n = 9^n y_0$$

Formula 3 Let (x_1, y_1, z_1) given by

$$x_1 = h - 9x_0, y_1 = -9y_0 + h, z_1 = 9z_0$$
⁽¹⁹⁾

Be the second solution to (1). Using (19) in (1) and simplifying, one obtains

$$h = 10 x_0 + 8 y_0$$

In view of (17), the values of x_1 and y_1 are written in the matrix form as

$$(x_1, y_1)^t = M(x_0, y_0)^t$$

Where

$$\mathbf{M} = \begin{bmatrix} 1 & 8 \\ 10 & -1 \end{bmatrix}$$

And t is the transpose.

The repetition of the above process leads to the n^{th} solutions x_n, y_n given by

$$(x_n, y_n)^t = M^n (x_0, y_0)^t$$

If α, β are the distinct eigen values of M, then

$$\alpha = 9, \beta = -9$$

We know that

$$M^{n} = \frac{\alpha^{n}}{(\alpha - \beta)} (M - \beta I) + \frac{\beta^{n}}{\beta - \alpha} (M - \alpha I), I = 2 \times 2 \text{ Identity Matrix}$$

Thus, the general formulas for integer solutions to (1) are given by

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \frac{1}{9} \begin{bmatrix} 5\alpha^n + 4\beta^n & 4\left(\alpha^n - \beta^n\right) \\ 5\left(\alpha^n - \beta^n\right) & 4\alpha^n + 5\beta^n \end{bmatrix} \begin{pmatrix} y_0 \\ z_0 \end{pmatrix}$$

$$z_n = 9^n z_0,$$

Conclusion:

In this paper, an attempt has been made to obtain non-zero distinct integer solutions to the ternary quadratic Diophantine equation $5x^2 + 4y^2 = 189z^2$ representing homogeneous cone. As there are varieties of cones, the readers may search for other forms of cones to obtain integer solutions for the corresponding cones.

References

- 1. LE Dickson. History of theory of Numbers, Chelsea publishing Company, Newyork, 1952, 2.
- 2. LJ Mordel. Diophantine Equations, Academic press, Newyork, 1969.
- 3. Carmichael RD. The theory of numbers and Diophantine analysis, Newyork, Dover, 1959.
- 4. Gopalan MA, Geetha D. Lattice points on the hyperbola of two sheets $x^2 6xy + y^2 + 6x 2y + 5 = z^2 + 4$, Impact J Sci. Tech. 2010; 4:23-32.
- 5. Gopalan MA, Vidhyalakshmi S, Kavitha A. Integral points on the homogeneous cone $z^2 = 2x^2 7y^2$, The Diophantine J Math. 2012; 1(2):127-136.
- 6. Gopalan MA, Vidhyalakshmi S, Sumathi G. Lattice points on the hyperboloid of one sheet $4z^2 = 2x^2 + 3y^2 4$, Diophantine J Math. 2012; 1(2):109-115.
- 7. Gopalan MA, Vidhyalakshmi S, Lakshmi K. Integral points on the hyperboloid of two sheets $3y^2 = 7x^2 z^2 + 21$, Diophantine J Math. 2012; 1(2):99-107.
- 8. Gopalan MA, Vidhyalakshmi S, Mallika S. Observations on hyperboloid of one sheet $x^2 + 2y^2 z^2 = 2$, Bessel J Math. 2012; 2(3):221-226.
- 9. Gopalan MA, Vidhyalakshmi S, Usha Rani TR, Mallika S. Integral points on the homogeneous cone $6z^2 + 3y^2 2x^2 = 0$, Impact J Sci Tech. 2012; 6(1):7-13.
- 10. Gopalan M.A., Vidhyalakshmi S, Sumathi G, Lattice points on the elliptic paraboloid $z = 9x^2 + 4y^2$, Advances in Applied Mathematics. 2012; 7(4):379-385.
- 11. Gopalan MA, Vidhyalakshmi S, Usha Rani TR. Integral points on the non-homogeneous cone $2z^2 + 4xy + 8x 4z = 0$, Global Journal of Mathematics and Mathematics sciences. 2012; 2(1):61-67.
- 12. Gopalan MA, Vidhyalakshmi S, Lakshmi K. Lattice points on the elliptic paraboloid $16y^2 + 9z^2 = 4x$, Bessel J Math, 2012.
- 13. Gopalan MA, Geetha T, Hemalatha K. On the ternary quadratic Diophantine equation $5x^2 + 5y^2 2xy = 20z^2$, International Journal of multidisciplinary research and development. 2015; 2(4):211-214.
- 14. Hema D, Mallika S. On the ternary quadratic Diophantine equation $5y^2 = 3x^2 + 2z^2$, Journal of Mathematics and informatics. 2017; 10:157-165.
- 15. Selva Keerthana K, Mallika S. On the ternary quadratic Diophantine equation $3x^2 + 3y^2 5xy + 2(x + y) + 4 = 15z^2$, Journal of Mathematics and informatics. 2017; 11:21-28.
- 16. Dr. Mallika S. On the Homogeneous ternary quadratic Diophantine equation $6x^2 + 7y^2 = 559z^2$, International Journal Of Mathematics Trends and Technology. 2019; 65(7):206-217.
- 17. Dr. Kavitha A. On the Homogeneous ternary quadratic Diophantine equation $5x^2 + 4y^2 = 189z^2$, International Journal Of Mathematics Trends and Technology. 2019; 65(7):286-295.